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Abstract: This study proposes a method for measuring curved-mechanical characteristics based
on a whole-folding test for transparent conductive film-coated polymer substrates using common-
path optical interferometry. Accordingly, 80-, 160-, and 230-nm indium tin oxide films coated on
40 × 40 mm 125-µm-thick polyethylene terephthalate (PET) substrates, and monolayer graphene
films coated on 40 × 40 mm 250-µm-thick PET substrates are inspected and analyzed under the
curving conditions of 50-, 30-, 20-, and 10-mm radii before and after an 11,000 whole-folding cycle
test based on a 10-mm folding radius. This study utilizes the changes in the phase retardations of
transparent conductive film-coated polymer substrates under different curving conditions before and
after 11,000 whole-folding cycles to analyze the substrates’ residual stress characteristics that were the
direct result of manufacturing process parameters. The results from this study of curved-mechanical
characteristic measurements of flexible transparent conductive substrates can provide designers
with improved product development and can assist manufacturers in improving the manufacturing
design of enhanced coating processes.

Keywords: curved-mechanical characteristic measurements; whole-folding test; transparent
conductive film-coated polymer substrate; common-path optical interferometry

1. Introduction

Flexible substrates are critical components of flexible electronics. Because different
flexible electronic product applications have different requirements for substrate materials,
research on substrate materials determines the developmental direction of flexible electron-
ics. For example, magnetic material films or nanoparticles are deposited on transparent
flexible substrates (e.g., polyethylene terephthalate (PET), polyimide, polystyrene, poly-
methylmethacrylate, or cyclic olefin copolymer) for developments of magnetic sensors
or absorbers [1–5]. Because the flexible transparent optical film itself is not conductive,
depositing a transparent conductive film on it as a conductive electrode (e.g., indium tin
oxide (ITO) or aluminum doped zinc oxide) is necessary. The current commonly-used
transparent conductive material is an ITO film, which has the advantages of low resistivity
(1–5 × 10−6 Ωm) and high light transmittance. In recent years, ITO conductive oxides
have been deposited on PET plastic films. This represents one of the most popular research
directions for flexible electronic materials [6–9]. However, after depositing the flexible trans-
parent optical or conductive film on the polymer substrate, it still exhibits poor water and
oxygen resistance, temperature, humidity, and mechanical properties of load conditions.
Accordingly, major domestic and foreign manufacturers and research institutes are seeking
alternatives. Therefore, in recent years, for the application of flexible substrates or sensors,
graphene materials have been added to improve the conductivity, mechanical proper-
ties, electromagnetic effects, heat conduction effects, and optical transmittance of flexible
transparent optical films [10–14]. For quality mechanical measurements of graphene film
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materials, most studies have used non-contact Raman spectroscopy [15–19]; others have
used atomic force microscopy [20–22]. These mechanical characteristic measurements
require precision and expensive equipment, such as Raman spectrometers and atomic
force microscopes, and the measurement range can be as high as hundreds of microns. For
large deformations of flexible electronics, the bending radius of curvature is approximately
millimeters to centimeters. For large areas, fast confirmation and further analysis of the
interface stress of flexible graphene substrates are difficult, and the cost of high detection
equipment is considerable for general manufacturers. In addition, the major features of
flexible electronics are the bending storage and operation of curving conditions, such as
the display or transmission of electrical signals during curving [23–25]. Therefore, flexible
electronic stress analysis under curving conditions enables researchers to obtain an im-
proved design for enhanced coating processes. Some studies [26–28] have utilized optical
phase retardation measurement technology to measure the stress states of transparent
materials. Of these technologies, single-point [29–31], area-based [32–35], and area-based
optical phase retardation measurement methods with scanning platforms [36–38] have
been used. In addition, some literatures utilize an X-ray reflectometer to analyze the
stresses of the films [39–41]. However, to measure and analyze stress states, measured
states must be under the plane. Therefore, this study proposes a method for measur-
ing the curved-mechanical characteristics of transparent conductive film-coated polymer
substrates using common-path optical interferometry. To analyze the mechanical charac-
teristics of transparent conductive film-coated PET substrates in curving, an automatic
sliding-folding testing platform (ASTP) [42] is used to conduct a whole-folding test in this
study. Accordingly, 80-, 160-, and 230-nm ITO films coated on 40 × 40 mm 125-µm-thick
PET substrates and monolayer graphene films coated on 40 × 40 mm 250-µm-thick PET
substrates were inspected and analyzed under the curving conditions of 50-, 30-, 20-, and
10-mm radii before and after an 11,000 whole-folding cycle test based on a 10-mm fold-
ing radius was conducted. The curved-mechanical characteristic measurement results of
flexible transparent conductive substrates can provide designers with improved product
development or assist manufacturers in improving the manufacturing design of enhanced
coating processes.

2. Methods

To measure and analyze the curved-mechanical characteristics of transparent conduc-
tive film-coated polymer substrates, this study develops a common-path optical interfero-
metric technique to measure the phase retardations of a sample on a curved clamper, as
shown in Figure 1. The light from a flat white light source passes through a color filter and
a PR polarizer and is thus transformed into a linearly polarized light at 45◦ to the y axis.
The light next passes through a liquid crystal modulation and a tested sample on a curved
clamper with an r radius of curvature. The light then passes through an AR analyzer with
a transmission axis at −45◦ to the y axis, and finally through an imaging lens and camera
to obtain the phase retardations of the sample during curving. Because the collimated light
transmitted to the transparent curved test sample causes refraction and phase retardation,
this study derives the phase retardation influence factor in curving. The phase retardation
under the curving of the test sample is next measured using common-path optical interfer-
ometry. Finally, the phase retardation influence factor in curving is subtracted from it, and
the phase retardation of the sample in curving is obtained.

Because the thickness of the transparent conductive film of the test sample is much
lower than that of the polymer substrate, this study considers only the refraction effect
of the polymer substrate under curving, as shown in Figure 2. Figure 2a,b shows the
optical paths of the test sample of the collimated light source transmission under outer and
inner curves.
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Figure 1. Schematic of phase retardation measurements under the curving of a test sample by
common-path optical interferometry.
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Figure 2. Optical paths of the test sample of the collimated light source transmission under (a) outer and (b) inner curves,
where the vertical, horizontal, and perpendicular directions are the y, z, and x axes, respectively.

In Figure 2, the curving radius r is based on the curving center O. According to Snell’s
law [27], the following equation is obtained:

n1sinθ1= n2sinθ2 (1)

where n1 and n2 are the refractive indices of the air and polymer substrate, respectively,
θ1 is the incident angle of point A, and θ2 is the refraction angle. According to the ∆ABO,
under the outer curve, the following equation is obtained:

sinθ1 =
y

r + t
(2)

and under the inner curve, the following equation is obtained:

sinθ1 =
y
r

(3)

where y is the distance between point A and the incident light beam on the sample and the
extension point B from the center of the curve, and t is the thickness of the sample based
on the extremely thin transparent conductive film. In the ∆AFD under the outer and inner
curves, the approximate relationship can be expressed as [43]

d ≈ t
cosθ2

(4)
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where d is the path of the light passing through the sample. Through the trigonometric
function relationship of cosθ2, under the outer curve, do can be rewritten as

do =
n2t√

n2
2 − n2

1(
y

r+t )
2

(5)

and under the inner curve, di can be rewritten as

di =
n2t√

n2
2 − n2

1(
y
r )

2
(6)

From the geometric relationship of ∆AFE and the angle formula of the trigonometric
function, under the outer curving, lo is derived as

lo = docos(θ1 − θ2) =
t
√
(r + t)2 − y2

r + t
+

n1ty2

(r + t)2
√

n2
2 − n2

1
( y

r+t
)2

(7)

and under the inner curving, li is derived as

li = dicos(θ1 − θ2) =
t
√

r2 − y2

r
+

n1ty2

r2
√

n2
2 − n2

1
( y

r
)2

(8)

Figure 2 shows only the upper half of the y axis, and because the lower half is
symmetrical with the upper half, the phase retardation of the lower half is added to the
upper half. Therefore, according to the definition of optical phase retardation [43], the phase
retardation ∅o(x, y) of the flexible transparent conductive film-coated polymer substrate
with or without curving under outer curving is

∅o(x, y) = 2[n2do − n1lo] = 2[
n2

2t√
n2

2 − n2
1
( y

r+t
)2
−

n1t
√
(r + t)2 − y2

r + t
−

n2
1ty2

(r + t)2
√

n2
2 − n2

1
( y

r+t
)2
] (9)

and the phase retardation ∅i(x, y) of the flexible transparent conductive film-coated poly-
mer substrate with or without curving under inner curving is

∅i(x, y) = 2[n2di − n1li] = 2[
n2

2t√
n2

2 − n2
1
( y

r
)2
−

n1t
√
(r)2 − y2

r
−

n2
1ty2

(r)2
√

n2
2 − n2

1
( y

r
)2
] (10)

Therefore, ∅o(x, y) and ∅i(x, y) are the phase-retardation influence factors in the outer
and inner curving, respectively. According to the literature [27,44], the light amplitude E in
Figure 1 using common-path optical interferometry is derived as

E = AR
(
−45

◦
)
·S·M·PR

(
45
◦
)
·
[

1
0

]
(11)

where a polarizer and analyzer with 45◦ and 135◦ linearly polarized directions PR and AR

to the y axis, respectively, are PR
(
45
◦)

= 1
2

(
1 1
1 1

)
and AR

(
−45

◦)
= 1

2

(
1 −1
−1 1

)
,

respectively. S =

[
eiδ/2 0

0 e−iδ/2

]
and

(
1 0

)T are the Jones matrix of the tested sample

and Jones vector of the light at the x axis [27], respectively, where δ is the total optical
retardation of the multilayer-film substrate. In addition, M is the Jones matrix of n-layer
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liquid crystal modulation based on a twisted nematic liquid crystal with a maximum twist
angle θ of 90◦, which is written as

M =

[
cos(−θ) sin(−θ)
−sin(−θ) cos(−θ)

]
lim

n→∞
(

[
e

iτ
2n 0
0 e

−iτ
2n

][
cos(θ/n) sin(θ/n)
−sin(θ/n) cos(θ/n)

]
) n (12)

According to [44], the 2D phase-retardation distribution by common-path optical
interferometry is derived as

∅(x, y) =
2π∅tan(∅/2)√

4[(π2 +∅2)tan2(∅/2)]− [2∅tan(∅/2)]2
(13)

Because the collimated light transmitted to the transparent curved test sample causes
refraction and phase retardation, this study utilizes the phase-retardation influence factors
of (9) and (10) subtracted from (13) based on the method of 2D phase unwrapping [45]
to obtain the correct phase retardation of the sample during curving. Finally, the correct
phase retardation of the sample in the outer curving is derived as

∅co(x, y) = ∅(x, y)−∅o(x, y)

=
πC√

4B− C2
− 2[

n2
2t√

n2
2 − n2

1
( y

r+t
)2
−

n1t
√
(r + t)2 − y2

r + t
−

n2
1ty2

(r + t)2
√

n2
2 − n2

1
( y

r+t
)2

(14)

and the correct phase retardation of the sample in inner curving is derived as

∅ci(x, y) = ∅(x, y)−∅i(x, y)

=
πC√

4B− C2
− 2[

n2
2t√

n2
2 − n2

1
( y

r
)2
−

n1t
√
(r)2 − y2

r
−

n2
1ty2

(r)2
√

n2
2 − n2

1
( y

r
)2
] (15)

3. Experiment

Figure 3 depicts the instrument configuration of the phase retardation measurements
of the test sample under a curving with a 30-mm radius by common-path optical inter-
ferometry. To avoid light interference, this study measured the phase retardation of the
sample in a dark room. In this study, a flat white light source with a color filter, PR, and
liquid crystal modulation was used as a linearly polarized white light with a 535.38-nm
central wavelength; this was a liquid crystal flat panel display. This study also utilized a
1388 × 1038-pixel camera (Basler/A631fc) with an AR analyzer in front to capture phase
retardation images. Finally, liquid crystal modulation was controlled to perform four-step
phase shifting [46] for 0, 1/6, 1/3, and 1/2 maximum intensities, image processing, and
correction calculations, which was necessary to measure the optical retardation images
under the curving of the test sample using LabVIEW software. Each phase retardation
measurement was the average value of 15 measurement images. In this study, four curved
clampers with radii of 10, 20, 30, and 50 mm were used to provide four corresponding
curving conditions of the test sample, as shown in Figure 4. In addition, each curved
clamper had a measurement area of 10 × 10 mm or greater. Figure 5 depicts a 125-µm-thick
PET substrate and 80-, 160-, and 230-nm ITO films coated on 40 × 40 mm 125-µm-thick
PET substrates (VisionTek Systems Ltd., Chester, UK). Monolayer graphene films coated
on 40 × 40 mm 250-µm-thick PET substrates (Graphenea Inc., Cambridge, MA, USA) were
utilized for curved-mechanical characteristic measurements in this study.
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This study did not use optical-retardation, quarter-wave, or half-ware plates to cal-
ibrate the optical retardation measurements using common-path optical interferometry.
The average measurement value in a 10 × 10 mm area was calculated based on 10 mea-
surements. The relationship equation between values of measurement MT and calibrated
optical retardation ∅c based on common-path optical interferometry could be obtained
using a least-square fitting algorithm [47] as

∅c = 2.64MT − 19.08 (16)

To analyze the mechanical characteristics of the transparent conductive film-coated
PET substrates under curving, an ASTP [42] was used to conduct a whole-folding test.
The ASTP controlled the screw mechanism to enable the stage to move back and forth
during the whole-folding test of the entire sample up to a 5-mm folding radius, as shown
in Figure 6. In addition, a whole-folding test based on a conducting-film layer outward in
tension was used to conduct the whole-folding test. Figure 6 depicts a whole-folding test
cycle based on a 5-mm folding radius using ASTP.
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4. Experimental Results and Discussion

Figure 7 and Table 1 show the phase retardation measurement results of a 125-µm-
thick PET substrate under the curving conditions of 50-, 30-, 20-, and 10-mm radii using
common-path optical interferometry. The negative value of phase retardation was the
result of compressive stress. As Table 1 shows, as the radius of curvature decreased, the
phase retardation decreased due to greater compressive stress. This study also measured
the phase retardations of 80-, 160-, and 230-nm ITO films coated on 40 × 40 mm 125-µm-
thick PET substrates under outer and inner curving conditions of 50-, 30-, 20-, and 10-mm
radii before and after 11,000 whole-folding cycles based on a 10-mm folding radius using
common-path optical interferometry, as shown in Table 2. As Tables 1 and 2 show, after
ITO was coated on PET, its phase retardation was greater than that of uncoated PET under
the same curving conditions. This was particularly the case with 80- and 160-nm ITO-
coated PETs. It can be inferred that because the Young’s coefficient (116 GPa [48]) of ITO
is much greater than that of PET (4.1 GPa [49]), this caused the ITO film to bend, thereby
reducing the bending compressive stress [50]. For the same reason, the phase retardations
of ITO-coated PETs under ITO-film inner curving conditions were greater than those under
outer curving conditions. However, compared with the other two films, because of the
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thicker ITO film, the phase retardation of the 230-nm ITO-coated PET was slightly less than
that of the uncoated PET. Table 2 shows that the phase retardations of the 160- and 230-nm
ITO-coated PETs were the largest and smallest of the three films under different curving
conditions, respectively, prior to the 11,000 whole-folding-cycle test. This was because the
manufacturing process parameters caused residual stress in the ITO film-coated PET and
produced a large or small value of phase retardation in the test sample [50]. In addition,
compared to the results before and after the 11,000 whole-folding-cycle test, the phase
retardations were not significantly different under the outer and inner curving conditions
of 50-, 30-, and 20-mm radii. Nevertheless, the phase retardations of 80-, 160-, and 230-nm
ITO films coated on 125-µm-thick PET substrates under outer and inner curving conditions
of a 10-mm radius after an 11,000 whole-folding-cycle test were smaller than those prior
to the test, as shown in Table 2. Figures 8 and 9 show the phase retardation measurement
images of 80-, 160-, and 230-nm ITO films coated on 125-µm-thick PET substrates under a
10-mm radius condition before and after the 11,000 whole-folding-cycle test using common-
path optical interferometry. Table 2 shows that the changes in phase retardation of the
160- and 230-nm ITO-coated PETs before and after the test were the largest and smallest,
respectively, of the three films under a 10-mm radius condition. The results suggest that the
curved-mechanical characteristics of the 160- and 230-nm ITO-coated PET were the worst
and best of the three ITO film-coated PETs due to the manufacturing process parameters
caused residual stress in the ITO film-coated PET.
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Figure 7. Phase retardation measurement images of a PET substrate under the curving conditions of
(a) 50-, (b) 30-, (c) 20-, and (d) 10-mm radii using common-path optical interferometry.

Table 1. Phase retardation measurement results of a 125-µm-thick PET substrate under the curving
conditions of 50-, 30-, 20-, and 10-mm radii using common-path optical interferometry.

50 mm 30 mm 20 mm 10 mm

−3.19 rad −3.31 rad −3.43 rad −3.47 rad
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Table 2. Phase retardation measurements of 80-, 160-, and 230-nm ITO films coated on 40 × 40 mm 125-µm-thick PET
substrates under the curving conditions of 50-, 30-, 20-, and 10-mm radii before and after 11,000 whole-folding cycles based
on a 10-mm folding radius using common-path optical interferometry.

Radius (mm) Folding
Condition

Before 11,000 Whole-Folding Cycles After 11,000 Whole-Folding Cycles

80-nm ITO
(rad)

160-nm ITO
(Rad)

230-nm ITO
(Rad)

80-nm ITO
(Rad)

160-nm ITO
(Rad)

230-nm ITO
(Rad)

50
Outer −2.15 −1.23 −3.75 −2.09 −1.27 −3.81
Inner −1.63 −0.62 −3.62 −1.76 −0.38 −3.65

30
Outer −2.00 −0.47 −3.78 −1.88 −0.68 −3.77
Inner −1.32 −0.35 −3.79 −1.59 −0.62 −3.78

20
Outer −2.18 −0.87 −3.75 −1.97 −0.50 −3.71
Inner −2.04 −0.56 −3.74 −2.22 −1.05 −3.69

10
Outer −1.38 −0.37 −3.79 −2.46 −3.15 −3.89
Inner −2.28 0.26 −3.78 −2.97 −4.08 −4.04
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10-mm radius after the 11,000 whole-folding-cycle test using common-path optical interferometry.
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This study also measured the phase retardation of two monolayer graphene films
coated on 40× 40 mm 250-µm-thick PET substrates under the curving conditions of 50-, 30-,
20-, and 10-mm radii before and after 11,000 whole-folding cycles based on a 10-mm folding
radius using common-path optical interferometry, as shown in Table 3. As Table 3 shows,
because the Young’s coefficient of monolayer graphene (1 TPa [51]) is much greater than that
of PET, the phase retardations of monolayer-graphene-coated PETs under graphene-film
inner curving conditions were greater than those under outer curving conditions, which
caused the monolayer graphene film to bend, thereby reducing the bending compressive
stress [50]. In addition, the phase retardations of monolayer graphene on the first PET
sample (graphene/PET 1) under the inner curving conditions before 11,000 whole-folding
cycles based on a 10-mm folding radius were obviously greater than those after the test
by approximately 1 rad. The results suggest that there was a residual compressive stress
in graphene/PET 1 that was the direct result of the manufacturing process parameters.
For monolayer graphene on the second sample (graphene/PET 2), the phase retardations
were not significantly different under the same conditions before and after the 11,000
whole-folding-cycle test. Nevertheless, the phase retardations of graphene/PET 2 under
outer and inner curving conditions of the 10-mm radius after the 11,000 whole-folding-
cycle test were smaller than those before by approximately 1.5 rad. The results suggest
that a compressive residual stress in the graphene/PET 2 was induced under the same
conditions of the 10-mm radius before the 11,000 whole-folding-cycle test. After the 11,000
whole-folding-cycle test, a compressive residual stress in the graphene/PET 2 was released.
The results suggest that the curved-mechanical characteristics of the graphene/PET 2 were
better than graphene/PET 1, due to the manufacturing process parameters causing less
residual stress in the monolayer graphene film-coated PET.

Table 3. Phase retardation measurements of monolayer graphene 1 and 2 films coated on 40 × 40 mm 250-µm-thick PET
substrates under curving conditions of 50-, 30-, 20-, and 10-mm radii before and after 11,000 whole-folding cycles based on
a 10-mm folding radius using common-path optical interferometry.

Radius (mm) Folding Condition
Before 11,000 Whole-Folding Cycles After 11,000 Whole-Folding Cycles

Graphene/PET 1
(Rad)

Graphene/PET 2
(Rad)

Graphene/PET 1
(Rad)

Graphene/PET 2
(Rad)

50
Outer −4.02 −4.51 −3.81 −4.41
Inner −1.97 −4.12 −2.95 −4.28

30
Outer −3.58 −4.48 −3.75 −4.34
Inner −2.28 −4.37 −3.41 −4.30

20
Outer −3.75 −4.50 −3.74 −4.43
Inner −2.15 −4.38 −3.24 −4.41

10
Outer −3.84 −2.37 −3.96 −3.91
Inner −2.76 −2.25 −3.60 −3.90

5. Conclusions

This study presented a method for measuring the curved-mechanical characteristics
of transparent conductive film-coated polymer substrates using common-path optical
interferometry. To analyze the mechanical characteristics of the transparent conductive
film-coated PET substrates under curving, this study utilized an ASTP for a whole-folding
test. The study then investigated and analyzed 80-, 160-, and 230-nm ITO films coated
on 40 × 40 mm 125-µm-thick PET substrates and monolayer graphene films coated on
40 × 40 mm 250-µm-thick PET substrates under the curving conditions of 50-, 30-, 20-, and
10-mm radii before and after an 11,000 whole-folding cycle test based on a 10-mm folding
radius. Experimental results revealed that the curved-mechanical characteristics of the 160-
and 230-nm ITO-coated PET were the worst and best of the three ITO film-coated PETs,
due to the manufacturing process parameters causing residual stress in the ITO film-coated
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PET. In addition, residual compressive stresses were observed in the graphene/PET 1
and PET 2 samples. The results suggest that the curved-mechanical characteristics of the
graphene/PET 2 were better than graphene/PET 1, due to the manufacturing process
parameters causing less residual stress in the monolayer graphene film-coated PET. The
results of the curved-mechanical characteristic measurements of flexible transparent con-
ductive substrates can provide designers with improved product development or assist
manufacturers in improving the manufacturing design of enhanced coating processes.
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