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Abstract: Synthesized titanium oxide nanoparticles (TiO2-NPs) nanotubes were used for the dis-
infection of new emerging corona virus-19 (SARS-CoV-2) in this study. The newly synthesized
TiO2-NPs (nanotubes) were characterized by chemical spectroscopic analysis Fourier-transform
infrared spectroscopy and ultraviolet FT-IR and UV. The chemical purity and Zeta potential distri-
bution of the TiO2-NPs (nanotubes) were evaluated to confirm their nano-range, and their surface
morphology was determined by scanning electron microscopy (SEM), transmission electron mi-
croscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and energy dispersive
X-ray analysis (EDX). The antiviral activity of the TiO2-NPs (nanotubes) against SARS-CoV-2 was
evaluated using 10% (Dimethyl sulfoxide) DMSO and dist.H2O using a cytotoxicity assay and in-
hibitory concentration assay (to determine the cytotoxic half concentration CC50 and half maximal
inhibitory concentration IC50). The current results confirmed that TiO2-NPs exhibit strong anti-SARS-
CoV-2 activity at very low cytotoxic concentrations in vitro with a non-significant selectivity index
(CC50/IC50 ≤ 1). The obtained results indicate that TiO2-NPs and nanotubes have potent antiviral
activity at a very low concentrations (IC50 = 568.6 ng/mL), with a weak cytotoxic effect on the cellular
host (CC50 = 399.1 ng/mL). Thus, we highly recommend the use of TiO2-NPs (nanotubes) in vitro
and in wall coatings as a potent disinfectant to combat SARS-CoV-2 with little irritation of the cellular
hosts. Furthermore, we also recommend more and excessive prospective studies on the complexation
of natural active or natural compounds with TiO2-NPs (nanotubes) to minimize their cytotoxicity,
enhance their antiviral activity, and increase their inhibition of SARS-CoV-2.

Keywords: titanium oxide nanoparticles; COVID-19; SARS-CoV-2; HRTEM; SEM; TEM; cytotoxicity;
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide MTT assay; antiviral activity

1. Introduction

SARS-CoV-2 is considered a Ribonucleic acid “RNA” virus. RNA viruses cause
numerous diseases, particularly in mammals, and are considered major pathogens in many
diseases including Hepatitis C Virus (HCV), Ebola disease, SARS, influenza, measles and
retrovirus, and human immunodeficiency virus (HIV) [1]. CoV infections first affect the
upper respiratory tract of mammals. Coughing and fever are considered major symptoms
of CoV infection in humans, and breathing difficulty is also evident as a result of SARS-
CoV-2. COVID-19′s clinical symptoms include severe respiratory disorders caused by
SARS-CoV-2, such as excessive inflammation and oxidation [2].
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Viruses are small proteins containing genetic information. In the case of enveloped
viruses, viruses can spread via two essential routes: by direct cell contact or through the
aqueous environment [3].

SARS viruses appeared globally in 2002 and 2003. About 8000 people were infected
by SARS-CoV, resulting in about 800 deaths. The effects of SARS-CoV-2 differ from those
of other types of coronaviruses, and SARS-CoV-2 is spreading widely in humans. The
SARS-CoV-2 situation is considered to be a pandemic, and the virus has infected millions
of patients in the past year [4].

Emerging coronaviruses have drawn major global concern [5]. SARS-CoV-2 viruses
are generally spherical, with a diameter varying between 70 and 140 nm, and the surfaces
of SARS-CoV-2 viruses are covered in spikes [6]. SARS-CoV-2 can be transmitted from
infected persons by the exhalation of SARS-CoV-2 particles, which then attach to surfaces
that are touched by receiving persons [5].

Titanium oxide nanostructures (TiO2-NPs) have potent antibacterial and antiviral
properties, in addition to the ability to be used as drug carriers, and are widely used in
modern medicine [6,7]. In animal production, these NPs are useful as an alternative to
antibiotics for combating antibiotic-resistant bacteria and as growth promoters, the applica-
tion and consumption of which are targeted for reduction in many countries. Additionally,
metal NPs are applied to nutrient delivery, increasing meat production, increasing milk
and egg quality, and increasing the quality of sperm [8].

TiO2-NPs are widely used nanomaterials in a large number of applications, including
painting, skincare, and cosmetic products [9]. The global output of TiO2-NPs is expected
to be 2.5 million tons/year by 2025 [10]. This widespread use of TiO2-NPs leads to their
accumulation and high release in aquatic environments [10].

Although TiO2-NPs at very low concentrations are speculated to be non-toxic, toxicity
has been confirmed at high doses. TiO2-NPs have a strong ability to absorb other toxicants
due to their large surface area. Exposure to TiO2-NPs (nanostructures) is reported to inhibit
growth and cause oxidative stress, injury, and impairment in some animals [9].

The potency of nanoparticles as a new class of antibacterial and antiviral drug has been
considered; however, new studies of nanoparticles for combating bacterial pathogens, and
Gram-positive and Gram-negative bacteria, are needed [10–12]. Greener nanoparticle assay
combinations with standard drugs are of recent interest to clarify antimicrobial resistance of
free toxic ions [13–15]. Various metal oxide nanoparticles are also of importance in studies;
in particular, TiO2-NPs (nanostructures) are considered to be safe substance by the United
States Food and Drug Administration USFDA, and considered to be an element for the
synthesis of nucleic acid and hemopoiesis in tissues of the body.

The current study was designed to evaluate the antiviral activity of synthesized TiO2-
NPs against SARS-CoV-2 by the chemical characterization of TiO2 nanoparticles. We aimed
to assess the use of TiO2-NPs (nanostructures) as a sterilization compound against SARS-
CoV-2 infection, estimate their cytotoxicity, and review prospective studies to elevate their
antiviral activity.

2. Materials and Methods
2.1. Ethical Approval

The biological antiviral activity of TiO2-NPs (nanotubes) was performed at the center
of Scientific Excellence for Influenza Viruses, National Research Centre, 12311 Dokki,
Giza on (SARS-CoV-2) (hCoV-19/Egypt/NRC-03/2020 (Accession Number on GSAID:
EPI_ISL_430820). Graphical abstract for the experimental protocol and summarization of
the study as shown in (Scheme 1).
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Scheme 1. Graphical abstract for the experimental protocol and summarization of the study.

2.2. Synthesis of Titanium Oxide Nanostructure

TiO2-NPs were synthesized according to [16] in two steps. In the first, 0.2 M TiO2 was
synthesized by adding 0.80 g of TiO2 to 100 mL of H2O dist. and stirring for 2 h. Another
solution with 10.32 g of citrate of tri-sodium (50 mL H2O) was synthesized and added
dropwise to the first solution. This rate was maintained for about 2 h. Then, a precipitate
was produced in the solution; the precipitate was washed 3 times before centrifuging for
15 min. The precipitate was then dried in an oven at 1100 ◦C for about 24 h, yielding
TiO2-NP powder. A quantity of 20 mL HNO3 solution was then mixed with the remaining
samples and sonicated for 1 h, before the addition of 0.1 M of sodium tri citrate followed by
2 h sonication. The synthesized samples were then washed 4 times. TNTs were prepared
using a hydrothermal process described in [17]. Then, 5 g of TiO2-NPs prepared by the
sol-gel method were mixed with 500 mL of a 10 M NaOH aqueous solution, followed by
hydrothermal treatment at 150 ◦C (TNTs) in a Teflon-lined autoclave for 12 h. After the
hydrothermal reaction, the treated powders were washed thoroughly with distilled water
and 0.1 M HCl, and subsequently filtered and dried at 80 ◦C for 1 day. To achieve the
desired TNT size and crystallinity, the powders were calcined in air at 500 ◦C for 1 h [16,17].
The resulting TiO2-NPs were used to testing their activity against SARS-CoV-2.

2.3. Chemical Characterization of TiO2-Nanostructures

By using tools of analysis, the shape and size of TiO2-Nps were characterized using
images of scanning electron microscopy (Tokyo, Japan), transmition electron microscopy
(Tokyo, Japan) and high resolution transmition electron microscopy (Nakagyo-ku, Kyoto,
Japan). Ti and O analysis measured using EDX. Electronic spectrum of (Nakagyo-ku, Kyoto,
Japan) TiO2-nanostructure was analyzed using UV-Vis spectroscopy (Nakagyo-ku, Kyoto,
Japan). The IR analysis performed mixing TiO2-Nanostrucure powder with KBr. The X-ray
diffraction patterns were recorded on X‘Pert PRO PAN-analytical X-ray powder diffraction
(Nakagyo-ku, Kyoto, Japan), target copper with secondary monochromate.
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2.4. Zeta Potential Measurements

It is a technique for assessment of the particle surface charge in the solution, which
is directly related to the stability of the nanoparticle suspension. Zeta potential values
revealed the stability of the prepared nanoparticles and nanotubes. The pH effect on the
size of particles and the zeta potential distributions of TiO2-Nps (nanostructures) were
evaluated by using pH from 5 to 12 by drop wise addition of solutions of 0.1 M NaOH
or HCl.

2.5. Cytotoxicity Assay

To evaluate the cytotoxic half concentration (CC50) (maximal) of TiO2-NPs, stock
solutions of TiO2-NPs in 10% concentration of DMSO were prepared in “dist.H2O” and
diluted to the solutions of Dulbecco’s Modified Eagle Medium DMEM. Cytotoxic activity of
TiO2-NPs was evaluated and tested in VERO-E6 cells by using MTT assay. VERO-E6 cells
were completely seeded in (3 × 105 cells/mL, about 100 µL/each well) concentration,
then incubated for 24 h in CO2 (5%) at 37 ◦C for (24 h) later, VERO-E6 cells, the host for
SARS-CoV-2 were treated with different concentrations of TiO2-NPs in triplicates. Then,
the upper supernatants were completely discarded, and the monolayers were excessively
washed with sterile (PBS) buffer phosphate saline for (3 times) and addition of (20 µL of
TiO2-NPs) of MTT solution to 96 well-plates and incubated for about 4 h at 37 ◦C. The
formed crystals of formazan were dissolved with isopropanol treated with HCl. Their
absorbance was measured at λ max 540 nm with 620 nm as a reference λ by using a multi-
well plate reader (Nakagyo-ku, Kyoto, Japan). The % of cytotoxicity as compared to the
untreated cells was determined by the following Equation (1).

The % cytotoxicity against sample conc. was used to calculate the conc. which
exhibited 50% of the cellular cytotoxicity (CC50).

% cytotoxicity =
(absorbance of cells without treatment− absorbance of cells with treatment)× 100

absorbance of cells without treatment
(1)

2.6. Determination of Inhibitory Concentration 50% (IC50)

In plates (96-well) of the tissue cultures, 2.4 × 104 Vero-E6 cells were distributed in the
wells and incubated overnight at a humidified 37 ◦C incubator under 5% CO2. The cellular
monolayers were then washed twice with PBS “1×” and subjected to virus adsorption
(Accession Number: EPI_ISL_430820) for about 1 h at 37 ◦C. The cellular monolayers were
overlaid with approximately 100 µL of DMEM which containing different concentrations
of TiO2-NPs. After the incubation in CO2 incubator for about 72 h, VERO-E6 cells were
treated with paraformaldehyde for about 20 min and stained with staining of crystal violet
in dist.H2O for about 15 min at 37 ◦C. A total of 100 µL methanol (100%) was used for each
well for dissolving the crystal violet dye and the color optical intensity of TiO2-NPs was
measured at 570 nm by using plate reader (Anthos Zenyth 200rt, The Netherlands). IC50 of
TiO2-NPs (nanotubes) is needed to decrease cytopathic effect of SARS-CoV-2-induced by
about 50%, relative to control SRAS-CoV-2.

3. Results and Discussion
3.1. Infrared Spectrum of Synthesized TiO2-NPs

The spectrum of infrared for TiO2-NPs provides spectral peaks started from 551 to
419 cm−1; where the strong bands at 433 and 419 cm−1 can be attributed to the stretching
vibration mode of Ti-O (Figure 1) [18].
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Figure 1. FT-IR of synthesized TiO2-NPs.

3.2. Electronic Spectrum of TiO2-NPs

The UV–Vis absorption spectra of the synthesized TiO2-NPs (nanostructures) yielded
a broad absorption spectrum that appeared at a wavelength of 350 nm. This result is
consistent with those in the literature [19]. Figure 2 shows the electronic spectrum of
TiO2-NPs. The electronic spectrum of TiO2 is shown in Figure 3, after heating at 150 ◦C.
The peak refers to titanium oxide produced, strong peak resulted at wavelength of 350 nm.
This was due to the band intrinsic absorption gap for titanium oxide produced due to the
electronic transition from the valence band to the conduction band [20]. The band gap
energy (Eg) of titanium oxide is estimated according to Eg = hc/λ, where c is the light
speed, equal to 3 × 108 m/s; h is the constant plank, equal to 6.626 × 10−34 Js; and λ is the
wavelength (m) [21,22]. The energy of band gap is equal to 3.26 eV.
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3.3. Zeta Potential and Size Distribution Intensity

The diameter of TiO2-NPs (nanostructures) and Zeta potential in dist.H2O at pH value
of ~7.36 determined by ultrasonication using Dynamic light scattering DLS of prepared
dispersions using 0.2 mg of TiO2-NPs in 10 mL of H2O deionized. TiO2-NPs (nanostruc-
tures) particles’ diameter average of TiO2-NPs was measured to be 470.6 nm with zeta
potential of −5.92 mV and Polydispersity index pdI = 0.364. Zeta potential and size of
particles TiO2-NPs were determined (Figure 3a,b) using pH 6−12 and the zeta potential
decreases while the size of particles increases by increasing the pH. Measurements of
TiO2-NPs (nanostructures) surface area attributed to at various TiO2-NPs (nanostructures)
burning temperatures occurred by N2-adsorption of N2 at 77 K. As temperature of calci-
nation elevated from (29 m2·g−1) for 82 ± 10 nm TiO2-NPs (nanostructures) at 100 ◦C to
(7 m2·g−1) for 265 ± 8 nm at 600 ◦C surface area of TiO2-NPs (nanostructures) decreased
which is convenient with a previous study [20].

3.4. Zeta Size Measurements

Table 1 shows the mean particle size or the average dynamic sizes of the TiO2-NPs
(nanostructures) were found 953.6 d·nm with pdI equal to 0.526.

Table 1. Zeta potential and particles size analysis.

Aspect PdI Z-Average (d·nm) Zeta Potential (mV)

Value 0.526 953.6 −1.02
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3.5. Scanning Electron Microscope (SEM)

Figure 4a,b represents a scanning electron microscopy (SEM) image of TiO2-NPs
(nanostructures). The morphology of the TiO2-NPs (nanotubes) was examined, and the
size of the grains was nearly uniform. The morphology surfaces of the prepared TiO2-
NPs (nanostructures) powders were measured using SEM analytical techniques, such as
wide plates and nodes with homogenously sized distributions for TiO2-NPs. Figure 4b
shows an FE-SEM image of the sample anatase TiO2-NPs nanotubes, which were grown at
150 ◦C for 12 h, and exhibit a pure tube-like structure. The length of the TiO2-NPs nanotubes
is several micrometers, their diameter is approximately 50 to 100 nm, and they are very
uniform, relatively clean, and smooth-surfaced. Figure 3 shows the surface morphology
of the electrode film on the FTO glass. Chemical composition analysis by EDX confirmed
the Ti and O peaks in the TiO2-NPs (nanostructures). The sample elemental analysis
resulted in values of 78% for Ti and 20% for O, which confirms the high purity of TiO2-NPs
(nanotubes) [21,22].
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3.6. Transmission Electron Microscope (TEM) and High Resolution Transmittance Electron
Micrographs (HRTEM) of TiO2-NPs

The morphology of the TiO2-NPs (nanostructures) sample was determined by using
TEM. Figure 5a,b shows a typical TEM image of the TiO2-NPs. The size and morphology
of the TiO2-NPs (nanostructures) were estimated using HRTEM micrographs. TiO2-NP
nanoparticles were found in the 40–60 nm range with a spherical to polygonal medium.
HRTEM Figure 6a,b showed a lattice space of 0.22 for TiO2 planes.
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3.7. XRD of TiO2-Nanotubes

XRD for TiO2-NPs (nanostructures) which provides the sol-gel pattern at 450 ◦C,
confirming the presence of anatase and rutile phases’ mixture. Prominent anatase peaks
and prominent rutile peaks of TiO2-NPs (nanostructures) clearly presented using XRD
pattern confirming the nanoparticle structure. The patterns of the TiO2 nanotube films
prepared at a hydrothermal temperature of 180 ◦C for 14 h are shown in Figure 7. By the
hydrothermal method, TiO2 nanoparticles were observed to be transformed into the anatase
phase. From XRD patterns, the TiO2-NPs (nanostructures) possess crystallized highly
anatase structure with high degree of purity. The rutile peaks for TiO2-NPs nanotubes,
refers to complete transformation to anatase.
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3.8. Cytotoxicity of TiO2-NPs and Inhibition Activity against SARS-CoV-2

TiO2-NPs showed potent antiviral activity against SARS-CoV-2 in very low concen-
tration of 568.6 ng/mL. The MTT assay was used to evaluate potential cell cytotoxicity of
TiO2-NPs. The results showed that 399.1 ng/mL of TiO2-NPs significantly reduced the
viability of VERO-E6 cells (Figure 8).

3.9. Anti-Viral Activity and Cytotoxicity of Titanium Oxide Nanoparticles and Inhibition Activity
Against SARS-CoV-2

TiO2-NPs (nanotubes) showed potent antiviral activity against SARS-CoV-2 in very
low concentration of 568.6 ng/mL, by using MTT assay to elucidate the potential cell cyto-
toxicity of TiO2-NPs. The results showed that 399.1 ng/mL of TiO2-NPs (nanostructures)
significantly reduced the viability of VERO-E6 cells as shown in (Figure 8) and images
of the host cells “Vero-E6” cell after the incubation with SARS-CoV-2 (after the stage of
infection) which showed a high potent anti-viral activity of TiO2-NPs against SARS-Cov-2,
the cells’ sheet that was treated with TiO2-NPs showing enlarged holes and patches around
SRAS-CoV-2 as shown in (Figure 8A–C).
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Figure 8. (A–C) Images for Vero-E6 host cells (After infection) after the incubation with SARS-
CoV-2 and treated with TiO2-NPs which showed potent anti-viral activity of TiO2-NPs against
SARS–Cov-2, the sheet of cells treated with TiO2-NPs showing high enlarged patches around SRAS-
CoV-2 cells, thus demonstrating the ability of TiO2-NPs (nanostructures) to disinfect SARS-CoV-2 and
offer a high level of inhibition to its growth. Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
(hCoV-19/Egypt/NRC-03/2020).

Differences between zinc oxide nanoparticles (ZnO-NPs) inhibition activity [23–27]
on SARS-CoV-2 cells as cited in our previous work [28] and inhibition activity of titanium
oxide nanoparticles and its nanotubes (TiO2-NPs) as shown in Table 2 clarified that TiO2-
NPs has more potent antiviral activity against SARS-CoV-2 than ZnO-NPs, and showed a
higher CC50/IC50 ratio in TiO2-NPs (0.7) than ZnO-NPS.

Table 2. Comparison between inhibition activity for SARS-CoV-2 (differences between antiviral
activity of both nanoparticles against SARS-CoV-2).

Aspect Zinc Oxide Nanoparticles Titanium Oxide Nanoparticles

CC50 292.2 ng/mL [28] 399.1 ng/mL

IC50 526 ng/mL [28] 568.6 ng/mL

CC50/IC50 ratio 0.55 0.70

Inhibition activity of
SARS-CoV-2 (Antiviral

activity)

ZnO-Nps < TiO2-NPs (Titanium oxide nanoparticles possess antiviral
activity in concentration 586.6 ng/mL more than Zinc oxide

nanoparticles concentration 526 ng/mL, this means that ZnO-NPs
induced anti-viral activity in concentration less than TiO2-NPs but
TiO2-NPs induced less cytotoxicity than ZnO-NPs and this means
that TiO2-NPs has antiviral activity against SARS-CoV-2 and it is

safer than ZnO-NPs with less cytotoxicity).
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4. Discussion

Viral prevention remains a major objective for the maintenance of human health, and
the essential concept is the inhibition of viral replication. Current antivirals have been
weakened due to the elevation of drug resistance, particularly during the COVID-19 pan-
demic [23]. Thus, the release of new effective anti-COVID-19 treatments is
urgently needed.

Nanoparticles provide significant benefits because they are highly effective as antiviral
agents, even in low concentrations. In addition, nanoparticles have vital characteristics
that ensure their suitability for different types of coating [24–27].

The present study reported that TiO2-NPs (nanostructures) have potent anti-SARS-
CoV-2 activity with very low cytotoxicity, as indicated by their SI value (IC50/CC50 ≤ 1).
This finding is consistent with [16], who revealed that TiO2-NPs (nanostructures) have
stronger antiviral activity and low cytotoxicity when coated with Polyethylene Glycated
-NPs, compared to TiO2-NPs alone. Results of the current study thus highlight the use of
TiO2-NPs as a disinfecting agent against SARS-CoV-2 with low cytotoxicity. Similarly, we
suggest using TiO2-NPs (nanostructures) coated with Polyethylene Glycated (polyethylene
Glycated), which plays a major role in enhancing and elevating the antiviral activity against
SARS-CoV-2 virus, and may reduce the cellular cytotoxicity of TiO2-NPs (nanostructures)
for the host cells.

Additional confirmation of our findings and suggestion to coat TiO2-NPs (nanotubes)
was provided in our previous research [28]. A recent explanation is that TiO2-NPs produce
Ti+2 ions and thus produce a large quantity of reactive oxygen species (ROS); these free
radicals can damage proteins, lipids, carbohydrates, and DNA, and eventually lead to
cellular apoptosis [29,30]. Therefore, we suggest coating TiO2-NPs (nanostructures) with
polyethylene glycol or natural active compounds that can provide strong anti-SARS-CoV-
2 activity to reduce cytotoxicity and prevent the release of reactive oxygen by the masking
of TiO2-NPs (nanostructures).

Nanoscience has recently identified an essential vital role of nanoparticle agents due
to their direct inhibition of a wide range of microbes. Nanoparticles such as TiO2-NPs
(nanotubes) are considered to be effective agents for carrying a large number of drugs
and vaccines. Additionally, the size of nanomaterials accelerates their drug delivery
involvement due to their surface functions. As a result, nanoparticles have the capability
to co-transport drugs and numerous agents [31].

The relationship between SARS-CoV-2A and this vital aspect of nanomaterials is
evidence of the competitive ability of the host with a viral binding surface cellular recep-
tor because receptors of ACE2 are essential in the action of SARS-CoV-2 entering host
cells [32]. Hence, blocking of ACE2 receptors could help in fighting SARS-CoV-2 [33].
Therefore, preventing SARS-CoV-2 infection in host cells plays an important role in com-
batting viral infection. To prevent viruses entering the human body, it is important to
prepare nano-formulas using recently developed nanotechnology to prevent viral entry
via ACE2 receptors [34]. Additionally, the catalytic activity and stability of ACE can be
enhanced using nanoparticles to inhibit entry of SARS-CoV-2 [34,35]. Therefore, if TiO2-
NPs (nanotubes) are used in coatings for hospitals walls, the spread of SARS-CoV-2 may
be significantly reduced. Thus, we proposed a hypothetical antiviral mechanism for TiO2-
NPs [36–39], including ACE2, which is able to block the SARS-CoV-2 entry into the cellular
host by inhibiting its attachment to the ACE2 receptors [40].

The current finding broadly supports our previous work [28], which revealed that
metal nanoparticles, ZnO-NPs, demonstrated significant activity against different types of
microorganisms, including most viruses. The reported mechanism was the same as that
shown in the current study; however, TiO2-NPs revealed more antiviral activity with less
cytotoxicity than ZnO-NPs.

As indicated in previous studies [17], TiO2-NPs (nanostructures) have attracted in-
creasing attention as an antimicrobial agent. TiO2-NPs (nanostructures) have the ability
to bind to the bacterial cellular wall and can enter the cellular membrane via a significant
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number of modifications, resulting in bacterial cellular death [41]. Another mechanism is
the development of “pits” at the cellular surface, resulting in the accumulation of TiO2-
NPs (nanostructures) [42], in turn leading to the accumulation of free radicals that cause
cellular death [43,44]. Due to the global COVID-19 pandemic, the transmission of the
SARS-CoV-2 virus largely occurs by direct viral attachment to cellular hosts. TiO2 will be
of significant benefit by inducing the triggering of free radicals on the viral cell surface
and thus causing the death of the virus. This concept confirms our findings relating to the
anti-SARS-CoV-2 and inhibition activities in very low concentrations, and is considered to
be a promising result.

The results of the current study are consistent with the findings of [45], who demon-
strated that TiO2-NPs (nanostructures) have a large number of potential applications due
to their high chemical stability, wide photoactivity, high pH range, and the presence of
numerous active adsorption sites on their surface, which may help in absorbing pollu-
tants. Due to their high photoactivity, TiO2-NPs (nanostructures) are widely applied to the
removal of water pollutants in water treatment.

TiO2 has a wide range of antimicrobial activity, as shown in several studies using
TiO2 against different types of microorganisms, such as viruses [46,47]. The efficiency of
TiO2-NPs (nanotubes) is related to their surface reactions, surface morphology, and surface
size ratio [48]. Researchers have focused on TiO2 synthesis with new features that make
it suitable for a large number of green environmental applications, such as the effective
control of viral infections. Negatively charged TiO2-NPs (nanostructures) can block viruses
and inhibit their attachment to host cells.

It was somewhat unexpected to obtain data that confirm the anti-COVID-19 activity
of TiO2-NPs (nanotubes) with low cytotoxicity. These findings verify the anti-SARS-CoV-
2 activity of TiO2-NPs at a low concentration (568.6 ng/mL) with low cytotoxicity, which
can be alleviated by coating TiO2-NPs (nanotubes) with natural active compounds or
polymeric compounds, such as PEGylated. These coatings may reduce the diameter of the
particles and moderate the triggering of cytotoxic effects of ROS on the cellular host, thus
achieving effective anti-SARS-CoV-2 action in low concentrations. These findings reveal
the potential for the use of TiO2-NPs (nanostructures) to combat COVID-19.

The use of metal oxides in nanotechnology represents a new strategy for combatting
microorganisms, owing to direct antiviral activity or enhancing an organism’s resistance to
the pathogen. In this study, the ability of TiO2-NPs (nanostructures) to inhibit SARS-CoV-
2 and, thus, their antiviral activity were tested. The results showed a significant decline in
virus activity. In addition, our results also showed the high efficacy of TiO2-NPs nanotubes.

Previous studies showed that hepatic enzymes were elevated in experiments on male
rats, indicating that damage had occurred in the plasma membrane structure due to the
presence of reactive oxygen species (ROS) produced during the oxidative stress. These
results are in agreement with El-Shenawy et al. [49] who found that the elevation of hepatic
enzymes could be due to oxidative stress induced by TiO2 nanostructures, which caused an
imbalance in the permeability of the plasma membrane. Elevated levels of serum hepatic
enzymes are indicative of cellular leakage and the loss of the functional integrity of cell
membranes in tissues, which, in turn, signify tissue injury [49].

Different metal oxide nanotubes have been developed using different methodologies,
precursors, and fibers. TiO2-NPs nanotubes have been obtained using different tech-
niques [23–25]. However, no development has been carried out with antiviral purposes,
particularly against the SARS-CoV-2 virus.

TiO2 is one of the most widely applied nanomaterials and is extensively used in
food applications [50]. TiO2-NPs nanostructures have been previously developed with
antimicrobial goals. TiO2 nanotubes have been shown to reduce E. coli and S. aureus.
Recently, Jian et al. developed TiO2 and silver loaded-TiO2 antibacterial agents using the
sol-assay method with minimal inhibition concentration [51,52].

TiO2-NPs (nanostructures) have been reported to induce the excessive production of
free radicals and thus cause oxidative stress and a series of inflammatory processes and
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cytotoxicity [53]. These findings are in accordance with the current findings, which showed
that prepared TiO2-NPs nanotubes induced excessive free radicals, resulting in oxidative
stress that may induce cytotoxicity in the context of SARS-CoV-2.

Despite the promising properties of TiO2-NPs (nanostructures), research is underway
to change the NPs’ surfaces’ characteristics in order to elevate the efficiency of reactive
oxygen species generation and to improve its chemical properties. Surface-modified TiO2-
NPs can make it to be doped with various metal ions [54] or combined with various
dyes [55,56] and this will very helpful for coatings of walls with this new synthesized nano-
tubes of TiO2-NPs (nanostructures) that can give sterilization option for coatings. Surface
complexes that enhancing TiO2 as photosensitizers include transition metals. Inorganic
ligands, such as CN−, F−, PO4

3− can also link surface titanium. If the molecule absorbs
a photon with energy higher than its value, it passes to an excited state and can trigger
more electrons that are negatively charged in the conduction band, leaving positively
charged holes in the valence band. Free ē may attack surrounding O2 and H2O molecules
to form reactive oxygen species, including superoxide (O2−), (H2O2), and hydroxyl radical
(•OH) [57]. These forms of superoxides are highly unstable in the biological systems and
react with the cellular components causing necrotic cell death or apoptotic. It has also
been proven that TiO2-NPs (nanostructures) inhibit bacterial multidrug resistance [36].
Human health threats from SARS viruses have been present over time. Uncontrolled bat,
avian mouse and human SARS-CoV- dispersal can impact both global public health and
economic stability [58]. All these finding confirmed the obtained results and recommend
using synthesized (TiO2-NPS) (nanostructures) as a sterilization agent against SARS-CoV-2.

5. Conclusions

TiO2-NPs (nanostructures) were fully chemically characterized using different spec-
troscopic tools. The synthesized titanium nanotubes have a potent antiviral activity against
SARS-CoV-2 at low concentration and can trigger many free radicals that may cause ox-
idative stress to SARS-CoV-2, which is a very promising result in combating SARS-CoV-2.
Thus, we recommend more prospective studies applied to TiO2-NPs immobilization with
other active compounds that may reduce this cytotoxicity and enhance its anti-SARS-CoV-
2 activity.
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