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Abstract: The functional films based on chitosan and corn starch incorporated tea polyphenols were
developed through mixing the chitosan and starch solution and the powder of tea polyphenols by
the casting method. The objective of this research was to investigate the effect of different concen-
trations of tea polyphenols on the functional properties of the films. Attenuated total reflectance
Fourier transform infrared spectrometry and X-ray diffraction were used to investigate the potential
interactions among chitosan, corn starch and tea polyphenols in the blend films. Physical properties
of the blend films, including density, moisture content, opacity, color, water solubility and water
swelling, as well as morphological characteristics, were measured. The results demonstrated that
the incorporation of tea polyphenols caused the blend films to lead to a darker appearance. The
water solubility of the blend film increased with the increase of tea polyphenol concentrations, while
moisture content and swelling degree decreased. The hydrogen bonding between chitosan, starch
and tea polyphenols restricted the movement of molecular chains and was helpful to the stability of
the blend films. The results suggested that these biodegradable blend films could potentially be used
as packaging films for the food and drug industries to extend the shelf life to maintain their quality
and safety.

Keywords: corn starch; chitosan; tea polyphenols; physical properties

1. Introduction

In recent decades, with the rapid development of society, people have paid more
and more attention to food quality and safety, and food packaging also ushered in great
changes. The original food packaging materials are mainly petroleum-based plastics, and
although widely used because of their good processing performance and excellent physical
and chemical properties, their harm to the human body and environment can not be
ignored, because they are not easy to degrade, and a large number of plastic particles will
be produced in the process of manufacturing and circulation, which will cause destruction
to the human body and environment. Therefore, the research and development of new,
green, environmentally friendly, safe and degradable packaging materials have become
a hot spot in the field of food materials. Due to the degradability and green safety of the
natural biomass matrix, more directions are provided for the development and preparation
of new active packaging materials, gradually attracting the attention of researchers [1].

Active packaging can extend the shelf life of food and improve the safety and sensory
characteristics of food. The main active packaging systems can be divided into absorption
and release systems, including water or liquid absorption, oxygen removal, carbon dioxide
emission/absorption, ethylene removal/emission, odor and odor absorption or release,
and antibacterial system. Antibacterial packaging is a very valuable research direction
of active packaging. Adding antibacterial agents or using antibacterial polymers in the
packaging system can affect the growth of microorganisms, which can kill or inhibit the
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harmful microorganisms that pollute food, thus having a significant impact on the shelf
life and quality of food [2].

Chitosan is one of the most abundant polysaccharides in nature next to cellulose. It is
a derivative of chitin deacetylation and mainly comes from shellfish-processing waste. Chi-
tosan has good physical and chemical properties, such as film-forming, moisture retention,
moisture absorption and adsorption [3]. Different from other bio-based food packaging ma-
terials, chitosan has many physical and chemical properties that are harmless to the human
body, such as non-toxic in vivo and in vitro, biodegradable, biocompatible, antibacterial
activity and so on, which greatly promotes its application and development in the research
field [4]. At the same time, it has the advantage of combining functional substances [5].
Functional substances can be added into chitosan-based films to expand the physical and
chemical properties of chitosan. Many studies have proved that chitosan-based films and
coatings are effective in food preservation [6]. However, chitosan has some limitations, such
as low mechanical strength, thermal stability, water and gas barrier properties, limiting its
use as degradable food packaging materials. Although chitosan is a promising active food
packaging material, it has no significant antioxidant activity. Improving the antioxidant
activity of chitosan can expand its application in active food packaging.

Starch is one of the most abundant natural polymers with wide sources and low
prices. It has become a promising food packaging and preservation material because of its
renewable, biodegradable, edible and low cost [7]. Starch can be processed by the existing
plastic processing technology, the method is in the presence of water or other plasticizers,
through mechanical energy and thermal energy to destroy the starch granule structure.
Although starch-based materials are known to have excellent oxygen barrier properties [8],
their applications are limited due to their poor moisture resistance, brittleness and low
tensile strength. A common way to overcome these shortcomings and provide further
functional properties is to mix starch with other natural biopolymers to form composites [9].
Chitosan has been previously added into starch matrices to prepare starch-based active
packaging displaying antimicrobial properties. The effect of chitosan concentration on
physicochemical, mechanical and water vapor barrier properties as well as morphological
characteristics of the corn starch/chitosan films was comprehensively studied [2].

Tea polyphenols are extracted from tea, containing catechins, flavonoids, anthocyanins
and phenolic acids, but mainly catechins, whose content is more than 80% [10]. The
results showed that tea polyphenols had antibacterial and antioxidant activities, and had a
good prospect of antiseptic and antioxidant applications [11]. It has been shown that tea
polyphenols could prolong the shelf life of fresh mutton and fresh-cut lettuce [12]. The
antioxidant mechanism of polyphenols is mainly attributed to its ability to capture reactive
oxygen species and chelate metal ions, which generate free radicals through the Fenton
reaction [13].

The research proves that chitosan is one of the main raw materials for the packaging
of active food. By adding plant extracts [14], green tea extracts [15], rosemary essential
oil [16], Zataria multiflora Boiss essential oil and grape seed extract [17], the antioxidant
activity of chitosan can be improved. Tea polyphenols are good natural antioxidants,
which can be used as additives in chitosan film or coating, so as to expand the antioxidant
activity of chitosan film and its application in active packaging. Therefore, the purpose
of this study is to prepare environmentally friendly functional chitosan and starch film
with different tea polyphenol concentrations as raw materials. The physical properties,
including attenuated total reflection Fourier transform infrared spectroscopy, density,
water content, opacity, color, water solubility, crystalline structure and morphology of
corn starch/chitosan/tea polyphenols (CS/CH/TP) films with different tea polyphenol
concentrations were measured.
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2. Materials and Methods
2.1. Materials

Chitosan with degree of deacetylation of 80–95%, molar mass of 161.16 kDa and
viscosity of 51 mPa × s (The viscosity was measured by dissolving 10 g of chitosan in
1 g/mL glacial acetic acid solution at 20 ◦C according to GB 29941-2013) was supplied by
Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China). Tea polyphenols were supplied
by Anhui Red Star Pharmaceutical Co. Ltd. (Xuancheng, China). The tea polyphenols
used in this study were yellow or brown powder, purity was ≥80%, caffeine was ≤5% and
ash was ≤3%. Catechins in the tea polyphenols were ≥50% and Epigallocatechin gallate
(EGCG) in the catechins was ≥30%. Corn starch was supplied by Changchun Jincheng
Corn Development Co. Ltd., Da Cheng Group (Changhcun, China). Its moisture content
was 12.8% and the amylose/amylopectin ratio was 28/72. Glycerol and acetic acid (36%)
were obtained from Beijing Beihua Fine Chemicals Co. Ltd. (Beijing, China). All these
materials were used 106 as received without further purification.

2.2. Preparation of Films

Chitosan was dissolved in an aqueous solution of acetic acid at a concentration of
2% (v/v) to form a chitosan solution (2 g/100 mL) and stirred at 60 ◦C at 800 rpm. Starch
solution (5 g/100 mL) was prepared by dispersing corn starch in deionized water at 95 ◦C
and stirring at 600 rpm for 60 min to accomplish a complete starch gelatinization. Glycerol
was added to the chitosan solution and starch solution as a plasticizer at a concentration
of 20 wt% dry weight of chitosan and starch, respectively. Then tea polyphenols were
added into chitosan solution at concentrations of 0.5%, 1%, 2%, 3% dry weight of chitosan
and starch at 60 ◦C, respectively with stirring at 200 rpm for 10 min. The blend film
solutions were prepared by mixing the chitosan/tea polyphenols solution and starch/tea
polyphenols solution in 1:1 weight ratio. After stirring at 600 rpm for 60 min at 60 ◦C and
degassed, 40 g of blend film solution was dispensed into glass Petri dishes with a diameter
of 60 mm for casting and dried at 60 ◦C for 8 h. The stripped films were kept in a chamber
at room temperature and 75% relative humidity for 48 h prior to experimental use.

2.3. Characterization
2.3.1. Attenuated Total Reflectance Fourier Transform Infrared

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectra of the
obtained blend films were measured using a Nexus 670 FTIR spectrometer with ATR
accessories with Ge crystals perform (Nicolet Instrument Corporation, Madison, GA,
USA) to study the interaction of chitosan, starch and tea polyphenols in the films. The
measurement probe was directly in contact with the surface of the films, and a spectral
resolution of 4 cm−1 was used, and 64 scans were acquired for each spectrum in the range
from 4000 to 500 cm−1.

2.3.2. Thickness

The thickness of the film is measured by a hand-held digital micrometer (Mitutoyo
Absolute, Tester Sangyo Co. Ltd., Tokyo, Japan) with a resolution of 0.001 mm at five
different positions of each sample, and whichever is selected average value. These values
are used for density and opacity.

2.3.3. Density, Moisture Content and Opacity

Film density was determined from the specimen weight and volume. The specimen
volume was calculated from specimen area and thickness. The specimen thickness was
measured by using a hand-held digital micrometer (Mitutoyo Absolute, Tester Sangyo Co.
Ltd., Tokyo, Japan) with a precision of 0.001 mm at five different positions in each specimen
and the average values were taken.

Moisture content of the blend film was determined by measuring weight loss of films
upon drying in an oven at 105 ◦C for 24 h. All the tests were conducted in triplicate
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and the means were reported. The moisture content was calculated according to the
following equation:

Moisture content(%) =
Mw − Md

Mw
× 100% (1)

where Mw is the weight of the film adjusted to moisture equilibrium at 75% RH and Md is
the dry weight of the film.

Opacity was determined according to the method of Park, Je, and Kim (2004) [18], and
the absorbance of the blend film at 600 nm was measured with a UV spectrophotometer
(Ruili Analytical Instruments, Beijing, China). The films were cut into rectangular pieces
and placed directly into the spectrophotometer test chamber. An empty test chamber was
used as a reference. The opacity of the film was calculated by the following equation:

O =
Abs600

d
(2)

where O is the opacity, Abs600 is the absorbance value at 600 nm, and d is the film thick-
ness (mm).

2.3.4. Color Properties

The color of the films was evaluated using HunterLab ColorFlex (New Union Elec-
tronics Co., Ltd., Shanghai, China). The color values of L* (luminosity), a* (negative green;
positive yellow) and b* (negative blue; positive yellow) were measured. The standard plate
CX 2064 was used as the standard. The total color difference (∆E*) and chromaticity (C*)
were calculated as follows:

∆E =
√

∆a2 + ∆b2 + ∆L2 (3)

C =
√

a2 + b2 (4)

where ∆L = L*standard − L*sample, ∆a = a*standard − a*sample, ∆b = b*standard − b*sample. The
values of the color parameters of the standard plate are L* = 94.52, a* = −0.86, and b* = 0.68.
Each film was measured five times, once at the center and four times at the periphery.

2.3.5. Water Solubility

The water solubility (WS) of the blend film was defined as the percentage of dry
matter of the specimen dissolved after 24 h of immersion in distilled water according to the
method used by Khoshgozaran-Abras, Azizi, Hamidy, and Bagheripoor-Fallah (2012) [12].
The blend films previously equilibrated at 0% RH were cut into 1 cm × 4 cm strips and the
initial dry weight (Wi) was determined. Then the strips were immersed in 50 mL of distilled
water and stirred at 100 rpm. After 24 h, the strips were removed and dried at 105 ◦C for
24 h to determine the final dry weight (Wf). All tests were performed in triplicate and the
mean values were reported. WS was calculated according to the following equation:

WS(%) =
Wi − W f

Wi
× 100 (5)

where Wi was the initial dry weight of sample, Wf was the final dry weight of sample.

2.3.6. Swelling Degree in Water

The swelling degree (SD) of the blend film in water was determined by the method
described in the reference [19]. The thin film specimens (1 cm × 4 cm samples) were
weighed (W0) and placed in a Petri dish, and 30 mL of distilled water was added, then the
specimens were removed after 24 h. The water was gently wiped from the surface of the
specimens with filter paper and finally weighed (Wt). Three parallel samples were used for
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the experiment, and the results were averaged. The formula for the degree of swelling (%)
was calculated as follows:

SD(%) =
Wt − W0

W0
× 100% (6)

where Wt is the mass of the specimen after swelling, W0 is the mass of the specimen
before swelling.

2.3.7. X-ray Diffraction

The specimens were analyzed by X-ray diffraction (XRD) using a D/max-2500 X-ray
diffractometer (Rigaku Corporation, Tokyo, Japan). Cu-Ka rays (λ = 1.542 Å) were used at
40 kV and 250 mA current, with a 2θ scan range of 3–50◦ and a scan rate of 2◦/min.

2.3.8. SEM

The surface morphology of the blend film was studied by scanning electron microscope
(SEM) using a scanning electron microscope (Zeiss Evo 18 SEM, Jena, Germany). A thin
layer of gold was plated on the surface of thin film by the gold sputtering method, and
then was observed and photographed.

2.3.9. Statistical Analysis

The difference between factors and levels was evaluated by the analysis of variance
(ANOVA). Duncan’s multiple range tests were used to compare the means to identify which
groups were significantly different from other groups (p < 0.05). All data are presented as
mean ± standard deviation.

3. Results and Discussion
3.1. ATR-FTIR Analysis

ATR-FTIR is a very powerful tool for detecting possible interactions between film
components. When starch, chitosan and tea polyphenols were mixed together, the char-
acteristic peak spectrum could reflect the effect of physical and chemical interaction. The
ATR-FTIR spectra of the CS/CH/TP film are shown in Figure 1. In the spectrum of corn
starch, the characteristic peak at 1630 cm−1 was due to the presence of bound water, the
characteristic peak at 3420 cm−1 was due to the presence of hydroxyl groups (O–H), and
the characteristic peak at 1540 cm−1 was due to the C–O in the C–O–H groups caused by
stretching vibration. The peak at 1470 cm−1 was due to the stretching vibration of C–O
in the group. In the chitosan spectroscopy experiment, due to the stretching vibration of
the N-H and hydrogen-bonded carboxyl groups, there was a wide frequency band in the
range 3800–3500 cm−1. The peak at 1630 cm−1 in the spectrum of starch was related to the
presence of bound water, while the peak located at 1650 cm−1 of chitosan was associated
with amide-I stretch and the peak of N-H bending located at 1590 cm−1 [20,21]. Absorption
in the range of 1680–1480 cm−1 was related to the vibrations of carbonyl bonds (C=O) of
the amide group CONHR and to the vibrations of protonated amine group [20]. Bending
vibrations of methylene and methyl groups were also visible at the peaks of 1380 cm−1 and
1420 cm−1, respectively [20,22].

When tea polyphenols, chitosan, starch and glycerol are blended, compared to the
spectra of pure chitosan film and starch-only film, as shown in Figure 1, it can be seen that
the amino peak of the chitosan at 1590 cm−1 shifts to 1550 cm−1 in the blend film. The
N–H peak in chitosan at 1650 cm−1 and –OH in starch at 1630 cm−1 moved to 1640 cm−1.
The characteristic peak of chitosan at 3390 cm−1 and starch at 3420 cm−1 shifted to a
lower frequency, and the peak of the hydrogen-bonded carboxyl group becomes a strong
absorption peak at 3290 cm−1. These shifts indicated that the formation of inter- and
intramolecular hydrogen bonding had taken place between chitosan, starch, glycerol and
tea polyphenols [23–25]. which were consistent with the results of Shao et al [26]. In this
work, the strong absorption peak of CS/CH/TP film at 3290 cm−1 had a larger and wide
wavenumber than that at 3270 cm−1 of CS/TP film, and the wavenumber of the N-H
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bending peak at 1550 cm−1 was also greater than that of CS/TP film without chitosan [27].
These indicated that chitosan affected the structure of the composite membrane, causing
these two characteristic peaks to shift to a higher wavenumber. Similar phenomena can
also be observed in other experimental studies [2].
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Figure 1. FT-IR spectra for chitosan film, starch film, tea polyphenols and CS/CH/TP films.

3.2. Physicochemical Properties

Compared with CS/CH film, CS/CH/TP film had high oxidation resistance and
could play a good role in some applications. Table 1 lists the effects of tea polyphenol
concentrations on the physicochemical properties of the blend film. The concentrations of
tea polyphenols were chosen according to the literature, where the composite film with
1 wt% TP exhibited the best antibacterial activities and [26]. The thickness of the film can
play a good role in protecting food, and it will also affect the opacity of the film and the
sensory effects of customers, as well as the barrier properties [28]. Because the addition
of tea polyphenol was very low, the influence of tea polyphenol concentrations on the
thickness of the blend film was relatively small [29]. It can be seen from Table 1 that the
density of the blend film increased with the increase of the content of tea polyphenols.

Table 1. Density, Moisture Content and Opacity of the Chitosan/Corn Starch/Tea Polyphenol Films
with Different TP Concentrations.

Film
Formulation Thickness(mm) Density

(g/cm−3)
Moisture

Content (%)
Opacity

(Abs600 mm−1)

CS/CH/TP-0.5% 0.22 ± 0.02 a 1.42 ± 0.04 a 19.16 ± 0.03 d 1.79 ± 0.05 b
CS/CH/TP-1% 0.23 ± 0.01 b 1.48 ± 0.30 b 18.78 ± 0.01 c 2.06 ± 0.11 c
CS/CH/TP-2% 0.22 ± 0.01 a 1.51 ± 0.07 c 18.61 ± 0.01 b 2.78 ± 0.07 d
CS/CH/TP-3% 0.24 ± 0.02 c 1.53 ± 0.13 d 18.40 ± 0.04 a 3.29 ± 0.03 a

Values are given as mean ± standard deviation. Different letters in the same column indicate significantly different
(p < 0.05) when analyzed by Duncan’s New Multiple Range Test.

Tea polyphenol concentration also affected the moisture content and opacity of the
blend film. The moisture content of the blend films decreased with the increase of tea
polyphenol concentration, which was attributable to the reduction of hydrophilicity in the
film [30]. This was because the interaction between chitosan and tea polyphenols would
reduce the utilization of hydroxyl groups and amino groups, and the effect of hydrogen
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bonds would reduce the hydrophilicity of the blend film. The reduced availability of
hydroxyl groups might result in a decrease in moisture content [30,31].

Opacity is related to the orderly regions formed by the film [32]. The presence of
tea polyphenols in the blend film might prevent or reduce the intensity of scattered light
passing through the film, resulting in a higher opacity value. It must be pointed out that
this might benefit the performance of food packaging, especially for the packaging of
light-sensitive products, because it could block ultraviolet rays, which will help prevent
lipid oxidation induced by light [33]. This is because as the opacity increases, the light
transmittance of the composite film decreases, which can reduce the influence of ultraviolet
radiation. Compared with the thymol composite film, the opacity of the tea polyphenol
composite film was less than that of the thymol composite film, which could not only
reduce light radiation, but also ensure the visibility of the packaged product.

3.3. Color Properties

The optical properties of the polymer film depend on the nature of the additives used
in their formulation [34]. A color experiment of the blend film was carried out and the color
properties of the film are shown in Table 2. With the increase of chitosan concentration, the
L value of the CS/CH/TP film decreased. The smaller the L value was, the darker the color
of the film was. In addition, the values of a* and b* increased with the increase of chitosan
concentration, and the color gradually changed to red and yellow. With the increase of
tea polyphenols, the value of b* increases, showing a tendency to turn yellow, which was
consistent with Shao’s experiment results, where the film was added with corn starch
phosphate and carboxymethyl cellulose [26]. With the increase of chitosan concentration,
the total color difference ∆E value increased, and the color of the blend film became more
abundant. The color of the chitosan film after adding tea polyphenols was richer than that
of the composite film with lemon essential oil [35]. The value of C* also increased with the
increase of chitosan concentration, which is similar to the experimental results in Wang’s
report [27].

Table 2. Color Values of the Chitosan/Corn Starch/Tea Polyphenol Films with Different TP Concentrations.

Film Formulation L* a* b* ∆E* C*

CS/CH/TP-0.5% 59.55 ± 0.73 b 11.36 ± 0.30 a 32.02 ± 0.69 a 48.51 ± 0.85 b 33.97 ± 0.65 a
CS/CH/TP-1% 64.62 ± 2.37 c 10.84 ± 0.72 a 32.04 ± 1.76 a 44.87 ± 2.38 a 33.82 ± 1.88 a
CS/CH/TP-2% 60.60 ± 0.74 b 14.28 ± 0.40 b 40.70 ± 0.54 b 54.59 ± 0.96 c 43.14 ± 0.64 b
CS/CH/TP-3% 49.13 ± 1.54 a 11.37 ± 0.82 c 52.69 ± 0.71 c 72.82 ± 1.71 d 57.25 ± 0.96 c

The color values of L*: luminosity, a*: negative green and positive yellow, b*: negative blue and positive yellow.
Values are given as mean ± standard deviation. Different letters in the same column indicate significantly different
(p < 0.05) when analyzed by Duncan’s New Multiple Range Test.

3.4. Water Solubility and Swelling Analysis

The solubility of film is an important index in food preservation film. For the cling film
covering fruits and vegetables, a low-solubility film is required to ensure the integrity of
the structure. For some edible films for packaging candies and cakes, high-solubility films
should be selected [36]. The water solubility is that water molecules can form hydrogen
bonds with groups such as –NH2 or –OH on the surface of the composite membrane during
the initial stage of blend hydration [37]. Starch is a polysaccharide, which is hydrophilic
in nature and has poor barrier properties. Chitosan has high hydrophobicity, and its
presence could reduce the water solubility of starch-based films [38,39]. The presence of tea
polyphenols could increase the water solubility of starch-based films. As mentioned earlier,
the higher hydrophilicity of tea polyphenols may be responsible for the greater interaction
between the film matrix and water. As shown in Figure 2a, with the gradual increase of the
concentration of tea polyphenols, the water solubility of the blend film increased.
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Figure 2. (a) Water solubility of CS/CH/TP films and (b) water swelling of CS/CH/TP films. Values
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when analyzed by Duncan’s New Multiple Range Test.

The swelling degree of the membrane is a commonly used physical quantity to
characterize the swelling degree of polymer. The swelling is due to the microstructures of
the composite films that can absorb and retain the solvent for a long time [40]. The swelling
degree is also related to the water temperature, the data in this work were obtained at room
temperature [41]. According to Figure 2b, we can see the swelling degree of CS/CH/TP
film decreased with the increase of tea polyphenol concentration. Compared with chitosan
and starch blend film [42], the swelling degree of CS/CH/TP film was larger. This is due
to the hydrophilicity of tea polyphenols with a large number of hydroxyl groups and the
hydrogen bond between the hydroxyl group of tea polyphenols and the amino group of
chitosan, which leads to the increase of swelling degree.

Swelling capacity refers to the water retention capacity of the film. The blend film
is dominated by free hydrophilic groups and free volume. Therefore, the swelling ability
of the blend film was a function of its hydrogen bond and crystallinity [43]. The amor-
phous region of the blend film could hold water, and some inter-molecular hydrogen
bonds might form a framework for the film expansion. However, as the content of tea
polyphenols increased, the swelling degree of the blend film tended to decrease. The
reason could be explained that the addition of tea polyphenols caused the structure of the
membrane to change from an amorphous region to an ordered region, which weakened
the swelling ability.

3.5. XRD Analysis

Figure 3 shows the XRD patterns of starch, chitosan, tea polyphenols and CS/CH/TP
films. The diffraction peaks of corn starch are 14.9◦, 17.0◦, 18.1◦, 22.8◦, consistent with previ-
ous publications [44]. The first two peaks indicated that the integration of water molecules
in the crystal lattice forms a hydrated microcrystalline structure. The characteristic peak of
chitosan at 19.7◦ indicates the amorphous structure of chitosan. After adding chitosan and
tea polyphenols to corn starch, the above diffraction peaks disappeared. It was known from
the literature that when tea polyphenols were mixed with starch, different concentrations
of tea polyphenols will not produce obvious diffraction peaks [45]. At 19.5◦, the blend film
showed a broad peak. This shows that the hydrogen bonding between chitosan and starch
and tea polyphenols restricts the movement of molecular chains and inhibits the crystal-
lization process. The crystalline structures of the blend film with different tea polyphenol
concentrations were almost the same. The characteristic peak of starch and tea polyphenols
disappeared for the blend film, and the peak at 19.7◦ of chitosan moved to a lower degree
(19.5◦). These observations suggested that the interaction between chitosan, starch and
tea polyphenols formed. Liu et al. [46] reported the effect of glycerol concentration on
the crystalline characteristics of starch–chitosan film, where the extent of crystallinity of
the starch–chitosan films decreased with the increase of the glycerol concentration. The
CS/CH/TP films had only one diffuse peak located at 19.5◦, and compared to chitosan
film and starch film, the degree of crystallinity decreased and several peaks disappeared in
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the CS/CH/TP films containing high glycerol (20%, w/w) concentration, which were in
agreement with the results of Liu et al. [46].
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3.6. Film Morphology

The microstructure and polymer compatibility of the CS/CH/TP films were studied
by scanning electron microscope. This is an indicator to observe the structural integrity
of the film, and it can also affect the barrier properties of the film [47]. Figure 4 shows
the morphological characteristics at the surfaces of CS/CH/TP films. It can be seen that
the CS/CH/TP films showed smooth surfaces and compact structures without particle
and porous structures, without separation of phases between chitosan, starch and tea
polyphenols, which indicated that chitosan, starch and tea polyphenols formed hydrogen
bonds. Through hydrogen bond and hydrophobic interaction, the cross-linking between
the molecules became closer, which was helpful to the stability of the CS/CH/TP films [48].
In addition, chitosan, starch and plasticizer were highly compatible, so the surface structure
of the blend film was continuous and was no separation between the polymers. While the
small debris in the material may be due to the frost cracking of the film before SEM analysis.
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4. Conclusions

CS/CH/TP films with different tea polyphenol concentrations of 0.5, 1.0, 2.0 and 3.0%,
were prepared successfully by a casting method. The incorporation of tea polyphenols into
chitosan–starch film had an influence on the physicochemical properties of the obtained
CS/CH/TP films. The shifts of the characteristic peaks in ATR-FTIR results confirmed that
the formation of inter- and intra-molecular hydrogen bonding had taken place between
chitosan, starch and tea polyphenols. As the content of tea polyphenols increased, the
density of the CS/CH/TP film increased. The moisture content of the CS/CH/TP film
decreased with the increase of tea polyphenol concentration. The incorporation of tea
polyphenols gave rise to the CS/CH/TP film’s darker and yellower appearance. With
the increase of the tea polyphenol concentration, the water solubility of the CS/CH/TP
film increased while the swelling degree decreased. The XRD patterns indicated that the
integration of water molecules in the crystal lattice formed a hydrated microcrystalline
structure and the amorphous structure of chitosan. The hydrogen bonding between
chitosan, starch and tea polyphenols restricted the movement of molecular chains and
inhibited the crystallization process. Chitosan, starch, tea polyphenols and plasticizer
were highly compatible, so the surface of the CS/CH/TP film was continuous without
any separation between the polymers. This study demonstrated an effective strategy to
improve the performance of chitosan and corn starch film. Further, these promising results
can improve the development of CS/CH/TP films as functional packaging films for the
food and drug industries. The mechanical and barrier properties and the antimicrobial
ability of the blend films against microorganisms and the shelf life of foods coated by the
blend films will be carried out in the next work.
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