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Abstract: Piezoelectric materials are widely fabricated and investigated for potential applications
in microelectromechanical systems as direct converters between mechanical and electrical signals,
where some show pyroelectric features involving thermo-electro-mechanical interactions. This
study aimed to introduce a novel numerical technique to predict the thermo-electro-mechanical
behaviors of piezoelectric structures, based on a strong-form numerical framework called the element
differential method. In this method, the shape functions of the isoparametric element and their first
two derivatives were derived analytically by interpolating the temperature, displacement, and electric
potentials. Then, a point collocation method based on node positions in the elements was proposed
to generate the final system of equations without any domain integrations. Thus, the coupled
behaviors of thermal piezoelectric structures, including the pyroelectric features, can be simulated
by the strong-form formulation of the governing equations. Several numerical examples, including
the piezoelectric composites structures, are presented, and the coupled thermo-electro-mechanical
responses have been analyzed to validate the proposed method.

Keywords: piezoelectricity; thermo-electro-mechanical; strong-form method; element differential
method; pyroelectric features

1. Introduction

With the fast development of smart materials and manufacturing technologies, the
thermo-electro-mechanical coupled responses of the smart structures have attracted instant
attention from scientists. P piezoelectric materials have been broadly employed as actuators
or sensors depending on the coupled mechanical and electrical characteristics. These
devices can provide high-level features such as high force generation, response speed, and
displacement accuracy [1,2]. Moreover, because thermo-piezoelectric materials possess the
potential capability in aviation, transportation, and automating industries [3], they have
been also widely selected in designing the devices for damage detecting, health inspecting,
actuating, and load-carrying applications [4,5]. For instance, research indicates that the
sensing devices based on pyroelectric and piezoelectric effects have potential applications
in the design of active human-computer interaction and wearable robots [6,7].

The smart piezoelectric devices composed of thermo-electro-elastic properties often
run at the different loading environments, such as cyclic electrical or mechanical, thermal,
and or their combined conditions. In literature, a significant amount of research focuses on
simulating and investigating the coupling structural responses of piezoelectric materials.
Completely understanding the coupling behaviors or the physical laws will be benefi-
cial in utilizing the thermo-piezoelectric materials in real engineering applications. The
research [8,9] demonstrated that the polarization of the crystalline materials and structures
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could be affected by the temperature. Due to the temperature changes, the piezoelectric
material may be polarized by establishing the electrical potentials [10].

On the other hand, a complete understanding of thermal stress is necessary to guar-
antee the reliabilities of piezoelectric structures in real applications, such as the aerospace
industry, especially when piezoelectric structures are exposed to complex and change-
able temperature environments [11,12]. Namli and Taya introduced a thermal energy
piezo-SMA harvester subjected to temperature fluctuation in different frequencies [13].
Srivastava et al. designed a device to directly convert heat to electricity, in which energy
conversion devices are designed according to the distributions of the electro-thermo-elastic
coupling fields [14]. In addition, thermal effect analyses of the thermal piezoelectric struc-
tures could provide a theoretical basis of piezoelectric materials to predict the crack failure
behaviors [15]. Consequently, the accurate analysis of the thermo-electro-mechanical be-
haviors of the piezoelectric materials under thermal environments is of great importance
to understand the mechanism of interaction among different physical fields.

In this regard, recent literature has concentrated on developing novel numerical meth-
ods to analyze the multi-field coupling problems of the piezoelectric structures subjected
to electrical, mechanical, and thermal loadings. Several illustrative numerical methods
have been developed to analyze the thermo-electro-mechanical responses of piezoelectric
structures, such as the finite element methods (FEM), the finite difference method (FDM),
and the boundary element methods (BEM). Among them, the FEM is one of the most
convenient computational tools. It has been widely utilized to calculate the boundary
value problems of the piezoelectric medium subjected to complex loading conditions. For
instance, the finite element formulation has been utilized to solve the crack problems under
thermal loadings for piezoelectric structures with different size scales [16]. Rahman used
FEM to analyze the free vibration analysis and steady harmonic analysis of a multilayer
porous cantilever beam with a piezoelectric layer [17]. Jiang and Li introduced a finite
element formulation to compute the energy harvesting problems of the piezoelectric com-
posite beams under thermo-electro-mechanical loadings [18]. Amini et al. selected the FEM
to calculate the coupled response of the piezoelectric harvesters made of functional graded
materials in unimorph or bimorph arrangement [19].

Meanwhile, Yan and Jiang studied the dynamic fracture behaviors of piezoelectric
materials based on the same numerical method [20]. The standard FEM to simulate the
coupled problems of piezoelectric structures has been widely integrated into some of the
commercial finite element codes, such as ABAQUS and ANSYS [21]. Although the overall
success has been achieved through the finite element method to analyze piezoelectric
problems, to the best of the authors’ knowledge, even some of the commercial finite element
codes still cannot simulate the pyroelectric behaviors directly due to the complexity of
the problems. Therefore, it will be interesting to study the pyroelectric properties of
piezoelectric cellular structures with more convenient methods. For instance, Lv et al.
introduced an extended multiscale finite element method for thermoelectric coupling
responses of piezoelectric structures with pyroelectric effects [22].

The numerical methods derived from strong formulations to calculate piezoelectric
behaviors have received growing interest in recent years. Generally, the solutions based
on the strong-form technique can directly generate the system of equations without any
other supplementary methods [23,24]. Thus, the strong-form method shows unrivaled
favorable circumstances to simulate complex engineering problems, especially for multi-
physics problems with different governing equations [25]. For instance, Moradi-Dastjerdi
et al. used a meshless method to investigate the damped dynamic motions of piezoelectric
sandwich plates under thermo-electromechanical loads [26]. Liew proposed a Galerkin
differential quadrature method (DQM) to simulate the nonlinear behaviors of the thermo-
piezoelectric structures [27]. Alashti and Khorsand also proposed a DQM to calculate the
three-dimensional thermo-elastic problems of the cylindrical shells composed of piezoelec-
tric layers under the thermo-electro-mechanical loads [28]. Recently, Lv et al. presented
a type of strong form method to predict response of piezoelectric structures [29]. Their
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research indicated that the element differential method derived from the strong-form tech-
nique combines the benefits of standard FEMs, i.e., mesh grids can be generated adaptively
for arbitrary configurations in real applications. At the same time, the strong form of
governing equations can be directly utilized.

In this work, the research focused on the strong-form techniques to simulate the
coupled responses of thermo-piezoelectric structures. A novel strong-form collocation
method is presented to solve the coupled thermo-piezoelectric-mechanical behaviors. The
isoparametric elements were introduced to assemble the governing partial differential
equations of coupling problems. Then, according to the distributions of the nodes, a special
collocation technique is used to construct the system equations for the coupled problems
directly. The uncoupled procedure based on the standard Fourier heat conduction theory is
utilized for thermo-electro-elastic behaviors. Furthermore, an additional innovation of the
present strong-form method is that the pyroelectric effects of the piezoelectric structure are
directly substituted into the system of equations through the collocation technique without
any domain integrations. Finally, serval illustrative examples, including the complex
piezoelectric composite structures, are proposed to validate the accuracy of the current
method.

This paper’s remaining is organized in the following manner: The main equations,
including the governing equations and constitutive equations, are briefly introduced for
the linear thermo-electro-elastic problems in Section 2. Section 3 presents the element
differential formulations and the point collocation technique to construct the system equa-
tions to analyze the piezoelectric structures subjected to the thermo-electro-elastic loadings.
The point collocation technique is separately introduced for the two types of problems.
Section 4 gives some numerical examples for the code validation. The last section gives a
summary and conclusions.

2. Unified Governing Equations for Thermo-Electro-Mechanical Problems

As indicated in Figure 1, a linear isotropic homogeneous piezoelectric domain sub-
jected to the thermo-electro-mechanical loadings is considered. In this domain, the mechan-
ical boundary conditions and prescribed electrical potentials are applied to the boundaries
Γu, Γφ, respectively. At the same time, the traction t and the heat flux q act on boundaries
Γt, Γq, respectively.
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Figure 1. The piezoelectric structure subjected to combined thermo-electro-mechanical loadings.

The constitutive equations for thermo-electro-mechanical problems can be written
as [22]:

σij(x) = Cijkl(x)εkl(x) + emij(x)(−Em(x))− βijT,
Di(x) = eijk(x)ε jk(x)− λik(x)(−Ek(x))− χiT

(1)
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where σij are the stress tensors, εkl strain tensors, Di electric displacement vectors, Em elec-
tric field vectors, Cijkl elastic coefficient vectors, emij piezoelectric stress coefficient vectors,
λik dielectric coefficient vectors, βij thermal-stress coefficient vectors and χi pyroelectric
coefficient vectors, T the temperature variations. In two-dimensional problems, the ranges
for the repeated subscripts i and j are 2, while in three-dimensional problems, the ranges
are 3.

The parameters used in Equation (1) for three dimensional problems can be written
in a unified way to simplify the expression of the constitutive equations for the thermo-
piezoelectric materials

UM =

{
um M = m = 1, 2, 3

φ M = 4
, FM =

{
fm M = m = 1, 2, 3
−q M = 4

, (2a)

εMn =

{
εmn M = m = 1, 2, 3
−En M = 4

, σMn =

{
σmn M = m = 1, 2, 3

Dn M = 4
(2b)

In the thermo-piezoelectric materials, the constitutive equations can be rewritten in an
extended form

σI j = LI jMnεMn + πI jT (3)

In Equation (3), LI jMn and πI j denote the constitutive coefficient matrixes, which can
be written as

LI jMn =


Cijmn I = 1, 2, 3, M = 1, 2, 3
enij I = 1, 2, 3, M = 4
ejmn I = 4, M = 1, 2, 3
−λjn I = M = 4

. (4a)

πI j =

{
−βij I = 1, 2, 3
−χi I = 4

(4b)

where, the ranges of the subscripts I and M is 3 for 2D and 4 for 3D problems. With the
symbolic forms presented above, the prescribed boundary conditions in the mechanical
and electrical fields of the piezoelectric structures can be rewritten as:

UM(x) = Ui(x), x ∈ ΓU , (5a)

LM(x) = σMn(x)nn − πMn(x)T(x)nn = LM(x), on ΓL (5b)

where Ui(x) denotes the fixed displacement and electrical potential values applied at
the boundary ΓL, the character LM denotes the unified form about the traction vectors
and surface charges. The outward normal vector nn refers to the boundaries ΓL. All the
boundaries of the problem satisfy ΓU = Γu ∪ Γφ, ΓL = Γt ∪ ΓD.

Therefore, based on the extended form of the parameters, the obtained second-order
partial differential equations of the thermal piezoelectric structure can be written as:

∂LI jKl

∂xj

∂UK
∂xl

+ LI jKl
∂2UK

∂xl∂xJ
+

∂
(
πI jT

)
∂xj

+ FI = 0. (6a)

where FI denotes the body force. At the same time, the boundary conditions related to the
tractions and surface charges can be expressed as

LLiMn(x)nn
∂UL
∂xi
− πMn(x)T(x)nn = LM(x), on ΓL (6b)
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On the other hand, for the thermal conduction problems of the piezoelectric structure,
the governing equation about the steady-state heat conduction response can be written as

∂

∂xi

(
kij(x)

∂T
∂xi

)
+ Q(x) = 0 (7)

where, kij(x) is the heat conductivity varying with coordinates x, Q(x) is the heat generated
rate. Three types of boundary conditions can be generally considered to solve heat transfer
problems of the piezoelectric solids

T(x) = Tx ∈ Γ1 (8)

q(x) = −kij(x)
∂T(x)

∂xj
ni = qx ∈ Γ2 (9)

q(x) = −kij(x)
∂T(x)

∂xj
ni = h(T(x)− T∞) x ∈ Γ3 (10)

where Γ1 ∪ Γ2 ∪ Γ3 = Γ, T(x) and T are the temperature and prescribed values, respec-
tively. q is the specified heat flux. T∞ is the temperature on the boundary Γ3. h denotes the
heat transfer coefficients.

3. Elemental Differential Method for Thermo-Electro-Mechanical Problems

In this section, a novel strong-form method called the thermal piezoelectric elemental
differential method (TP-EDM) is introduced to analyze the coupled responses of the
structures under thermo-electro-mechanical loadings. The proposed method can be divided
into three steps. In the first step, target domains are discretized into isoparametric elements,
consistent with those standard finite element methods. In the second step, the final system
of equations is generated by the point collocation method. These equations are generated
node by node in this step, while domain integrations element by element construct the
total stiffness matrix. In the final step, the final system of the equation is solved to calculate
the unknowns, i.e., nodal displacements, electrical potentials, and temperatures.

3.1. Lagrange Isoparametric Elements

The standard C0-continuous 2D and 3D Lagrange isoparametric elements are used
to discretize the computation domain [25]. As illustrated in Figure 2, a 2D quadrilateral
element with nine nodes is considered here. The main characteristic of the elements is
that an independent node is distributed inside the elements. Based on the isoparametric
element, the geometrical and physical variables over the element can be approximated
according to the nodal values of the element.

Therefore, spatial coordinates, displacement, electrical potential, and temperature
within an element can be calculated with the interpolation functions by

ui = Nα(ξ, η, ζ)uα
i

xi = Nα(ξ, η, ζ)xα
i

φ = Nα(ξ, η, ζ)φα
i

T = Nα(ξ, η, ζ)Tα
i

(11)

where, Nα denotes the shape functions. The subscript α denotes the summation ranged
from 1 to the number of the elemental nodes. It can be found that the mesh grids used in
the standard finite element method can be directly employed for the computations of the
current method.
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Figure 2. The Lagrange isoparametric elements: (a) spatial coordinates x (b) intrinsic coordinates ξ.

The shape functions Nα for the isoparametric elements can be explicitly derived with
the intrinsic coordinates [25]. In this regard, the first two orders of the partial differential
equations for the shape functions referring to the spatial coordinates can be derived
explicitly. The transformations of the derivatives can be written as follows:

∂Nα

∂xi
=

∂Nα

∂ξk

∂ξk
∂xi

= [J]−1
ik

∂Nα

∂ξk
, (12)

∂2Nα

∂xi∂xj
=

[
[J]−1

ik
∂2Nα

∂ξk∂ξ l
+

∂[J]−1
ik

∂ξ l

∂Nα

∂ξk

]
∂ξ l
∂xj

(13)

where, the Jacobian matrix J denotes the mapping relationship between the Cartesian
coordinate and the intrinsic coordinate systems. Based on the analytical expansion of the

shape functions, the Jacobian matrix, its inverse matrix [J]−1
ik and derivative matrixes ∂[J]−1

ik
∂ξ l

can be derived analytically, respectively [25].

3.2. Point Collocation Technique

This work assumes that the temperature distributions over the piezoelectric structures
are independent of the electrical and elastic fields. The heat transfer problem is firstly
calculated without considering the effects of the mechanical fields. Then the thermo-stress
and the pyroelectric features of the piezoelectric structures are solved based on the obtained
thermal fields. Although two different types of governing equations govern the two types
of problems, the system equations of these boundary value problems can be constructed
by the collocation technique in a unified way.

3.2.1. Point Collocation Technique for Thermal Conductions

As shown in Figure 3, the element nodes in the structures meshed with isoparametric
elements can be clarified into three types according to their distributions, i.e., internal
nodes located within the elements, interface nodes between elements, and outer surface
nodes along boundaries.
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For internal nodes located within an element, the set of equations can be directly
created by governing equations of the thermal conduction problems. By combining Equa-
tions (7) and (12), the governing equations are expressed by the nodal element values of
temperature [30] [

∂Nβ(ξ)

∂xi
kβ

ij
∂Nα(ξ)

∂xj
+ kij(ξ)

∂2Nα(ξ)

∂xi∂xj

]
Tα + Q(ξ) = 0 (14)

In the above equation, ξ represents the intrinsic coordinates of the nodes, kβ
ij the value

of kij at node β.
On the other hand, the heat flux should satisfy the equilibrium conditions at the other

nodes distributed at element boundaries or interfaces shared by several elements. The
equilibrium equations of the heat flux can be written as follows:

M

∑
f=1

q f
i (x) =

{
0, interface nodes

qi, boundary nodes
(15)

where M denotes the quantity of element surfaces related to the interface nodes. q f
i (x) is

the heat flux of surface f ; qi is the prescribed value of the heat flux.
For the nodes shared by several elements, the relationship between heat flux and

temperature gradients can be obtained by substituting Equation (9) into Equation (14)

K

∑
f=1
−kij

(
ξ I
)∂2Nα

(
ξ I)

∂xj
n f

i

(
ξ I
)

Tα = 0 (16)

where ξ I is the intrinsic coordinates of the interface nodes; n f
i is the outward normal vector

to surface f.
On the other hand, for the nodes on the outer boundaries of mesh grids, the heat flux

equilibrium conditions should be satisfied [30]

K

∑
f=1
−kij

(
ξb
)∂2Nα

(
ξb
)

∂xj
n f

i

(
ξb
)

Tα = q
(

ξb
)

(17)

where, ξb is the intrinsic coordinates of the outer boundary nodes, q
(

ξb
)

= q at the

boundary Γ2, and q
(

ξb
)
= h

(
T
(

ξb
)
− T∞

)
at the boundary Γ3.
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3.2.2. Point Collocation Techniques for the Thermal Elastic Problems

A similar way can generate the system of equations for the thermal elastic response
of the thermal piezoelectric structure as those for heat transfer problems. The governing
equations for the thermal stress problems should be satisfied at all nodes inside elements[

LI jKl(ξ)
∂2Nα(ξ)

∂xj∂xl
+

∂Nβ(ξ)

∂xj
Lβ

jkl
∂Nα(ξ)

∂xl

]
Uα

K +
∂
(
πI j(ξ)T

)
∂xj

+ FI(ξ) = 0 (18)

where, ξ denotes intrinsic coordinates of the node. The thermal-stress coefficients πI j can be
directly considered in the governing equation. In this method the temperature difference is
directly utilized in the governing equations to create the system of equations. Thus, the
complexity in dealing with the thermal coupling problems of the piezoelectric structures
can be greatly reduced.

For the other nodes, traction equilibrium conditions should be satisfied.

N

∑
e=1

Se

∑
s=1
Ls

i (ξ
e) = Q =


0, internal nodes

N
∑

e=1

Se

∑
s=1
Ls

i , boundary nodes
(19)

In above equation, N represents the quantity of elements that includes the node
considered, Se the quantity of surfaces of the element related to the node, Li(x) the surface
tractions and charges applied.

Therefore, when the nodes are located at the element interfaces, the tractions for all
the faces related to the considered nodes should be at an equilibrium state. The equation
can be written as follows:

N

∑
e=1

Se

∑
s=1

[
LI jKl(ξ

e)ns
j (ξ

e)
∂Nα(ξe)

∂xl
Uα

K + πI j(ξ
e)T(ξe)nj

]
= Q, ξξe ∈ Γ (20)

where the symbol nj represents outward normal to the surface.

3.2.3. The Final System of Equations for the Coupled Problem

The system of equations for the heat conduction and thermal-mechanical problems of
the piezoelectric structures can be obtained based on the collocation technique mentioned
above. According to their distributions, each of these nodes can be used to assemble parts
of the system of equations with governing equations or boundary conditions.

The unknowns in the final system of the equation need to be numbered in a global
sequence. For instance, the unknowns of the thermal conduction problem are related to
nodal temperature. Each node can generate an equation containing all nodes, including the
interface nodes. At the same time, the nodes at the outer boundaries can generate equations
containing node temperatures and heat fluxes by substituting intrinsic coordinates ξ into
Equations (15) and (16). Finally, once global nodal vectors of temperatures are numbered
in a global sequence, then the final system of the equation can be written as [25]:

[A]{x} = {b} (21)

where [A] denotes the coefficient matrix of the system of equation; {x} denotes solution
vector and {b} right side vector. It should be noted that for the thermo-electro-mechanical
problems, the global nodal vector is composed of the displacement and the electrical
potentials.

Therefore, the heat conduction and thermal, mechanical problems can be performed by
solving the algebraic equations. Each node’s stresses and surface charges for the thermal-
mechanical problems can be directly calculated by substituting the displacement and
electrical potentials into the constitutive equations.
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4. Numerical Examples

In this section, the computational performance of the proposed element differential
method for thermo-electro-mechanical structures (TP-EDM) is validated through several
numerical examples.

4.1. Piezoelectric Composite Structure Composed of Periodical Unit Cells

A piezoelectric composite structure composed periodically distributed unit cells
(4 × 10) is considered in the first example. As indicated in Figure 4, the whole size of
the square unit cell is 60 mm × 60 mm. The unit cell is made of two types of materials
(Epoxy and PZT-7A). The diameter of the circular piezoelectric fiber is 30 mm. The left
end of this structure is firmly fixed. The bottom temperature value is set to 100 ◦C, while
the value for the top face is set to 500 ◦C. At the same time, the electrical potential at
this part of the structure is set to zero. The material constants for the piezoceramic and
non-piezoelectric matrix are listed as follow:

PZT− 7A
E = 96.2 GPa,µ = 0.3,β = 2.05e6 PaK−1

π = 54131 V•m−1K−1, k = 1.8W•m−1K−1

e11 = 9.5 cm−2, e12 = 2.1 cm−2, e24 = 9.2 cm−2

λ11 = λ22 = λ33 = 4.07× 10−9
(

C•V−1m−1
)

Epoxy :
E = 4.88GPa,µ = 0.3,β = 1.33e5PaK−1, k = 0.7 W•m−1K−1

λ11 = λ22 = λ33 = 3.717× 10−11
(

C•V−1m−1
)

where E is the elastic modulus of the materials, µ Poisson’s ratio.
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Figure 4. The cantilever piezoelectric beam structure composed of 4 × 10-unit cells.

As shown in Figure 4, the piezoelectric composite structure is divided into 44,000
four-node quadrilateral elements. Both TP-EDM and a household standard finite element
method developed are utilized to solve the coupled thermo-electro-mechanical problems.

The displacement and electric potential results computed by these methods are plotted
in Figures 5 and 6. It could be observed that a bending deformation will be generated
under the uniform thermal temperature. The maximum displacement in the Y direction
occurs at the top-right corner (Point A). At the same time, the electrical potential will be
induced by the uniform expansion of the structure. As indicated in Figure 6, the maximum
value of the electric potentials occurs at the right end of the structure, which is consistent
with the deformation of the structure.

Furthermore, the maximum electrical potential and displacement at point A are listed
in Table 1. At the same time, the electrical potential and displacement along the line of the
bottom face are provided Figure 7. The results computed by the two methods are in good
agreement, which shows the accuracy of the presented method (TP-EDM).
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Figure 5. Displacement in the X direction (U) of the cantilever beam calculated by (a) FEM (b)
TP-EDM.
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Figure 6. Electric potential of the cantilever beam calculated by (a) FEM and (b) TP-EDM.

Table 1. The displacement and electrical potential for point A.

Method u (mm) ϕ (V)

FEM 33.29 2.26
TP-EDM 33.23 2.18
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Figure 7. (a) Displacement in the X direction (U) and (b) Electrical potential along Y = 240 mm of
piezoelectric structure.
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4.2. Clamped Thermal Piezoelectric 3D Beam

In this example, the thermo-electro-mechanical response of a clamped thermal piezo-
electric 3D beam is considered. The two ends of the piezoelectric beam are fixed, as shown
in Figure 8. The size of the beam is 0.005 m× 0.1 m × 0.01 m. Since the commercial finite
element method code cannot be directly used to model the piezoelectric structures with
the pyroelectric behaviors, the pyroelectric coefficients for the 3D beam are set to zero here.
The other material constants can be given as follows:

E = 96.2 GPa,µ = 0.3,α = 8.53e−6

e15 = −0.39 cm−2, e31 = −0.66 cm−2, e33 = 1.57 cm−2,
λ11 = λ22 = λ33 = 8.092× 10−12

(
C•V−1m−1

)
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Figure 8. The 3D piezoelectric beam subjected to the combined thermal-elastic-mechanical loadings.

Two loading cases separately composed of thermal loading and the combined thermal-
electric and mechanical loading are considered in this example, respectively, to validate the
effectiveness of the presented method.

Case 1: The clamped thermal piezoelectric beam structure considered is subjected to
the thermal loadings. A temperature load (T = 200 K) is subjected to the beam structure,
while the electrical potential is set to zero at the bottom of the structure. The piezoelectric
beam will expand under the temperatures. The beam structure meshes with 900 grids.
The commercial finite element codes Abaqus with the C3D8P elements are applied to
validate the proposed method TP-EDM. Since the same mesh grids are utilized, the results
calculated by Abaqus can be seen as the reference results.

The deformation and the electrical potential responses predicted by both TP-EDM
and Abaqus can be found in Figures 9 and 10, respectively. It can be found that a uniform
expansion happens at most of the beam structures except the two ends, which are con-
strained by the fixed boundary conditions. Thus, thermal stress will be induced, which will
lead to electrical potentials. At the same time, the maximum values about displacement
and electrical potential induced by temperature variations in the structure can be found
in Table 2. Furthermore, Figure 11 gives the displacement and electrical potential for the
nodes at the bottom line. The results computed by the presented method are in good
agreement with those of the standard finite element method.

Case 2: In this case, the combined thermal and mechanical loadings are applied on the
clamped piezoelectric beam. The upper surface of the piezoelectric beam is subjected to a
uniform pressure (10MPa), while the whole model is still subjected to a temperature load
of 200 K, as illustrated in Figure 8. Both of the two ends of the piezoelectric beam are fixed.
At the same time, the electrical potential is set to zero at the bottom face.
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Figure 9. Displacement in the Z direction obtained by (a) Abaqus and (b) TP-EDM.
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Figure 10. Electrical potential of the clamped piezoelectric 3D beam calculated by (a) Abaqus and (b) TP-EDM.

Table 2. The maximum displacement and electrical potential for the piezoelectric beam.

Methods w (m) ϕ (V)

Abaqus 1.02 × 10−5 1.76 × 105

TP-EDM 1.01 × 10−5 1.76 × 105
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Figure 11. (a) Displacement in the Z direction and (b) electrical potential along the Y-axis of the piezoelectric structure.
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In order to further verify the influence of the mesh generation type on the accuracy of
the presented method, a detailed mesh refinement convergence study is performed. Three
types of mesh grids are considered, consisting of 900, 5000, and 12,103 brick elements,
respectively. In the last one, the irregular mesh grids with different types of hexahedral
elements are considered. The deformation and the electrical potential generated by the
thermal and mechanical environment can be found in Figures 12 and 13, respectively. It
can be found that under the combined coupled loading, the bending deformation will be
generated at the clamped piezoelectric beam structure. The electrical potential generated
by the mechanical loading will gather at the top surface of the structure.
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based on regular mesh, (c) TP-EDM based on the irregular mesh.
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based on irregular mesh grids.

Besides, it can be observed that the deformation and the electrical response predicated
by TP-EDM are finely consistent with those calculated by Abaqus. The displacement and
electrical potential values along the Y-axis of the upper surface of the 3D piezoelectric
beam are plotted in Figure 14. At the same time, the results with different mesh grids can
be found in Table 3. It can be seen from Figure 13 that the maximum electrical potential
appeared at some part of the top surfaces, which ranges from 20 mm to 80 mm in the Y
direction along the structure. Furthermore, the curve is approximately saturated in this
range, shown in Figure 14b, while the maximum value happens at the center point of the
structure. It can be observed that the maximum values of the displacement and electrical
potential computed by the proposed method vary little with the number of the mesh grids
(from 900 to 12103), which demonstrates a relatively high convergence rate of the proposed
method. Thus, it can be concluded that the TP-EDM has satisfied numerical accuracy and
stability to solve the coupled thermal-electrical-mechanical problems of the piezoelectric
structure.
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Figure 14. (a) Displacement in the Z direction and (b) electrical potential along the Y-axis of the
piezoelectric structure.

Table 3. Displacement in negative direction (m) and electrical potential(V) for the piezoelectric beam.

Number of
Mesh Grids w (FEM) w (TP-EDM) ϕ (FEM) ϕ (TP-EDM)

900 3.44 × 10−4 3.48 × 10−4 1.75 × 10−5 1.76 × 10−5

5000 3.48 × 10−4 3.49 × 10−4 1.75 × 10−5 1.75 × 10−5

12103 3.48 × 10−4 3.49 × 10−4 1.74 × 10−5 1.75 × 10−5

4.3. Cylindrical Structure Reinforced by Piezoelectric Fiber

In the final example, a composite structure reinforced by piezoelectric fiber under com-
bined electro-thermo-mechanical loading is considered. This fiber-reinforced piezoelectric
composite has received growing attention recently since it can provide novel properties
and individual synergism between different types of materials [31]. As illustrated in
Figure 15, the hollow cylindrical structure comprises a thin carbon shell, elastic core, and
piezoelectric fibers. It can be found that the elastic core contains 16 sticks made of PZT.
Since the model and the loading conditions are symmetric, only 1/4 model is selected to
simulate the coupling behaviors. The detailed geometrical information of the structure
can be found in Figure 15, in which the thickness of the carbon fiber film shell is 0.15 mm,
the length of the cylinder L = 100 mm, the diameter of the piezoelectric fiber d = 10 mm,
the radius of the hollow inclusion Rc = 30 mm, while the thickness of the hollow core is
∆ = Rs − Rc = 46.2 mm.
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Figure 15. (a) The piezoelectric fiber-reinforced composite cylindrical structure and (b) 1/4 geometry
for the simulation.

The material constants about the PZT, polyethylene (PE), and carbon of the composite
structures are illustrated as follow:



Coatings 2021, 11, 687 15 of 19

PZT:
c11 = 12.6, c12 = 5.30, c13 = 5.50, c33 = 11.7, c44 = 3.53

(
×1010 N•m−2)

e15 = 17, e31 = −6.5, e33 = 23.3
(
C•m−2)

λ11 = 171× ε0, λ33 = 147× ε0, ε0 = 8.85419× 10−12
(

C•V−1m−1
)

β11 = β22 = 1.79e6PaK−1, β33 = 2.03e6PaK−1

k = 0.26 W•m−1K−1

PE:
E = 12.5GPa,µ = 0.3, k = 0.4 2W•m−1K−1

β11 = β22 = β33 = 2.67e5PaK−1

λ11 = λ22 = λ33 = 1.95× 10−11
(

C•V−1m−1
)

Carbon:
E = 180GPa,µ = 0.34, k = 0.7W•m−1K−1

β11 = β22 = β33 = 4.80e6PaK−1

λ11 = λ22 = λ33 = 8.85× 10−11
(

C•V−1m−1
)

In order to simulate the coupled response of the piezoelectric fiber-reinforced com-
posites, two loading cases are considered. In the first case, the loading and boundary
conditions could be described as below: at the bottom of the structure (Z = 0), the electrical
potential is set to zero, the normal displacement is constrained, the temperature is set to
20 ◦C. At the same time, the applied pressure is 100 MPa at the top face of the structure
(Z = 100), while the temperature of the face is 100 ◦C. The boundary condition can be listed
as follow:

Z = 0 : φ = 0; U = 0; T = 20 °C
Z = 100 : P = 100 MPa; T = 100 °C

The piezoelectric fiber-reinforced composite cylindrical structure meshes with 23,902
elements. The displacement and electrical potential result of the 1/4 structure calculated
by TP-EDM and Abaqus are given in Figures 16 and 17. The displacement and electrical
potential data along the line at the position (X = 0, Y = 76.35 mm) are given in Figure 18. It
can be seen from Figure 18 that the displacement and potential results curves calculated by
TP-EDM are basically consistent as those calculated by Abaqus in the coupling problem of
heat conduction and mechanical force. Moreover, the displacement and electrical potential
created by Abaqus and TP-EDM of the one point (point B) on the structure are listed in
Table 4. It was evident that the results obtained by these two methods are well-matched,
although different types of materials are considered.
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Figure 16. The displacement in the Z direction of the piezoelectric composites computed by (a)
Abaqus and (b) TP-EDM.
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Figure 17. The electrical potential of the piezoelectric composites calculated by (a) Abaqus and (b)
TP-EDM.
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Figure 18. (a) Displacement in the Z-direction and (b) electrical potential along X = 0, Y = 76.35 mm
of the piezoelectric structure.

Table 4. The displacement and electrical potential for Point B at the piezoelectric cylinder.

Method w (m) ϕ (V)

Abaqus 4.49 × 10−2 9.03 × 108

TP-EDM 4.47 × 10−2 9.02 × 108

For the second case, to verify the accuracy and diversity of the method, the combined
thermo-electro-mechanical boundary condition is considered in this example. The heat
exchange boundary conditions are applied on the two end faces of the piezoelectric fibers.
As indicated in Figure 15a, at one end of the cylinder, the heat flux of the PZT face is set to
q = 0.2 Wm−2 °C, while the reference temperature is 60 ◦C. At the other end, the heat flux
is set to q = 0.1 Wm−2 °C, while the environmental temperature is 200 ◦C. These boundary
conditions applied on the target structure are listed as follow:

PZT fibers:

Z = 0 : T = 60 °C q = 0.2 Wm−2 °C ;
Z = −100 : T = 200 °C P = 100 MPa q = 0.1 Wm−2 °C .

The mesh grid used in this case is the same as that for the first case. The temperature
distribution of the cylindrical structure calculated by Abaqus and TP-EDM is shown in
Figure 19. It can be observed that as the heat flux is only applied on the end of the
piezoelectric fibers, the resulting temperature at corresponding areas is higher than that
of the matrix. The temperature calculated by TP-EDM agrees well with that simulated by
ABAQUS, which shows the accuracy of TP-EDM in solving the heat transfer problem.
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Furthermore, once the calculated temperature is calculated for the piezoelectric com-
posite structure, the other high order responses such as the electrical potential and stress
can be further calculated by the proposed method. As illustrated in Figures 20 and 21, the
left end with higher temperatures generates high electric potentials. At the same time, the
von Mises stress results mainly happen at the shell surrounding the cylinder caused by the
thermal expansion of the core. Moreover, the computed results by TP-EDM are in good
agreement with those calculated by Abaqus. Therefore, we can conclude that TP-EDM can
obtain the results with satisfying accuracy in dealing with the piezoelectric composites
subjected to combined thermo-electrical-mechanical loadings. Further, since thermal loads
are directly utilized in the governing equations to establish the system of equations without
any domain integrations, the proposed method can reduce the complexity in dealing with
the thermal coupling problems of the piezoelectric structures.
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5. Conclusions

In this study, a new strong form method, the elemental differential method, has been
proposed to simulate the coupled response of the piezoelectric structures subjected to
combined thermal-electric-mechanical loadings. The main contribution of this method is to
derive the analytical formulas for combining the governing equations of the piezoelectric
problem and the heat conduction problem directly. Based on the proposed method, the
thermal conduction and thermal, mechanical problems for the thermal-electric-mechanical
problem can be resolved with the same strategy. Meanwhile, the pyroelectric effect consid-
ering the relationship between thermal and electrical fields is directly addressed.

Several numerical examples, including the piezoelectric composites, are utilized to
evaluate the effectiveness of the proposed method. From the comparison of the results
calculated by different methods based on the standard finite element framework, it can
be found that the proposed method can extract the benefits from the point collocation
methods (PCM) and standard finite element methods. Furthermore, the proposed method’s
final equations about elastic and electric field variables could be constructed from the
isoparametric mesh grid without any domain integration. It also can be found that the
system of equations for the heat transfer and thermal-elastic response of the piezoelectric
problems can be generated in a unified way. At the same time, the effect of thermal
expansion can be directly handled. Furthermore, in the proposed method, the pyroelectric
effects of the piezoelectric structure can be directly substituted into the system of equations
through the collocation technique without any domain integrations. This provides a
convenient technique for future research on the pyroelectric effects in actual engineering
applications.
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