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Abstract: This paper aims to theoretically study the concept of a photonic salinity and temperature
sensor according to a deformed one-dimensional photonic structure. The fundamental capability of
the proposed sensor is studied. Simultaneously we search to optimize the thickness of the structure
and to get the maximum salinity and temperature sensitivity. The structure is constructed by
alternating layers of TiO2 and fused-silica P times. In the middle of the structure, a cavity containing
seawater is inserted to measure its salinity and temperature. The transfer matrix method (TMM) is
used to simulate the wave-transmittance spectra. It is shown that the quality factor (Q-factor) of
the resonance peaks depends on the number (P) of layers. After that, the thickness of the layers is
deformed by changing the deformation degree (h). The parameters P and h are optimized to get the
maximal Q-factor with the minimal number of layers and structure thickness. The best sensitivity SS

of the proposed salinity sensor is 558.82 nm/RFIU with a detection limit of 0.0034 RFIU. In addition,
the best sensitivity ST of the designed temperature sensor is 600 nm/RFIU with a detection limit of
0.0005 RFIU.

Keywords: photonic crystal; salinity sensor; temperature sensor; sensitivity; deformation; quality factor

1. Introduction

The health of living organisms such as humans, plants and animals depends on the
quality of water (like the absence of bacteria and a low level of mineral salts) [1]. Regarding
seawater, the salinity ratio varies from 3.5% (35 g/L) in the Earth’s oceans to 26% (260 g/L)
in the Dead Sea [2]. Water with a salinity level of less than 600 mg/L (0.06%) is regarded
as good quality drinking water [3]. Consequently, there is a need to develop an accurate
sensing device for salinity measurement [1]. The electronic sensing devices in industrial
and biological fields have become a necessity nowadays. They have evolved steadily
since the invention of electricity, the development of control circuits and electronic chips.
However, these electronic devices are sensitive to surrounding factors like electromagnetic
fields, heat and humidity. In addition, their accuracy is affected by the “Joule effect” [4],
which is known to raise the temperature of electronic devices due to the flow of electrons
inside them. In addition, portable versions of these devices have a high disposable batteries
consumption, which in turn is considered a source of pollution to the environment.
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The emergence of photonic structures proposed by John [5] and by Yablonovitch [6]
makes it possible to eliminate some problems of older electronic devices such as the
Joule effect [4]. These structures also known as photonic band gap materials are made by
alternating two or more different materials. They represent the optical analogy to a crystal
lattice, where atoms or molecules are periodically arranged and the periodic potential
introduces gaps into the energy band structure of the crystal [7,8]. There are three different
families of photonic structures, according to the direction of materials alternation, namely
one-dimensional (1D), two-dimensional (2D) and three-dimensional (3D) structures [5,6].
In addition, the alternation of materials can be periodic or quasi-periodic (where the
alternation of materials follows mathematical sequences). The most known quasiperiodic
structures are Fibonacci [9–12], Thue–Morse [13–15] and Cantor [11,16] structures. Photonic
structures [17] represent a serious opportunity for researchers to study and improve their
properties to be suitable for sensing applications [18]. They can be used for salinity
sensing [1,19], for D-glucose sensing [20], for temperature [15,19] and pressure sensing [15],
for humidity sensing [21], for hemoglobin sensing [22] and for cancer cell detection [23].
These devices are known for their accurate and precise response, and they have less energy
consumption with a rapid response because photons are faster than electrons (photons
move at a speed of 3 × 108 m/s) [17]. In previous research papers 1D and 2D photonic
structures were proposed to measure salinity and water temperature [1,19].

2. Problem Formulation
2.1. Photonic Structure Design

To simulate wave transmittance through a photonic structure containing a seawater
layer as a defect, the TMM (introduced by Yeh and Yariv [24]) is deployed. The sensitivity
of the optical properties to salinity and temperature variations of seawater is studied.
The studied photonic structure is constructed by alternating TiO2 and fused silica (F) as
two elementary layers, and at the middle of the structure we find a cavity containing
seawater (S), of which we want to measure salinity and temperature (see Figure 1). In the
studied spectral range [1–2 µm], the refractive index of amorphous titanium dioxide thin
films is assumed to be independent of wavelength [25]. In addition, the refractive index of
the TiO2 films reveals no significant dependence on temperature when the film thickness
increases more than ~200 nm [26]. Therefore, for this study the refractive index of the TiO2
layers will be fixed at nT = 2.3. The refractive index of the fused silica (nF) as a function of
wavelength and temperature is determined via Sellmier’s equation [1,27]:

n2
F(λ, T) =

(
1.31552 + 6.90754× 10−6T

)
+

(0.788404+23.5835×10−6T)λ2

λ2−(0.0110199+0.584758×10−6T)

+
(0.91316+0.548368×10−6T)λ2

λ2−100

(1)

where λ and T represent the free space wavelength (µm) and the temperature (◦C), respec-
tively. The thicknesses dT, F of the TiO2 and fused silica layers fulfill the Bragg condition
nT × dT = nF × dF = λ0

4 , where λ0 = 1.573 µm is the reference wavelength of the structure.
The refractive index nS of the seawater cavity defect depends on the probing wavelength
λ (nm), the salinity percentage S (%) and the temperature T (◦C) [1,28,29]:

nS(S, T, λ) = 1.3140 +
(
1.779× 10−4 − 1.05× 10−6T + 1.6× 10−8T2)S− 2.02
×10−6T2 + 15.868+0.01155S−0.00423T

λ − 4382
λ2

+ 1.1455×10−6

λ3

(2)

nS is represented in refractive index units (RFIU). The thickness dS of the seawater
cavity obeys the condition ns × ds = λ0.

The thermal expansion of the TiO2 and the fused silica layers are not the same.
In addition, the duration of stay of the seawater in the cavity is not determined and
we do not know the period necessary to have a heat exchange between the cavity and the
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rest of the structure. Therefore, and to simplify the simulation, the thermal expansion of
the structure was not taken into account.
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Figure 1. Schematic representation showing a periodic photonic crystal with the middle cavity
containing the seawater, where F is the fused silica layer, T is the TiO2 layer and S is the seawater layer.

2.2. Quality Factor of Resonance Peak

The quality factor (Q-factor) of a resonance peak given by a defect through a multilayer
photonic structure is a measurement (without unit) that determines the central spectral
position of the resonator relative to its wavelength’s-bandwidth [30–32].

Q =
λpic

∆λ
(3)

where λpic is the central wavelength of the resonance peak and ∆λ represents its full width
at half maximum (FWHM) [30–32].

In the calculated spectra given by our simulation, the step of the wavelength used for
the FWHM calculation is 0.00001 µm.

3. Results and Discussion
3.1. Optimization of Q-Factor and the Intensity of the Transmittance Resonance Peak

In this part we study the effect of the number of layers in the structure (P varies from
8 to 50) on the Q-factor. Thereafter, we will keep the P value which gives the best Q-factor.
Note here that the number P does not include the cavity layer. Here the salinity of the
seawater is fixed at 50% and the temperature at T = 25 ◦C (room temperature).

From Figure 2 we notice the presence of two transmittance peaks, the first one located
at 1.477 µm and the second one at 1.774 µm. The FWHM of the first transmittance peak
is 9.62× 10−4 µm and the FWHM of the second one is 6.07× 10−3 µm. Hence the quality
factors of the first and second peaks are Q1 = 1534 and Q2 = 292, respectively. In addition,
when we change the number of layers of the structure (P), the first peak has the best quality
factor; for the rest of the study we will concentrate on the first peak to study its sensitivity
to salinity and temperature.

Table 1 and Figure 3 show the variation of the structure thickness, the transmittance
peak intensity and the Q-factor as functions of the layer number P. Here it is clear that
the peak intensity is still upper 0.8 for P varying from 8 to 52 layers and from 62 layers,
the transmittance peak disappears. In addition, the quality factor Q has increased from
P = 50 layers and the best Q value is obtained with this number (P = 50). Therefore,
the quality factor depends on the structure layers number (P) and for the rest of the study
we will keep this number fixed at 50 layers.

From Table 1, it is clear that the transmittance peak intensity takes the value 0.8111
for P = 50 layers, so in the next step we will try to improve the maximum value of the
transmittance peak intensity, by applying a deformation in the structure layer thickness.
The initial optical thickness of fused silica (F) and TiO2 layers is X0j = nT× dT = nF× dF = λ0

4
and the initial optical thickness of the seawater (S) cavity is Y0j = ns × ds = λ0. Where j
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defines the jth layer-position in the photonic structure. By applying the deformation law,
the optical thickness of layers varies according to the deformation degree (h) and the layer
position (jth). Therefore for j ≥ 1, the new optical thickness of fused silica (F), TiO2 and
seawater (S) layers after deformation takes the forms X′0j = X0j ×

[
jh+1 − (j− 1)h+1

]
and

Y′0j = Y0j ×
[

jh+1 − (j− 1)h+1
]
, respectively [12,16].

Figures 4 and 5 illustrate the variation of the transmittance peak intensity and the
Q-factor as functions of the deformation degree (h). It is clear that by increasing h from
0 to 0.03, the best intensity and Q-factor are found for h = 0.01 (the values of the trans-
mittance peak intensity and the Q-factor are 0.976 and 15060, respectively). In addition,
with the increase of the deformation degree (h), we can notice the shift of the photonic band
gap (PBG), and transmittance peak towards high wavelengths. This physical phenomenon
is due to the increase of the structure’s geometric thickness (d) from 17.846 µm to 20.13 µm
when h varies from 0 to 0.003. Therefore, for the rest of this study we will keep a deformed
structure with h = 0.01.
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Figure 2. Transmittance spectrum for a periodic photonic structure with 36 alternated layers of fused
silica and TiO2 and with a middle cavity filled by seawater with 50% salinity and at room temperature.

Table 1. Variation of the Peak Intensity, Peak Wavelength, Peak FWHM and the Q-factor for Different
Values of P.

Number of
Layers (P)

Structure
Thickness (µm)

Transmittance
Peak

Intensity

Peak Wavelength
(µm)

FWHM
(µm)

Quality
Factor (Q)

8 3.966 0.9935 1.4492 0.1298 11.164
14 5.8463 0.9350 1.4752 0.0379 38.923
20 7.9662 0.9941 1.4733 0.01230 119.780
26 9.8463 0.9381 1.4838 0.00450 329.733
32 11.966 0.9933 1.47766 0.00180 820.922
38 13.846 0.9239 1.4850 0.00070 2121.429
44 15.966 0.9547 1.4771 0.00030 4923.667
46 16.513 0.9347 1.4850 0.000185 8028.108
48 17.299 0.8687 1.4772 0.00016 9232.50
50 17.846 0.8111 1.4852 0.00010 14852
52 18.633 0.9769 1.4772 0.000115 12845.22
54 19.179 0.3583 1.4852 0.000175 8486.857
56 19.966 0.9000 1.4772 0.00010 14772
58 20.513 0.1000 1.4850 0.00016 9281.25
60 21.299 0.4231 1.4772 0.00010 14772
62 21.846 0.0250 1.4852 - -
68 23.966 0.0310 1.4772 - -
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Figure 3. Variation of the transmittance peak intensity (a) and the quality factor (b) as functions of the layer number (P) of a
photonic structure with P alternated layers of fused silica and TiO2 and with a middle cavity filled with seawater of 50%
salinity and at room temperature.
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Figure 4. Variation of the transmittance peak intensity as a function of the deformation degree (h) for a photonic structure
with 50 alternated layers of fused silica and TiO2 and with a middle cavity filled with seawater of 50% salinity and at room
temperature, (a) h = 0, (b) h = 0.01, (c) h = 0.02, (d) h = 0.03.
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Figure 5. Variation of Q-factor as a function of the deformation degree (h) for a photonic structure
with 50 alternated layers of fused silica and TiO2 and with a middle cavity filled with seawater of
50% salinity and at room temperature.

3.2. Salinity Sensing

In this part we study of the variation of seawater salinity at room temperature
(T = 25 ◦C) and when the number of layers P and the deformation degree h are fixed
at 50 and 0.01, respectively. The sensitivity to the salinity of seawater can be defined as

Ss =
∆λpeak

∆n , where ∆λpeak is the wavelength shift of the resonance and ∆n is the refractive
index variation [1].

Table 2 reveals the seawater salt level, its refractive index units (RFIU), the resonance
peak wavelength (λpeak), the sensitivity to the salinity (Ss) and the refractive index differ-
ence ∆n. The salinity is changed from 0% (fresh water) to 100% considering that the salinity
of the seawater varies from 3.5% (35 g/L) in the oceans to 26% (260 g/L) in the Dead Sea [2].
Water with a salinity level less than 600 mg/L (0.06%) is regarded as good quality drinking
water [3]. In addition, Figure 6 shows that the resonance peak position shifts toward the
right when the salt level increases, with an equidistance between all peaks. It is found that
the wavelength shift is equal to 9.2 nm when the salt levels change from 0% to 100% (see
Figures 6 and 7). From Figure 7, we can conclude that the regression equation relates the
wavelength shift to the salt level: ∆λpeak = 0.0136 + 0.091909× salt level(%). In addition,
from Table 2 we determine that the regression equation relates the sensitivity to the salt
level: SS = 544.36 + 0.0198 × salt level (%). For this regression equation the standard error
coefficients (SE) for the constant and for the salt level are 5.24 and 0.0845, respectively. Fur-
thermore, from Table 2, it is found that the sensitivity depends on the salinity of the water,
but their values remain close when the salinity level varies from lowest to highest values.
Using the last regression equation, the salinity sensitivities of the drinking water (0.06%
salt) and the Earth’s oceans (3.5% salt) will take the values 544.36 and 544.87, respectively.
The best sensitivity Ss of the proposed salinity sensor is 558.82 nm/RFIU at 20% salinity
with a detection limit (DL) of 0.0034 RFIU.



Coatings 2021, 11, 713 7 of 11

Table 2. Variation of the RFIU, λpeak and Ss as Function of Salt Level.

Salt Level (%) (RFIU) λPeak (nm) Ss(nm/RFIU) ∆n(RFIU)×10−2

0 1.3211 1544.3 - 0
10 1.3228 1545.2 529.41 0.17
20 1.3245 1546.2 558.82 0.34
30 1.3262 1547.1 549.02 0.51
40 1.3279 1548 544.12 0.68
50 1.3295 1548.9 547.62 0.84
60 1.3312 1549.8 544.55 1.01
70 1.3329 1550.7 542.37 1.18
80 1.3346 1551.7 548.15 1.35
90 1.3363 1552.6 546.05 1.52
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Figure 6. Optical transmittances as functions of wavelength and salt level for a deformed photonic
structure with 50 alternated layers of fused silica and TiO2 and with a middle cavity filled with
seawater at room temperature.
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Figure 7. Peak wavelength shift as function of salt level for a deformed photonic structure with 50 alter-
nated layers of fused silica and TiO2 and with a middle cavity filled with seawater at room temperature.
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3.3. Temperature Sensing

In this part, we study of the variation of seawater temperature when the number of
layers P, the deformation degree h and the standard salinity of water are fixed at 50, 0.01
and 35%, respectively. The sensitivity to the temperature of seawater is determined by the

formula ST =
∆λpeak

∆n , where ∆λpeak is the wavelength shift of the resonance and ∆n is the
refractive index variation [1].

Table 3 shows the seawater temperature, its refractive index units (RFIU), the reso-
nance peak wavelength (λpeak), the sensitivity to the temperature (ST) and the refractive
index variation ∆n. In addition, Figure 8 shows that the resonance peak position shifts
toward the lowest wavelengths when the seawater temperature rises. In contrast to the
changes in the degree of salinity, the changes in seawater temperature led to changes
in peak resonance locations and the distance between them (see Figure 8). We noticed
enlarged gap between peak positions when increasing the temperature and it is physically
explained by the parabolic variation of the refraction index of seawater, as a function
of temperature. On the other hand, the variation of this index as a function of salinity
degree is linear. From Figure 9, it is clear that the wavelength shift is equal to −10.1 nm
when the temperature changes from 0 to 100 ◦C. In addition, from Figure 9, we can
conclude the regression equation relates the wavelength shift to the water temperature:
∆λpeak = 1.164− 0.10127× T(◦C). In addition, from Table 3 we determine that the regres-
sion equation relates the sensitivity to the temperature degree: ST = 584.09− 0.430× T (◦C).
For this regression equation the standard error coefficients (SE) for the constant and for the
temperature are 6.46 and 0.104, respectively. Furthermore, from Table 3, it is found that
the sensitivity depends on the temperature of the water and varies from 545.95 nm/RFIU
when T = 100 ◦C to 600 nm/RFIU when T = 10 ◦C. However, the sensitivity values remain
close when the temperature degree varies from the lowest to the highest values. We noticed
that the best sensitivity ST of the proposed temperature sensor is 600 nm/RFIU when the
temperature degree of the seawater is 10 ◦C with a DL of 0.0005 RFIU.

Table 3. Variation of the RFIU, λpeak and ST as a Function of Temperature.

Temperature (◦C) (RFIU) λPeak (nm) ST (nm/RFIU) ∆n(RFIU)×10−2

0 1.3289 1548.6 - 0
10 1.3284 1548.3 600 0.05
20 1.3275 1547.8 571.43 0.14
30 1.3264 1547.2 560 0.25
40 1.3250 1546.4 564.1 0.39
50 1.3233 1545.5 553.57 0.56
60 1.3213 1544.4 552.63 0.76
70 1.3190 1543.1 555.56 0.99
80 1.3164 1541.7 552 1.25
90 1.3136 1540.2 549 1.53
100 1.3104 1538.5 545.95 1.85

By comparing our results with the results found by Qutb et al. [19], we find that their
periodic structure is composed by the alternation of TiO2 and seawater layers which makes
their manufacture almost impossible; also their structures have a thickness of 3.75 µm while
the thickness of our structure is 18.57 µm. In addition, Qutb et al. [19] did not calculate
the sensitivity of their structure and did not determine the quality factor of the resonance
peaks. Furthermore, Vigneswarana et al. [1] proposed a salinity sensor using photonic
crystal fiber and this structure is more sensitive to salinity than ours, but still difficult to
fabricate. Our structure could be fabricated by the atomic layer deposition (ALD) technique
and to make the cavity, the lithographic process and wet or dry etching technologies can
be used.
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Figure 8. Optical transmittances as functions of wavelength and water temperature (◦C) for a
deformed photonic scheme with 50 alternated layers of fused silica and TiO2 and with a middle
cavity filled with seawater at 35% salt level.
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Figure 9. Peak wavelength shift as function of water temperature degree (◦C) for a deformed photonic
structure with 50 alternated layers of fused silica and TiO2 and with a middle cavity filled with
seawater at 35% salt level.

4. Conclusions

The studied deformed photonic structure represents a real opportunity to use optical
circuits as sensors for salinity and temperature of water. As the first step, the number of
layers was optimized to achieve the best quality factor (Q-factor = 14,852) and after that
we tried to deform the layer thickness by applying a mathematical formula. After that,
the deformation degree was optimized to be equal to h = 0.01 and the best transmittance
peak intensity and Q-factor found were 0.976 and 15,060 respectively. By changing the
water salinity level from 10% to 100%, we studied the sensitivity of the photonic structure.
The resonance peak position shifted towards higher wavelengths when the salt level
increased, with an equidistance between all peaks. It was found that the wavelength shift
was equal to 9.2 nm when the salt level changes from 0% to 100%. The best sensitivity
of the proposed salinity sensor was Ss = 558.82 at 20% salinity of seawater with a DL of
0.0034 RFIU. Finally, the temperature sensitivity was studied. The resonance peak position
shifts toward the lowest wavelengths when the seawater temperature rises and enlarged
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gaps between peaks positions are observed. The wavelength shift was equal to 10.1 nm
when the temperature degree changed from 0 to 100 ◦C. The best sensitivity of the proposed
temperature sensor was ST = 600 when the temperature of the seawater was 10 ◦C with a
DL of 0.0005 RFIU.
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