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Abstract: The use of chitosan and chitosan composite coatings for the preservation of fruits and
vegetables during storage is attracting increasing attention. In this study, a chitosan-based edible
coating, as well as a second chitosan-based edible coating containing salicylic acid (CTS + SA), a third
containing nanosized titanium dioxide particles (CTS + TiO2), and a fourth containing a combination
of these two (CTS + SA + TiO2) were evaluated in terms of their effects on the postharvest quality
of blackcurrant fruit during storage at 4 ◦C. The results showed that compared with the other three
treatment groups, the blackcurrants treated with CTS + SA + TiO2 underwent the smallest changes
in weight loss, total soluble solids, titratable acidity, vitamin C, and total anthocyanin content,
and retained the highest total flavonoid content. This combined treatment significantly inhibited
polyphenol oxidase activity during storage, and the CTS + SA + TiO2 samples also displayed the
lowest malondialdehyde content. These results, thus, indicate that the CTS + SA + TiO2 composite
coating could maintain the nutrient composition of blackcurrants, thereby playing a significant role
in preserving the quality of this fruit at 4 ◦C.
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1. Introduction

Blackcurrant (Ribes nigrum L.) is one of Europe’s most important berry crops [1],
renowned for its considerable potential health benefits, particularly its high levels of ascor-
bic acid and antioxidant activity [2,3]. Blackcurrant berries are widely used to produce
jam, juice, wine, liqueur and spirits [4], all products that are increasingly popular among
consumers, not only in Europe and the USA but also, more recently, in China. This is
because of the fruit’s extremely high bioactive compounds such as vitamin C, which is four
times more concentrated than it is in oranges and 50 times more so than in apples [5]. Con-
suming blackcurrant products in moderation can provide anti-inflammatory, antioxidant,
and antimicrobial effects that are beneficial to human health [6–8]. However, fresh fruits
deteriorate rapidly after harvesting due to their loss of water and cellular juice, and senes-
cence [9]. Moreover, in conditions of high humidity, fungal infection can result in sensorial
and nutritional damage [10]. Recently, efforts to preserve the shelf-life of fruit have focused
on replacing chemical and synthetic preservatives with natural alternatives, and several
environmentally friendly methods have been suggested to maintain fruit quality, including
those using carbohydrate-based polymers, such as chitosan [11,12].
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Chitosan is the most common cationic polysaccharide and is a renewable resource,
abundantly available as a low-cost biopolymer [13]. It is widely utilized as a protective
coating for a variety of fruits and vegetables after harvesting [9,14,15], for example, to
control the decay and bacteriostasis of citrus fruits during storage [16], and to prevent dehy-
dration during handling and packaging [17]. Furthermore, chitosan can also be combined
with other biopolymers to increase and assure the effectiveness of crop coatings [12,18,19].
The results of Kaya et al. [20], for example, indicated that the use of a chitosan–acetic acid
coating might be an effective technology for prolonging the short shelf-life of red kiwifruit
berries, while Hernandez et al. [21] demonstrated that a chitosan coating with a postharvest
calcium treatment can improve the firmness of strawberries. Moreover, applications of
chitosan and essential oils, antibacterial nanoparticles, and other active ingredients have
also been reported in studies on jujubes, strawberries, and apples [14,22,23].

Titanium dioxide (TiO2) has attracted a great deal of attention as an inorganic bacte-
riostatic, and it has become widely used as a self-disinfecting and self-cleaning material
in diverse applications [24,25]. The American Food and Drug Administration (FDA) has
approved and recommends the use of TiO2 in healthcare, cosmetics and food materials due
to its low toxicity [26]. According to expert research, chitosan–TiO2 composite materials
exhibit multifunctional performance in many potential applications, such as wastewater
treatment [27], as well as antimicrobial activity [24,28]. Moreover, it has been found that
the nano metals used as polymer-forming membranes in TiO2 particles act as a reinforcing
compound to provide substantial mechanical strength to scaffolds for the support of cell
growth [29].

Salicylic acid (SA), a phenolic compound, is used to enhance the local and systemic
resistance of fruits against pathogens [30], thus playing an important role in aspects of
fruit quality, such as firmness, taste, aroma and color [31]. In one study, SA was applied
to improve the quality of sweet cherries at harvest time by expanding the fruit’s phenolic
and anthocyanin synthesis, and aggregating cell antioxidant activities [32]. In addition,
SA treatment has shown its effects on promoting the quality of peaches [33], resulting in a
higher flavonoid content and increased phenylalanine ammonia-lyase (PAL) activity [34],
and inhibiting the production of ethylene, respiration and senescence [35].

The application of chitosan composited with active functional substances has attracted
increasing interest, due to their superior antimicrobial activity to maintain the quality at-
tributes of fruit [28,36–38]. The results of Tian et al. [39] suggested that composite coatings
of chitosan/nano-TiO2 can effectively maintain the quality of Ginkgo biloba seeds (reducing
decay and shrinkage rate, and prolonging firmness), and they were also found to extend
the shelf-life of ginkgo seeds and mango fruits [40]. Moreover, the combination of chitosan
and TiO2 film is reported to be highly effective at controlling mold and yeast population
growth [29], phenol enzymes, total soluble sugars and malondialdehyde in ready-to-eat
cantaloupe [37]. According to Cui et al. [38], the combination of chitosan and SA in pre-
harvest treatments significantly maintained the postharvest quality of Xiaobai apricots
during storage. Other experimental data suggest that chitosan coatings containing SA ef-
fectively reduce bacterial and fungal counts in fresh pistachio fruit [41]. In summary, many
researchers have reported that chitosan and chitosan composites with active substances
can effectively protect the quality attributes of fresh fruits and vegetables and prolong their
shelf life.

However, from the literature review, it is apparent that not many studies have in-
vestigated the effects of chitosan and chitosan composite coatings on the storage quality
of blackcurrants. This study, therefore, aims to examine the effects of chitosan acetate
coatings alone, in combination with SA, in combination with TiO2, and in combination
with both these active substances, on the quality attributes of blackcurrants during storage.
Assessments of these treatments are based on the fruit qualities of weight loss, total soluble
solids (TSS), titratable acidity (TA), vitamin C (VC) and malondialdehyde (MDA) content,
polyphenol oxidase (PPO) activity, total anthocyanin content (TAC), total flavonoid content
(TFC), and microbiological qualities.
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2. Materials and Methods
2.1. Materials

Commercially mature blackcurrant (Ribes nigrum L.) berries were obtained from the
Fresh store in Chengdu City, Sichuan, China. Fruits were selected based on uniform color,
size, hardness, and lack of visible physical damage or fungal infection. The blackcurrants
were transferred immediately to the laboratory, where, after having been washed three
times in distilled water, they were surface-disinfected via immersion in a 5% sodium
hypochlorite aqueous solution and dried at room temperature. The chitosan powder
(deacetylated ≤ 95%) was provided by Jinan Haidebei Marine Bioengineering Co. Ltd.
(Jinan, China). Nano-TiO2 (20–30 nm) was obtained from the Beijing Deke Island Gold Tech-
nology Co. Ltd. (Beijing, China). SA, sodium laurate, phosphate buffer, glacial acetic acid,
glycerol, sodium hydroxide, sodium hypochlorite, phenolphthalein, ethanol, hydrochloric
acid, trichloroacetic acid, thiobarbituric acid, methanol, sodium nitrite, aluminum nitrate,
anhydrous sodium acetate, polyvinylpyrrolidone, catechol, sodium chloride, Rutin stan-
dard product and L-ascorbic acid were purchased from the Chengdu Kelon Chemical
Reagent Factory (Chengdu, China).

2.2. Preparation of Chitosan and Chitosan-Based Coatings

The chitosan solution (CTS) was prepared according to the method of Han et al. [42],
with some modifications. Briefly, 1 g of chitosan powder was dissolved in 100 mL aqueous
solution of 1% (v/v) glacial acetic acid with 1 g glycerin placed on the magnetic heating
agitator (WS-2A, Changzhou Yuexin Instrument Manufacturing Co. Ltd., Changzhou,
China) at 90 ◦C and 500 rpm/min for 25 min. The mixture was then filtered through eight
layers of cheesecloth and exposed to ultrasound for 30 min to finally produce the CTS.

The nano-TiO2 modification was performed according to the method developed by
Xing et al. [43]. Briefly, 1 g nano-TiO2 was dispersed in 100 mL of 0.050 mol/L sodium
laurate solution, the pH was adjusted to 5.0, and the mixture was stirred at 40 ± 2 ◦C for
30 min. The solution was then filtered, rinsed, and dried in an oven for 1 h, finally resulting
in the modified sodium laurate nano-TiO2.

The CTS + SA solution was prepared according to the method of Zhang et al. [44],
with some modifications. Briefly, 0.1% (w/v) SA and 1% (w/v) CTS were dispersed in an
aqueous solution of glacial acetic acid (1%, v/v), and the subsequent process was the same
as that employed for the preparation of the pure chitosan film.

The CTS + TiO2 solution was prepared using the method of Xing et al. [40], with some
modifications. The 0.03 g sodium laurate modified nano-TiO2 was dissolved in 1 g glycerin,
followed by the sequential addition of 100 mL 1% aqueous acetic solution and 1 g chitosan
powder. The subsequent steps were the same as those employed during the preparation of
the pure chitosan film.

For the CTS + SA + TiO2 solution, the formulation ration was as follows: CTS: SA:
TiO2 = 1: 0.1: 0.03 (w/w/w). The preparation procedure was the same as that employed to
prepare the pure chitosan film.

2.3. Sample Processing

Blackcurrants were randomly distributed into five groups, one of which provided an
untreated control (CK), while the other four were assigned to the following treatments:
a chitosan coating group (CTS), a chitosan + salicylic acid coating group (CTS + SA), a
chitosan + nano-TiO2 coating group (CTS + TiO2), and chitosan + salicylic acid nano-
TiO2 coating group (CT + SA + TiO2). Each group contained 1.5 kg of fruit. The berries
were immersed in the respective membrane solutions, prepared as described above, for
2 min, with the control samples dipped in distilled water. They were then dried at room
temperature and sealed in micro-perforated bags (PLA) bags to maintain aerobic conditions
and limit fruit dehydration, after which they were placed in polyethylene terephthalate
(PET) plastic trays and stored at 4 ◦C and 75% relative humidity for 30 days.
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2.4. Weight Loss

To determine the weight loss of blackcurrant fruit during postharvest storage, both
treated and control fruits were weighed at different sampling intervals. Then, weight loss
was calculated as the difference between the initial fruit weight and the fruit weight at the
time of measurement, and expressed as a percentage (%) [45].

2.5. Determination of Total Soluble Solids, Titratable Acidity, Vitamin C

TSS content in the fruit pulp juice was measured using an Abbe refractometer (2WAJ,
Shanghai Optical Instrument Co. Ltd., Shanghai, China). Briefly, a 10-g blackcurrant
sample was ground in a mortar and filtered, and the resultant juice was analyzed, with
the values expressed as percentages. TA content, expressed as a percentage of citric acid,
was determined by titration using a standard solution of sodium hydroxide (0.1 M) [46].
VC was also assayed by the titration, using a solution of 2,6-dichlorophenolindophenol as
described by Gao et al. [47], with some modifications. Briefly, a mixture of 10 g blackcurrant
fruit and 10 mL oxalic acid was ground into juice on a mortar, followed by the addition of
5 g of porcellanite, and it was left to stand for 20 min before being filtered. Values were
expressed in mg of ascorbic acid per 100 g of fresh blackcurrant.

2.6. Determination of Malondialdehyde Content

The MDA content in the blackcurrant groups was determined via thiobarbituric acid
(TBA) reaction, as described by Xu et al. [24], with slight modifications. Briefly, 4 g pulp
was dissolved in 20 mL trichloroacetic acid and the mixture was centrifuged for 15 min at
4000 rpm. A 2 mL sample of the supernatant was mixed with 2 mL of 6.7 g L−1 TBA, heated
at 100 ◦C for 30 min, then quickly cooled in an ice bath and further centrifuged at 4000 rpm
for 15 min. Supernatant absorbances were measured at 450, 532 and 600 nm, respectively.
The MDA content was calculated according to the following formula: C (µmol L−1) MDA
= 6.451 × (A532 − A600) − 0.56 × A450, where A450, A532 and A600 are the absorbencies
of the solution at 450, 532 and 600 nm, respectively.

2.7. Polyphenol Oxidase Activity Analysis

PPO activity was measured using the methods described by Xiao et al. [25], with some
modifications. Briefly, 5 g blackcurrant samples were ground at ice-cold temperatures in
a mortar and pestle containing 50 mL of 0.05 M potassium dihydrogen phosphate buffer
(pH 6.8). After rapid homogenization, the mixture was centrifuged at 8000 rpm for 15 min at
4 ◦C in a Heraeus Multifuge X1R refrigerated centrifuge (Thermo Fisher Scientific, Waltham,
MA, USA). The clear supernatant was used to determine enzyme activity. The enzyme
solution (0.2 mL) was added to a mixture of 3 mL of 0.05 M phosphate buffer (pH 6.8), and
1 mL of 0.04 M catechol as substrate. PPO activity was measured in a spectrophotometer
(WFJ7200, UNIC (Shanghai) Equipment Co. Ltd., Shanghai, China) at 398 nm. The units of
enzyme activity were defined as a change of 0.01 in the absorbance value per minute under
the conditions of the assay. Each determination was run in triplicate.

2.8. Determination of Total Flavonoid Content and Total Anthocyanin Content

Briefly, 5 g blackcurrant pulp was placed into a precooled 50 mL centrifuge tube
containing 1% HCL-methanol solution (approximately 20 mL), and homogenized in an ice
bath. The homogenate was then transferred to a 50 mL volumetric flask, the volume was
fixed with 1% HCL-methanol solution, shaken well, and then placed in the dark at 4 ◦C for
20 min [48].

TFC was estimated as described by Xu et al. [49], with slight modification. A 10 mL
glass tube containing 2 mL of the diluted extract was prepared, to which 1 mL of 5% NaNO2
solution was added, and it was left to stand for 6 min. 1 mL of 10% Al (NO3)3 and 3 mL of
4% NaOH solution were added, and then 3 mL of 70% ethanol was added to the reaction
mixture. After being left to stand for a further 10 min, the absorbance was measured
at 510 nm using a spectrophotometer (WFJ7200, UNIC (Shanghai) Equipment Co. Ltd.,
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Shanghai, China). A blank was prepared by replacing the sample with 1% HCL-methanol
solution. The TFC was represented as milligrams of rutin equivalents per gram of fresh
weight (mg RE/g FW). All analyses were performed in triplicate.

The pH-differential method was used to determine the TAC of the blackcurrants,
according to the details of this analysis described by Johnson et al. [50]. Aqueous buffer
solutions at pH 1 and pH 4.5 were prepared from 0.025 M potassium chloride and 0.4 M
sodium acetate, respectively, with the pH adjusted using concentrated HCl. A sample
extract (2 mL) was then mixed with 8 mL buffer and, after equilibration at room temperature
in darkness for 40 min, the absorbances at 510 nm and 700 nm were read using a UV-
visible spectrophotometer (WFJ7200, UNIC (Shanghai) Equipment Co. Ltd., Shanghai,
China), with 1% HCL-methanol solution used as the blank. The monomeric anthocyanin
concentration was calculated using the following formula:

mg cyd-3-glu L−1 = (A × MW × DF × 1000)/(ε × 1) (1)

where A = (pH1: A510 − A700) − (pH4.5: A510 − A700), DF is the dilution factor (10 × fol-
lowing the procedure given), MW is the molecular weight = 449.2 g/mol for cyaniding-3-
glucoside, ε is the molar extinction coefficient = 26,900 L/cm, and 1 is the path length (1 cm).
The reactions were performed in triplicate and the results were calculated as milligram
cyaniding-3-O-glucoside equivalents per 100 g of fresh weight (FW).

2.9. Measurement of the Aerobic Mesophilic Bacteria

Microbiological analysis was performed as described by Bico et al. [51]. A 10 g sample
slice was blended with 90 mL sterile solution for 60 s using a Stomacher. The sample
solution (1 mL) at an appropriate dilution was pour-plated into plate count agar (PCA),
and then incubated at 37 ◦C for 24 h, after which the aerobic mesophilic bacteria were
identified. The results were expressed in log CFU/g.

2.10. Statistical Analysis

Completely randomized designs were used in triplicate, both in measurements and
analyses in this study, and this investigation was carried out in triplicate. Test results were
analyzed using SPSS 20.0 statistics software (IBM USA) and expressed as mean ± standard
deviation, while the figures were generated using Origin 2017 (OriginLab Corporation,
Northampton, MA, USA).

3. Results
3.1. Weight Loss

In this study, all the treatments using chitosan, both alone and in combination, were
found to be highly effective in minimizing the weight loss of blackcurrant fruit during
storage at 4 ◦C, compared to CK (Figure 1). Irrespective of treatments, however, weight
loss increased progressively with the advancement of storage to 30 days. Of the five
different treatments, the maximum weight loss (11.49%) was recorded in CK fruits, sig-
nificantly higher than other treatment groups (p < 0.05), followed by the CTS (9.90%),
CTS + TiO2 (8.24%), and CTS + SA (8.10%) groups of blackcurrants. The fruit treated
with CTS + SA + TiO2 showed the least weight loss (7.47%) at the end of the full storage
period (p < 0.05).

Weight loss in post-harvest blackcurrant fruit occurs primarily due to the rapid loss
of moisture from the pericarp tissues [45]. This moisture loss leads to the development of
micro-cracks in the fruit pericarp, which move progressively inward up to the parenchy-
matous mesocarp [52], inducing further moisture loss, pathogen attack, and the rapid
browning of the pericarp [45]. In this study, chitosan alone, and in combination with SA
and nano-TiO2, reduced weight loss in the blackcurrants comparatively more than the CK.
SA has been reported to reduce moisture loss by closing the stomata in fruits like man-
darins [53], while CTS combined with TiO2 has also been reported to effectively prevent
water loss [40]. Chitosan treatment provides an additional barrier against the diffusion
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of gases and water vapor. Thus, the chitosan combination treatment with SA and TiO2
might have exerted a synergistic effect in preventing the loss of moisture and gases in the
blackcurrants, consequently reducing weight loss during storage.
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Figure 1. Effect of chitosan and chitosan composite coatings on weight loss (%) of blackcurrant fruit
during storage.

3.2. TSS, TA and VC

Changes in the contents of TSS, TA and VC in the blackcurrants during storage were
investigated in this study and shown in Figure 2, and were found to be different depending
on the fruit coating treatment. In all groups, the TSS content increased during storage
(Figure 2a), however, in the CK group, TSS increased most rapidly and continuously,
reaching 18.13 Brix◦, followed by the CTS, CTS + TiO2, CTS + SA, and CTS + SA + TiO2
groups, in which the TSS content values reached 17.80 Brix◦, 17.57 Brix◦, 17.33 Brix◦ and
17.02 Brix◦, respectively, at the end of the storage period. These results demonstrate that
the coating treatment can effectively slow down the rate of TSS (p < 0.05). As shown in
Figure 2b, the TA content of all groups also followed the same trend, showing an increase
in the first five days; however, the CTS + SA + TiO2 group showed the fastest increase,
reaching 1.98% in the remaining 25 days, after which its TA content showed a continuous
decline. On the last day of storage, the groups with the highest to lowest levels of TA were
CTS + SA + TiO2 (1.73%), CTS + TiO2 (1.63%), CTS + SA (1.60%), CTS (1.52%), and CK
(1.43%). These results show that the coating treatment can significantly inhibit the decrease
of TA content (p < 0.05). The VC content in all five groups gradually decreased during
storage (Figure 2c), with the decrease in the CK fruit most remarkable (p < 0.05) and the
CTS + SA + TiO2 group showing the slowest decline (p < 0.05). The initial value of VC
content in the fresh blackcurrants was 128 mg/100 g, but by the end of storage time, the VC
contents of the CTS + SA + TiO2, CTS + SA, CTS + TiO2, CTS and CK groups had declined
to 99.10 mg/100 g, 91.87 mg/100 g, 89.12 mg/100 g, 87.68 mg/100 g, and 83.99 mg/100 g,
respectively.
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The main quality indexes of blackcurrant fruit include the TSS, TA and VC content,
and these have been shown to change dynamically during postharvest storage [32]. In
particular, TSS represents the degree of ripening in fruits [54], and comprises sugar, a small
amount of acid, vitamins, minerals and some soluble pectin [55]. In this study, the TSS
content increased in all treatment groups during the storage, probably due to ripening and
loss of water [36]. All the groups treated with chitosan and chitosan composite coatings
were found to have a lower TSS content than the CK group. This is consistent with the
result reported by Xing et al. [40], in which a slow rise in TSS content was recorded in
mango treated with chitosan composited with nano-TiO2. The capacity of chitosan to
inhibit the rapid increase of TSS content could be attributed to a decline in respiration and
metabolic activity, which consequently delays the ripening process. The lowest TSS content
was observed in the group treated with the CTS + SA + TiO2 coating, possibly due to the
presence of SA and nano-TiO2. SA treatment is reported to inhibit the ripening progress of
fruit by directly interfering with signaling pathways [56] and ethylene biosynthesis [57].
Respiration, a major postharvest metabolism, is based on the amount of stored sugar and
organic acids [58]. A lower level of respiration may, thus, contribute to the retardation of
TSS [59]. In addition, nano-TiO2 can effectively resist the invasion of bacteria [29], thereby
delaying the deterioration of blackcurrant quality.

A high TA content could be attributed to the chitosan coating’s control over the
permeability of CO2 and O2, which could slow the ripening rate of fruits [60] and the
substrates for respiration responses, such as organic acids [13]. A reduced rate of respiration
in fruits may be reflected in fewer changes in their TA. In this study, the CTS + SA + TiO2
treatment more effectively inhibited the losses of TA in comparison with the other groups,
which supports the findings of previous studies that chitosan combined with SA can greatly
retain the content of TSS and TA [38]. The link between TA and ripening rate thus warrants
closer investigation in future research.

Blackcurrants are an important source of VC, however, much of this essential vitamin
is typically lost during storage. According to the investigation of Xing et al. [22] and
Xiao et al. [25], the loss of VC is promoted by the presence of O2 and CO2, but chitosan
coatings can control the permeability of CO2 and O2 content in the microenvironment
and further slow the rate of maturation. This explains the rapid decline of VC content
in this study’s CK group. As a water-soluble antioxidant, VC directly decreases the
damage from reactive oxygen species (ROS) [61]. At the end of the storage period, the
CTS + SA + TiO2 group was found to have the highest VC content, concurring with the
results of Huang et al. [62], Sayyari et al. [63] and Shi et al. [64], who found that the
application of SA in oranges, pomegranates and grapefruit reduced the degradation of
VC. Furthermore, according to Shafiee et al. [65], SA could increase VC production by
increasing the activity of ascorbate peroxidase, which effectively slows the decline of VC.
Thus, in addition to the duration and conditions of storage, postharvest treatments also
play an important role in VC changes [66].

3.3. MDA Content

MDA, an important product of membrane lipid peroxidation, has been found to
aggravate membrane damage in fruits and vegetables, so its content can indirectly reflect
the degree of damage to their tissue and membrane systems [32]. As can be seen in
Figure 3, the MDA content in all groups showed a trend of continuous increase during
the storage period; however, the rates of increase differed, with the CK group showing
the fastest increase and reaching 9.25 µmol/g by the 30th day (p < 0.05). By contrast, the
CTS + SA + TiO2 group showed the slowest growth of only 6.19 µmol/g MDA content
in the same period (p < 0.05). The final levels of the other three treatment groups were
8.47 µmol/g (CTS), 8.02 µmol/g (CTS + TiO2), and 6.83 µmol/g (CTS + SA), indicating that
both chitosan and chitosan composite coatings can inhibit the production of MDA (p < 0.05).
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at 4 ◦C.

Postharvest fruit senescence involves a burst in the production of ROS, with cell
damage such as lipid peroxidation resulting in the accumulation of MDA [17,56,67]. Here,
as storage time increased, the blackcurrants gradually senesced, and their content of MDA
increased. Compared with the CK group, those coated by chitosan and chitosan composited
with SA and TiO2 exhibited a slow increase in MDA content (p < 0.05). Many studies have
reported that chitosan treatment can increase enzymatic and non-enzymatic antioxidant
systems to reduce ROS accumulation, thereby improving the quality and delaying the
senescence of postharvest fruits [46,68]. In this work, the lowest MDA content was observed
in the CTS + SA + TiO2 group on the last day (p < 0.05), indicating that this composited
coating effectively inhibited the accumulation of MDA, thereby reducing the degree of
membrane lipid peroxidation [32]. Low MDA content was also found in the CTS + SA
group. SA has the ability to delay senescence and reduce lipoxygenase activity [69], hence,
the combination of chitosan and SA can effectively inhibit the deterioration of fruit quality.
Nonetheless, as reported by Rasouli et al. [61], cold storage may lead to chilling injury,
causing fruit cell membrane damage and, as the blackcurrants’ storage in this study was
at 4 ◦C for 30 days, this condition may have significantly influenced the changes to their
MDA content.

3.4. PPO Activity Analysis

The PPO activities in blackcurrant fruits treated by different coatings during storage at
4 ◦C for 30 days were investigated. The results presented in Figure 4 show the same overall
upward trend for all groups, indicating that both CK and coating-treated fruits can increase
PPO activity during storage. Of the treatment groups, PPO activity increased fastest in
the CK group, reaching 110 U/g by the last day (p < 0.05). The growth rate in the other
four groups was relatively gentle, but the CTS group showed the fastest growth, reaching
104.69 U/g by the last day (p < 0.05). At the end of storage, the lowest PPO activity was
observed in the CTS + SA + TiO2 group, at only 98.88 U/g (p < 0.05).
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The oxidation of phenolic substrates by PPO, which occurs during ripening, is believed
to be a major cause of browning in many fruits and vegetables [51]. Enzymatic browning
of phenolic substrates catalyzed by PPO is a symptom of the loss of membrane integrity
during fruit senescence [41]. In concurrence, PPO activity in the chitosan and chitosan
composite coated blackcurrants was found to be significantly lower than that of the CK
group. The chitosan’s inhibition of PPO activity and other biochemical reactions, which
prevented the surface browning of the fresh blackcurrants, can be attributed to the low
gas permeability of chitosan film, especially against O2 [70]. Furthermore, the coating can
provide the ability to remove metal ions, further promoting the potential inhibition of PPO
activity in blackcurrant fruits [22]. In this study, the groups treated with CTS + SA and
CTS + SA + TiO2 coatings had the lowest levels of PPO on the last day (p < 0.05), which is
consistent with the results of Tareen et al. [33]. Moreover, according to Xing et al. [40], the
combination of chitosan and TiO2 could significantly inhibit PPO activity in stored mangos.

3.5. TFC and TAC

The TFC and TAC in blackcurrant fruit treated by different coatings at 4 ◦C for
30 days were investigated, and TFC was found to increases gradually in all groups
(Figure 5a). At the end of the storage period, the highest content of TFC was observed in
the CTS + SA + TiO2 group, at up to 10.55 mg RE/g FW (p < 0.05), followed by the CTS + SA
(9.94 mg RE/g FW), CTS + TiO2 (9.81 mg RE/g FW) and CTS (9.54 mg RE/g FW) groups,
respectively. TFC content was found to be lowest in the CK group on the last day, at only
9.18 mg RE/g FW (p < 0.05). The changes in TAC are presented in Figure 5(b). During the
whole storage process, the TAC in the CK group increased continuously at first, reaching a
peak of 44.78 C-3-G mg/100 g FW on day 25, and then decreased rapidly to 32.03 C-3-G
mg/100 g FW by the final day. The TAC in the other four groups also increased throughout
the storage period, and their contents on the last day (highest to lowest) were 43.31 C-3-G
mg/100 g FW (CTS), 42.59 C-3-G mg/100 g FW (CTS + SA + TiO2), 42.14 C-3-G mg/100 g
FW (CTS + TiO2) and 39.55 C-3-G mg/100 g FW (CTS + SA).
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Anthocyanins are a group of phenolic compounds responsible for the red-blue color
of many fruits and vegetables, which provide beneficial effects for human health [71].
Flavonoids are secondary metabolites and derivatives of phenols, which exhibit antioxidant
capacity [69]. Blackcurrants are one of the best sources of antioxidants among fruits and
vegetables because of their natural flavonoid compounds and anthocyanin contents [72]. In
the current study, the TFC and TAC of all treatment groups showed an upward trend during
the storage period (as seen in Figure 5a,b). These findings concur with previous reports, and
may be due to the continued biosynthesis of these compounds after harvest [71]. At the end
of storage, the highest levels of both TFC and TAC were found in the CTS + SA + TiO2 group
(p < 0.05), indicating that this composite film could improve the preservation of anthocyanin
and flavonoid content. This corresponds with the observations of Xing et al. [40], in which
mango coated with chitosan film exhibited higher flavonoid levels after storage.

In this study, the fruits treated with the chitosan and chitosan composite coatings
showed higher retention of TFC during the entire period of storage. Furthermore, the film
with chitosan, combined with SA and CTS + SA + TiO2, performed best. The CTS + SA
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coated blackcurrants retained more flavonoids than other treatments, as the semipermeable
coating of chitosan restricted moisture loss, gas exchange and senescence by modifying
endogenous O2 and CO2 [69]. A reduced loss of TFC in response to pre-storage SA
treatment was similarly reported in litchi [45], and chitosan was also reported to be highly
effective in retaining higher TFC in treated grapes than the control [73]. On the other hand,
these TFC and TAC might also be due to TiO2 nanoparticles, which are able to delay, retard
or prevent the oxidation processes of flavonoids and anthocyanins by reacting with free
radicals, chelating metals and acting as oxygen scavengers [40,74].

With respect to TAC (Figure 5b), the application of coating films was found to be highly
effective in retaining anthocyanin pigments in the fruit pericarp (p < 0.05). All treatment
groups exhibited incremental increases in TAC during storage, with the highest seen in
the CTS + SA + TiO2 group (p < 0.05). In the CK group, after 25 days, the anthocyanin
content had decreased rapidly due to the degradation of anthocyanin pigments, which
consequently increased the incidence of pericarp browning. Moreover, the lack of coating
treatment in the CK group facilitated a more rapid moisture loss than in the treated
groups (p < 0.05), which, in turn, led to plasmolysis and the breakdown of membranes in
the pericarp tissue. Consequently, anthocyanins present in the vacuole were released and
encountered the enzyme anthocyanase and PPO, which further accelerated the degradation
of anthocyanin pigments [45].

3.6. Microbiological Analysis

The quality of blackcurrants during storage is limited by the highly perishable nature
of the fruit, including susceptibility to postharvest diseases associated with bacteria, yeasts
and fungal infection [8]. The number of pathogenic colonies is, thus, a critical index to the
quality of blackcurrants during storage. Figure 6 shows the effects of different chitosan
treatments on the total viable counts in blackcurrants during storage. A total aerobic
plate count showed that the total number of aerobic mesophilic microorganisms in all the
samples was below the detection limit of 2.0 × 101 CFU/g on day 0. The colony number in
the CK group was higher than those of the other four groups throughout storage, finally
measuring 3.34 log CFU/g on the last day (p < 0.05), while the conditions of the other four
groups were as follows: CTS (3.20 log CFU/g), CTS + SA (3.18 log CFU/g), CTS + TiO2
(2.90 log CFU/g) and CTS + SA + TiO2 (2.67 log CFU/g).
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As shown in Figure 6, the CTS solution, both with or without nano-TiO2 or SA,
seemingly inhibited bacterial growth, compared with the CK samples. Furthermore, the
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blackcurrants treated with CTS + SA + TiO2 showed the best performance in terms of
the total number of colonies (p < 0.05). To a certain extent, these results indicate that SA
and nano-TiO2 treatment controlled the rapid growth of bacteria. According to Moscoso-
Ramírez et al. [75], SA treatment showed antimicrobial activity in oranges, decreasing green
and blue molds. It has also been shown that the exogenous application of SA increases
the endogenous level of SA [64], thereby increasing antioxidant enzyme activities and
the production of pathogenesis-related proteins in some plants [76]. Nano-TiO2 is also
effective for inhibiting bacteria. According to the antimicrobial mechanism reported by
Maneerat et al. [77], microorganisms carry a negative charge while metal oxides carry a
positive charge, which creates an electromagnetic attraction between microbe and treated
surface. Moreover, with CTS + SA + TiO2 coating as an outer membrane protective barrier,
the entry of bacteria to blackcurrant fruit was prevented or slowed and the SA + nano-TiO2
might also kill or injure the bacterial colonies.

4. Conclusions

This investigation ascertained that different treatments with edible coatings could
directly and positively influence the quality of blackcurrants in storage. In conclusion, a
CTS + SA + TiO2 coating is eco-friendly and can be used for shelf-life improvement by
maintaining quality and controls the development of decay in postharvest blackcurrants.
In this study, the fruit treated with CTS + SA + TiO2 presented the smallest changes in
weight loss, TSS, TA, VC and TAC, and the highest TFC. This combined treatment also
significantly inhibited PPO activity during storage, and these treated samples displayed
the lowest MDA content. Microbial analysis indicates that fruit treated with CTS alone, in
combination with SA, in combination with TiO2, and in combination with both these active
substances, showed bacteriostatic activity; however, CTS + SA + TiO2 treatment has the best
antibacterial properties. These findings thus show that the application of chitosan-based
coatings and SA + nano-TiO2 may provide an excellent method for maintaining the quality
of postharvest blackcurrant fruits.
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