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Abstract: The 3D Carreau fluid flow through a porous and stretching (shrinking) sheet is examined
analytically by taking into account the effects of mass transfer, thermal radiation, and Hall current.
The model equations, which consist of coupled partial differential equations (PDEs), are simplified
to ordinary differential equations (ODEs) through appropriate similarity relations. The analytical
procedure of HAM (homotopy analysis method) is employed to solve the coupled set of ODEs. The
functional dependence of the hydromagnetic 3D Carreau fluid flow on the pertinent parameters
are displayed through various plots. It is found that the x-component of velocity gradient ( f

′
(η))

enhances with the higher values of the Hall and shrinking parameters (m, $), while it reduces with
magnetic parameter and Weissenberg number (M, We). The y-component of fluid velocity (g(η))
rises with the augmenting values of m and M, while it drops with the augmenting viscous nature
of the Carreau fluid associated with the varying Weissenberg number. The fluid temperature θ(η)

enhances with the increasing values of radiation parameter (Rd) and Dufour number (Du), while it
drops with the rising Prandtl number (Pr). The concentration field (φ(η)) augments with the rising
Soret number (Sr) while drops with the augmenting Schmidt number (Sc). The variation of the
skin friction coefficients (C f x and C f z), Nusselt number (Nux) and Sherwood number (Shx) with
changing values of these governing parameters are described through different tables. The present
and previous published results agreement validates the applied analytical procedure.

Keywords: thermal radiations; magnetic field; Carreau fluid; stretching/shrinking surface; Hall
effect; nonlinear radiations; HAM

1. Introduction

The thermal energy transportation and the fluid boundary layer motion over stretching
(shrinking) sheets are the areas of immense importance due to its broad range industrial and
technological applications. Some of the applications consist of: growing crystals structures,
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plastic sheets preparation, manufacturing of electronic chips and materials, paper industry,
cooling process, and so on [1,2]. The basic work in this regard was started by Crane [3].
Andersson et al. [4], and Vajravelu [5] discussed the different aspects of fluids flowing
over stretching surfaces. It is important to mention here that the gradients’ existence are
essential for the growth of various fluxes and flows. In fluids, there are two important
effects named as Soret and Dufor effects. In Soret effect, the existence of temperature
gradient results in thermal diffusion which governs the thermal energy flow. The mass
transfer is mainly governed by Dufor effect, which gives rise to the diffusion-thermo effect.
These effects have an influential role in governing the natural convective flow, which is
one of the modes by which thermal energy can transfer due to the aggregate motion of
the heated fluid. The term cross diffusion refers to the process in which the existence of
concentration gradient of one specie develops the flux of the other. This means that the cross
diffusion is associated with both thermal and mass diffusion. The heat energy exchangers,
steel processing, cooling of nuclear power plant, etc. are the well-known technological
sectors in which the convection thermal energy transportation plays an important role. The
different aspects during the heat energy flow over a 3D exponentially stretching surface are
investigated by Liu et al. [6]. Hayat et al. [7] examined the boundary layer Carreau fluid
motion and obtained that the presence of suction depreciates (enhances) the Carreau fluid
speed (boundary layer thickness). Further detail analysis about the boundary layer flow
can be accessed in refs [8–10].

The Magneto-Hydro-dynamics (MHD) studies the evolution of the macroscopic behav-
iors of fluids in the ambient magnetic field presence. The MHD flow finds its applications in
Astrophysics and Astronomy, nuclear reactors cooling, engineering and technology, Plasma
Physics, etc. Nazar et al. [11] investigated the thermal energy transformation during the
magnetized flow over a vertical and stretchable surface. During their investigation, they
found that the enhancing B-field magnitude reduces the coefficient of skin friction and
the thermal energy loss. The analytic investigation of heat energy transfer during the 3D
MHD migration over a stretchable plate is carried out by Xu et al. [12] using the series
solution approach. The MHD stagnation flow toward an extendable surface is examined
by Ishak et al. [13]. A more recent study on stagnation point flow can be found in ref-
erences [14,15]. The heat energy transfer through convection during the magnetized 3D
motion on an extendable surface is worked out by Vajravelu et al. [16]. Pop and Na [17]
examined the impacts of B-field on the fluid flowing through a porous and stretchable
surface. The recent developments on the magnetized boundary-layer motion can be found
in references [18–21].

The thermal energy radiations and its analysis are extremely important in the solar
energy, fission reactors, engines, propulsion equipment for speedy aircrafts, and various
chemical phenomena operating at extreme temperatures. Gnaneswara Reddy [22] studied
the magnetized nanofluid motion by incorporating the impact of thermal energy radiation.
The mixed convection MHD fluid flow through a perforated enclosure is examined by
Gnaneswara Reddy [23]. He investigated the effects produced due to chemical reaction,
Ohmic dissipation, and heat energy source. Emad [24] investigated the different impacts
that arose due to the inclusion of thermal radiations in a conducting fluid flow. The
influence of thermal radiations on the thermal energy transfer through convection in
an electrically conducting fluid of varying viscosity moving over an extending surface
is worked out by Abo-Eldahab and Elgendy [25]. Gnaneswara Reddy [26] investigated
the various impacts arose due to Joule-heating, thermo-phoresis and viscous nature of a
magnetized fluid flowing over an isothermal, perforated and inclined surface. A more
recent and detailed investigation of the MHD flow can be found in references [27–30].
Yulin et al. [31] numerically studied the natural convection flow of nanofluid over inclined
enclosure. They investigated the different impacts due to constant heat energy source and
temperature. Zhe et al. [32] performed an experimental analysis of water, ethylene glycol,
and copper oxides mixture by employing statistical techniques for the multi-walled-carbon-
nanotubes (MWCNTs). Shah et al. [33–35] analytically scrutinized the micropolar fluid
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in different frames. Hayat et al. [36] analyzed the Cu-water MHD nanofluids flow in the
rotating disks. Dat et al. [37] have recently studied numerically the γ−AlOOH nanoliquid
by using different shaped nanoparticles within a wavy container. The recent studies about
the nanaofluids along with different advantages can be studied in refs. [38–46].

Fluids are categorized broadly as non-Newtonian and Newtonian. The Newton
viscosity relation which shows that the shear stress and strain are directly related, is ap-
plicable in the Newtonian fluid. The non-Newtonian fluid can not be described by this
simple direct relation between stress and strain. The non-Newtonian fluids, for example
manufactured and genetic liquid organisms, blood, polymers, liquids, etc., have central
importance in this advance technological world. The non-Newtonian fluids are very
hard to be analytically and numerically treated, as compared to the Newtonian fluids,
due to its nonlinear behavior. The credit goes to Carreau [47], who developed a relation
that describes both, the viscoelastic and nonlinear properties of of such type of complex
fluids. Ali and Hayat [48] worked out the Carreau fluid peristaltic motion through an
asymmetrical enclosure. Goodarzi et al. [49] analyzed the simultaneous impact of slip
and temperature jump over the Non-Newtoinian nanofluid (alumina + carboxy-methyl
cellulose) motion through microtube, and investigated the impacts of pertinent param-
eters over the nanofluid state variables. Maleki et al. [50] analyzed the impacts of heat
generation (absorption), suction (injection), nanoparticles type (volume fraction), ther-
mal and velocity slip parameter, and radiation on the temperature and velocity fields of
four different types of nanofluids moving over a perforated flat surface. Hayat et al. [51]
studied the impacts of induced magnetic field on the flow of Carreau fluid. Tshehla [52]
examined the Carreau fluid migration past an inclined surface. Elahi et al. [53] ana-
lyzed the Carreau fluid 3D migration from a duct. Gnaneswara Reddy et al. [54] studied
the effects due to Ohmic heating during the MHD viscous nanofluid motion through a
nonlinear, permeable, and extending surface. Jiaqiang et al. [55] employed the wetting
models in order to explain the working procedures of different surfaces found in nature.
Khan et al. [56,57] employed the fractional model to Casson and Brinkman types fluids.
The impacts produced due to the incorporation of thermal radiations in the presence
of suction (injection) on the MHD flow of fluids are investigated by researchers [58–60].
Maleki et al. [61] analyzed the impact of heat generation (absorption) and viscous dissipa-
tion on the heat transfer during the non-Newtonian pseudoplastic nanomaterial motion
over a perforated flate. Gheynani et al. [62] examined the turbulent motion of a non-
Newtonian Carboxymethyl cellulose copper oxide nanofluid in a 3D microtube by investi-
gating the impacts of nanoparticle concentration and diameter over the temperature and
velocity fields. Maleki et al. [63] studied the heat transfer characteristics of pseudo-plastic
non-Newtonian nanofluid motion over a permeable surface in the presence of suction and
injection. The system of governing PDEs is converted to ODEs by using similarity solution
technique, and then solved numerically by employing Runge–Kutta–Fehlberg fourth–fifth
order (RKF45) method. The numerical investigation of (water + alumina) nanofluid mixed
flow through a 2D square cavity having porous medium is carried out by Nazari et al. [64]
employing a Fortran Code.

The phenomenon in which the application of an external magnetic-field to a conduct-
ing fluid produces potential difference, is termed the Hall effect. The impacts due to the
inclusion of Hall effect are examined by various researchers due to its relevance with a
variety of technological and industrial applications. Biswal and Sahoo [65] investigated
the impacts of Hall current on the magnetized fluid motion over a vertical, permeable and
oscillating surface. Raju et al. [66] worked out the Hall current impacts on the MHD flow
over an oscillatory surface having porous upper wall. Datta and Janna [67] analyzed the
magnetized and oscillatory fluid motion on a flat surface in the presence of Hall current.
Aboeldahab and Elbarbary [68] analyzed the impacts due to Hall current during the MHD
fluid dynamics through a semi-infinite and perpendicular plate. Khan et al. [69] used the
finite element method for the Newtonian fluid past a semi-circular cylinder. The variation
in temperature and mass diffusion in the MHD fluid flow considering the inclusion of Hall
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effect is examined by Rajput and Kanaujia [70]. Further studies on similar footings are per-
formed by Shah et al. [71–73] employing semi-analytical calculations. The magnetized and
peristaltic fluid dynamics of Carreau–Yasuda fluid through a channel is numerically investi-
gated by Abbasi et al. [74] taking into account the Hall effect impact. Abdeljawad et al. [74]
investigated the 3D magnetite Carreau fluid migration through a surface of parboloid of
revolution by incorporating mass transfer and thermal radiations. The impacts of Hall
current and cross diffusion on the two dimensional (2D) MHD Carreau fluid flow through
a perforated and stretchable (shrinkable) surface is recently investigated in [75].

Here, we extend the previous work [75] to 3-dimensional space in order to analyze
what actually happens in the most general situation. The novelty of the current investiga-
tion is to examine analytically the thermal energy and mass transfer properties of the MHD
Carreau fluid 3D motion through a perforated stretching sheet by considering the effects
of Hall current and cross diffusion. This research work has potential applications in prob-
lems involving motion of the non-Newtonian fluid over perforated stretching (shrinking)
surfaces. The research work carried out is organized in the following manner:

The geometrical description and model equations of the current investigation are
presented in Section 2. The obtained results are discussed and explained by plotting
various graphs in Section 3. The comparison and the computation of engineering-based
related quantities are discussed through different tables in Section 4. The work is finally
concluded in Section 5.

2. Mathematical Modeling

The 3D magnetized Carreau fluid is considered along a linear stretching and contract-
ing permeable sheet by incorporating the impacts of thermal radiations and Hall current.
The flow is assumed to be incompressible, laminar, steady, and electrically conducting.
The external magnetic field B0 is applied in the y-direction. The thermal energy and mass
diffusion impacts due to the existence of temperature gradient and concentration gradient
are considered as well. The geometry is chosen in such a way that the sheet velocities along
x-and y−axis are respectively uw and vw, whereas the flow is restricted to the positive
z−axis, as can be seen in Figure 1. Furthermore, convective heat energy flow and mass
transfer are considered on the sheet, such that the assumed liquid below the sheet has
temperature Tf and concentration C f in order to make them consistent with the heat and
mass conversion coefficients h1 and h2.

Figure 1. Geometrical description of the study.

The Carreau fluid flow is governed by the relation [47,76]:

η =
[
η∞ + (η0 − η∞)

(
1 + (λγ̇)2

) n−1
2
]
, (1)
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where η0 (η∞) denotes the zero (infinite) shear-rate viscosity, n is the index of power law, λ
denotes the time constant of the material. The symbol γ̇ is given by [76]:

γ̇ =

√
1
2 ∑

i
∑

j
γ̇ijγ̇ji =

√
1
2 ∏, (2)

where ∏ is the strain-rate tensor second invariant. Hall effect arises when magnetic field
is applied externally to the conducting fluid which can modify the flow pattern. This
phenomenon can be studied with the help of Ohm’s law [75,77] given as:

~j +
ωete

B0
× (~j× ~B) +

σPe

ene
= σ(~V × ~B + ~E), (3)

where ~j is the current density, ωe (te) is the angular frequency (collision time interval)
of electrons, σ denotes the conductivity, ~E (~B) is the electric field (magnetic field), ne( e)
is the number density (charge) of electrons, and Pe is the pressure of electrons. The y−
component of~j is zero due to the application of external magnetic field in this direction.
The x and z−components of~j are expressed in the chosen geometry as:

jx =
σB2

0(mu− w)

1 + m2 , (4)

jz =
σB2

0(mw + u)
1 + m2 , (5)

where m = ωete is the Hall parameter. Using Equations (1)–(5) at η∞ = 0, the Carreau fluid
equations are written respectively as [75]:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (6)

u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z
− ν

∂2u
∂y2

(
1 +

(n− 1
2

)
λ2
(∂u

∂y

)2)
= ν(n− 1)λ2 ∂2u

∂y2 (
∂u
∂y

)2 ×
(

1 + (
n− 3

2
)λ2(

∂u
∂y

)2
)

−
σB2

0(mw + u)
ρ(1 + m2)

− νu
k

,
(7)

u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z
− ν

∂2w
∂y2

(
1 +

(n− 1
2

)
λ2
(∂w

∂y

)2)
= ν(n− 1)λ2 ∂2w

∂y2 (
∂w
∂y

)2 ×
(

1 + (
n− 3

2
)λ2(

∂w
∂y

)2
)

+
σB2

0(mu− w)

ρ(1 + m2)
− νw

k
,

(8)

u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

= − 1
ρcp

∂qr

∂y
+ α

∂2T
∂y2 +

DmKT
cscp

∂2C
∂y2 , (9)

u
∂C
∂x

+ v
∂C
∂y

+ w
∂C
∂z

=
DmKT

Tm

∂2T
∂y2 + Dm

∂2C
∂y2 . (10)

The system boundary restrictions are the following:

u = uw(x) + L1
∂u
∂y

, v = vw,
∂T
∂y

= −h1

k
(Tf − T),

∂T
∂y

= − h2

Dm
(C f − C), w = 0 at y = 0,

u→ 0, w→ 0, T → T∞, C → C∞ as y→ ∞,
(11)

where B0 is the magnetic field magnitude, T (ρ) is the Carreau fluid temperature (den-
sity), k (cs) is the Carreau fluid thermal conductivity (susceptibility of concentration),
uw(x) = ax (v) is the fluid velocity x (y) component, KT is the thermal diffusion ratio, C
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is the concentration of the fluid, L1 is the factor of the velocity slip, and Dm is the mass
diffusivity. Furthermore, vw is the mass flow velocity, and C f (Tf ) is the convective fluid
concentration (temperature).

The flux of the radiations qr is [75,78]:

∂qr

∂y
= −

16σsT3
0

3k1

∂2T
∂y2 , (12)

where σs and k1 are respectively the Stefan constant and average absorption coefficient.
Applying Equation (12) to Equation (9), we will get the

u
∂T
∂x

+ v
∂T
∂y
− DmKT

cscp

∂2C
∂y2 =

∂

∂y

[(
α +

16σs

3k1
T3

∞

)∂T
∂y

]
. (13)

Using the similarity variables as below [75]:

ψ =
√

av f (η)x, η =

√
a
v

y, T − T∞ = (Tf − T∞)θ(η), w = axg(η),

C− C∞ = (C f − C∞)φ(η), T − T∞ = T∞(θw − 1)θ, θw =
Tf

T∞
.

(14)

Here, a is constant. The symbols f , θ, and φ represent the non-dimensional fluid
velocity, temperature, and concentration, respectively. The symbol ψ denotes the stream
function satisfying u = ∂ψ

∂y and v = − ∂ψ
∂x .

Applying these transformations in Equations (6), (7), (10), (13), and (14), we obtain

f ′′′
[
1 +

(n− 1
2

)
We f ′′2

]
+ 2 f ′′′

[(n− 1
2

)
We f ′′2

][
1 +

(n− 3
2

)
We f ′′2

]
+ f f ′′ − f ′2 − M

1 + m2 ( f ′ + mg)− r f ′ = 0,
(15)

g′′
[
1 +

(n− 1
2

)
Weg′2

]
+ 2g′′

[(n− 1
2

)
Weg′2

][
1 +

(n− 3
2

)
Weg′2

]
− g f ′ + g′ f +

M
1 + m2 (m f ′ − g) + rg = 0,

(16)

θ′′
(

1 + Rd(1 + (θw − 1)θ)3
)
+
(

3(θw − 1)θ′2(1 + θw − 1)θ)2
)
+ Pr f θ′ + PrDuφ′′ = 0, (17)

φ′′ + Sc f φ′ + ScSrθ′′ = 0. (18)

The boundary restrictions are transformed as:

f = $, f ′ = 1 + χ1 f (0)′′, g = 0, θ′ = −χ2(1− θ(0)), g = 0, φ′ = −χ3(1− φ(0)) at η = 0,

f ′ → 0, θ → 0, φ→ 0, g→ 0 as η → ∞.
(19)

Here, the symbol We represents the Weissenberg number, $ shows the mass transfer
parameter which describes suction ($ > 0) and injection ($ < 0). The symbol Rd denotes
the radiation parameter, whereas Pr, Sc, and Du are respectively the Prandtl, Soret, and
Dufour numbers. The symbols χ2, χ3 are the thermal and concentration profiles slip
parameters, respectively. These parameters have the following definitions:

Sc =
ν

Dm
, Pr =

ν

a
, Rd =

16σ ∗ T3
∞

3kke
, Du =

DmKT(C f − C∞)

cscpν(Tf − T∞)
, r = −−ν

ak
,

We =
λ2l2a3

ν
, χ1 = L

√
a
v

, χ2 =
h1

k

√
a
v

, χ3 =
h2

Dm

√
a
v

, $ = − vw√
aν

, M =
σB2

0
ρa

(20)
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The basic physical quantities of engineering interest (Sherwood and Nusselt numbers,
and the skin frictions (along x and z axis) are defined by [79]:

Sh(Rex)
−1/2 = −φ(0)′, (21)

Nu(Rex)
−1/2 = −

(
1 +

1
Rd

θ(w)(0)
3
)

θ(0)′, (22)

C f x(Rex)
1/2 =

f ′′(0)
2

(
2 + We(n− 1)( f ′′(0))2

)
, (23)

C f z(Rex)
1/2 =

g′(0)
2

(
2 + (n− 1)We(g′(0))2

)
, (24)

where Rex = xuw
ν represents the Reynolds number.

3. Results and Discussion

The homotopy analysis method (HAM) is an analytical procedure which is employed
for solving the nonlinear coupled DEs. From its introduction in 1992 [80], HAM has been
heavily used by investigators for solving the nonlinear coupled ODEs. The wide range of
uses and applications of HAM are because of its convergence properties and initial guess
wide range [71,81,82]. The procedure that HAM follows is based on the transformation
Ψ̃ : X̂ × [0, 1] → Ŷ, where X̂ and Ŷ are the topological spaces. The linear operators are
defined as follow:

L f̂ ( f̂ ) = f̂ ′′′, Lĝ(ĝ) = ĝ′′, Lθ̂(θ̂) = θ̂′′, and Lφ̂(φ̂) = φ̂′′. (25)

We have employed HAM in this study for solving Equations (15)–(19). The achieved
results are depicted through different graphs and the effects of related parameters over the
Carreau fluid hydromagnetic behavior are investigated and explained in detail. Further-
more, the present study results are compared with the published work and the agreement
ascertains the accuracy of HAM.

The dependence of f
′
(η) (gradient in the velocity x-component) and g(η) (velocity y-

component) on augmenting magnetic parameter M are respectively depicted in Figure 2a,b.
The values of M used in this Figure are = 0.5, 1.0, 1.5, 2.0. It is clear from Figure 2a, that at
fixed M, f

′
(η) declines with the rising η. The decline in f

′
(η) is much faster at smaller η

values. Furthermore, the increasing magnetic parameter M values result in a downfall in
the f

′
(η) profile. It is obvious from the Figure 2a that reduction in the f

′
(η) profile is more

visible in the range η = 0.4 to η = 2.6. The downfall in the f
′
(η) profile may be associated

with the augmenting Lorentz forces due to the enhancing M, which causes to reduce
the non-uniformity in the fluid velocity. Figure 2b shows that the velocity g(η) changes
inversely with the rising η at fixed M. The velocity field augments with the enhancing M.
The enhancing behavior of g(η) with uplifting M is more dominant upto η = 2.6. Thus,
the augmenting Lorentz forces due to rising M accelerate the fluid flow.

The impact of the Hall parameter (m) on the velocity gradient f
′
(η) and velocity g(η)

is displayed respectively in Figure 3a,b. The different values of m used in this computation
are 0.5, 1.0, 1.5, 2.0. It is evident from Figure 3a, that initially f

′
(η) augments and then

drops with the increasing η values at fixed Hall parameter value. It is further observed
that the enhancing m results in the increase of the f

′
(η) profile. The enhancing behavior

of f
′
(η) is more apparent from η = 0.4 to η = 2.4. The variation of the velocity g(η) with

enhancing m is displayed in Figure 3b. It can be seen from this figure that at smaller m, the
velocity drops with augmenting η. As the value of m is increased to m = 1.5 and m = 2.0,
the trend in the g(η) profiles changes. Now initially the velocity increases, reaches to a
maximum, and then declines with the increasing η. The variation in the velocity profiles is
more dominant at smaller η as can be seen from the figure. The increasing trend with the
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augmenting m is due to the higher Hall potentials produced in the fluid which augment
the fluid velocity as well as the gradient in the velocity.

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

η

f'
(η
) M = 2.0

M = 1.5

M = 1.0

M = 0.5

1 2 3 4 5

0.0

0.2

0.4

0.6

η

g
(η
) M = 2.0

M = 1.5

M = 1.0

M = 0.5

(a) (b)

Figure 2. (a) f
′
(η) variation with M, and (b) g(η) dependence on M.
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Figure 3. (a) f
′
(η) dependence on m and (b) g(η) variation with m.

Figure 4a,b show the variations of f
′
(η) and g(η) with varying Weissenberg number

(We). The values of We used in the present computation are 0.30, 0.50, 0.70, 0.90. From
these two figures, it is observed that both f

′
(η) and g(η) display almost similar decreasing

trend with the increasing We. Thus, it is clear that the enhancing viscous nature of the
Carreau fluid associated with the rising We constricts the fluid flow and hence reduces the
fluid velocity.
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Figure 4. (a) f
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(η) dependence on We and (b) g(η) dependence on We.
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The variation of f
′
(η) with shrinking parameter ($) and the index of power law (n)

is depicted respectively in the Figure 5a,b. The values of $ used are 4.0, 5.0, 6.0, 7.0, while
those of n are 1.6, 2.2, 2.5, 2.8. It is observed from Figure 5a that at fixed $, f

′
(η) first drops,

reaches to minimum and then enhances with increasing η. Similarly, the f
′
(η) profiles first

drop and then augment with enhancing $. Thus, due to suction ($ > 0) during the Carreau
fluid flow, the f

′
(η) profiles rise beyond η = 1. Beyond η = 3.8, all the curves for different

$ overlap with one another. Figure 5b shows the variation of f
′
(η) with changing values of

the power law index n. The Figure shows that, at fixed n, f
′
(η) augments with higher η

values. The rate of enhancement in f
′
(η) is larger for lower η values in comparison with

larger η. By enhancing the values of n, the f
′
(η) profiles drop. The spacing between f

′
(η)

curves at different n increases with rising η as clear from the Figure.
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Figure 5. (a) f
′
(η) dependence on $ and (b) dependence of f

′
(η) on n.

The variation in f
′
(η) and φ(η) (fluid concentration) with the enhancing values

of χ1 are displayed respectively in Figure 6a,b. The different values of χ1 used are
χ1 = 0.25, 0.50, 0.75, 0.95. From Figure 6a, it is observed that at a given χ1, f

′
(η) changes

inversely with η. The rate of decline of f
′
(η) is faster at lower η in comparison with larger

η values. Furthermore, by augmenting the values of χ1, the f
′
(η) profiles drop to smaller

values. The spacing between the curves for different χ1 reduces with larger values of χ1.
The different curves overlap beyond η = 4.0. The concentration field (φ(η)) variation with
changing χ1 is depicted in Figure 6b. It can be seen that at fixed χ1, the concentration field
drops with enhancing η. The rate of decline of φ(η) is much larger at smaller η values. An
enhancement in the φ(η) profiles is observed with the rising χ1. The rate of enhancement
of φ(η) is larger for the larger χ1. The φ(η) curves for different χ1 overlap with one another
beyond η = 3.6.
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Figure 6. (a) f
′
(η) variation with χ1 and (b) dependence of φ(η) on χ1.
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The variation of the fluid temperature θ(η) with increasing Pr (Prandtl number)
and Rd (radiation parameter) is displayed in Figure 7a,b. The values of Pr are taken as
7.0, 10.0, 13.0, 16.0, while those of Rd are taken as 1.0, 2.0, 2.5, 3.0. Figure 7a shows that
the Carreau fluid temperature drops with the rising η at fixed Pr. The rate of decrease
of θ(η) is much faster at smaller η. As the Pr values are increased, the temperature field
profiles drop. The spacing between θ(η) curves is more prominent at the intermediate
values of η. The drop in the fluid temperature with the enhancing Prandtl number is due
to the smaller thermal diffusivity of the Carreua fluid, which causes a reduction in the
temperature of the fluid. Figure 7b depicts the dependence of the temperature field on Rd.
It can be observed that the fluid temperature augments with the rising Rd values. The rate
of enhancement in θ(η) with increasing Rd is more drastic for smaller η values. The θ(η)
curves overlap beyond η = 4.0. The augmenting fluid temperature with the higher Rd is
due to the stronger heat source.
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Figure 7. (a) θ(η) dependence on Pr and (b) θ(η) dependence on Rd.

The influence of augmenting values of Weissenberg number (We) and Dufour number
(Du) on θ(η) is displayed respectively in Figure 8a,b. The We and Du values are taken as
0.3, 0.5, 0.7, 0.9 and 0.25, 0.45, 0.65, 0.95, respectively. It is clear that θ(η) declines with the
augmenting η at constant We. The temperature field profiles of the fluid upsurge with the
enhancing We values. This means that the augmenting viscous nature of the Carreau fluid
associated with the rising We enhances the fluid temperature. The different θ(η) curves
overlap beyond η = 4.0. Figure 8b displays the variation of the Carreau fluid temperature
with the enhancing Du (Dufour number). It is observed that the fluid temperature profiles
rise with the enhancing Du values. Thus, the accumulation of the fluid particles due to
increasing Du raises the fluid temperature.
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Figure 8. (a) θ(η) dependence on We and (b) θ(η) dependence on Du.
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Figure 9a depicts the fluid concentration φ(η) with varying Schmidt number (Sc).
From this Figure, we can observe that φ(η) changes inversely with rising η at constant Sc.
As Sc changes from 0.10 to 0.40, 0.70, and 0.90, a decreasing behavior in the θ(η) profiles is
seen. The different curves overlap beyond η = 3.6. The higher value of Sc is analogous
to smaller value of mass diffusivity, that causes the concentration of the Carreau fluid to
drop as can be seen from the Figure. The dependence of φ(η) on the increasing Sr (Soret
number) is plotted in Figure 9b. The fluid concentration declines with augmenting η at
fixed Sr. An increase is observed in the fluid concentration with the enhancing Sr. As Sr
is related with the Carreau fluid temperature gradient, hence, higher Sr denotes greater
temperature difference, which causes an enhancement in the concentration.
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Figure 9. (a) φ(η) dependence on Sc and (b) dependence of φ(η) on Sr.

4. Tables’ Discussion

This section is devoted to comparing the results of this study to the work published
and the computation of various quantities of engineering interest with the changing values
of the associated parameters. The comparison is carried out in Tables 1–3. The quantities
of engineering interest are computed in Tables 4 and 5. The comparison is made with the
research work already carried out in ref. [75] as in the following:

The comparison of the skin friction values with varying $ and We is shown in Table 1.
The Rd, Sr, Du, M, and Sc values are taken as 0. We see complete agreement between the
results of our work and the already published work.

Table 1. Computation of C f x for changing $ and We, for Rd = Sr = M = Du = Sc = 0.

$ We Reference [75] Present Results

0.0 0.4 0.9913393 0.99133929
0.3 0.4 1.157602 1.1576019
0.6 0.4 1.348724 1.3487236
0.6 0.0 1.344032 1.3440315
0.6 0.2 1.348725 1.3487250
0.6 0.4 1.333041 1.3330407

Table 2 shows the comparison of Nusselt number (Nux) for the varying We, n, $, and
Pr, whereas Rd, Sr, Du, M, and Sc are taken as 0. The value of χ1 is taken as 0.2. Again
both results are in tremendous agreement.
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Table 2. Computation of Nux, when Rd = Sr = M = Sc = Du = 0.

We n $ Pr χ1 Reference [75] Present Results

0.0 0.6 0.6 0.2 0.2 0.1668374 0.16683740
0.1 0.6 0.6 0.2 0.2 0.1666775 0.16667749
0.2 0.6 0.6 0.2 0.2 0.4741203 0.47412033
0.2 0.3 0.7 1.3 0.2 0.1666314 0.16663136
0.2 0.5 0.7 1.3 0.2 0.1666914 0.16669144
0.2 0.7 0.7 1.3 0.2 0.1667505 0.16675047

Table 3 compares the present and published results for Shx (local Sherwood number)
for changing Sr. We used Du = We = 0. The values of the parameters n, Rd, Pr, and M are
kept fixed in computing the values of Shx. The comparison proves that both computations
are in agreement with each other.

Table 3. Computation of Shx, for Du = We = 0.

Sr n Rd Pr M Reference [75] Present Results

0.5 0.6 0.5 0.75 0.75 1.2110832 1.21108321
1.0 0.6 0.5 0.75 0.75 1.0581235 1.058124
1.5 0.6 0.5 0.75 0.75 0.905314 0.9053143
2.0 0.6 0.5 0.75 0.75 0.752515 0.7525148

The computation of C f x and C f z with the changing values of M, m, χ1, and We for
suction case is tabulated in Table 4. It is found that C f x first reduces and then increases with
rising magnetic parameter (M). The skin friction C f x drops with the augmenting values
of m, χ1 and We. The other skin friction component C f z augments (drops) with the rising
values of M, χ1 and We (m).

Table 4. Computation of C f x and C f z in the suction case.

M m χ1 We Re
1
2
x C f x Re

1
2
x C f z

0.5 0.5 0.25 0.30 −1.27682794 0.02280230
1 − − − −1.47275352 0.03841483

1.5 − − − −1.52006594 0.04188107
2 − − − −1.24036061 0.09561891
− 1 − − −1.17768683 0.12810091
− 1.5 − − −1.30688120 0.02219887
− 2 − − −1.33663381 0.02161783
− − 0.50 − −1.29858315 0.02300640
− − 0.75 − −1.31813402 0.02318486
− − 0.95 − −1.32674352 0.02452684
− − − 0.50 −1.38932465 0.02918536
− − − 0.70 −1.40374526 0.03326478
− − − 0.90 −1.40374537 0.03326589

The variation of Nux and Shx with the augmenting M, n, Sr, Du, Rd, and χ1 in the
blowing case is shown in Table 5. It is clear that both Nux and Shx drop and then enhance
with enhancing M. The Nusselt number first increases and then decreases, whereas the
Sherwood number enhances with the higher n. Furthermore the Nusselt number enhances
with the augmenting values of all the remaining parameters, that is Sr, Du, Rd and χ1. The
Sherwood number rises (declines) with the increasing values of Du and Rd (Sr and χ1).
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Table 5. Nux, and Shx in the case of blowing.

M n Sr Du Rd χ1 Nu/Re
−1
2

x Sh/Re
−1
2

x

0.5 1.6 0.1 0.25 1 0.25 0.114028 0.139181
1 − − − − − 0.106677 0.134409

1.5 − − − − − 0.100334 0.130193
2 1 − − − − 0.106198 0.134071
− 2.2 − − − − 0.109861 0.136627
− 2.5 − − − − 0.113931 0.139391
− 2.8 0.2 − − − 0.113041 0.142802
− − 0.4 − − − 0.108654 0.137044
− − 0.6 − − − 0.104832 0.131925
− − − 0.2 − − 0.125738 0.130361
− − − 0.4 − − 0.112658 0.133111
− − − 0.6 − − 0.101036 0.135657
− − − − 0.5 − 0.111641 0.133395
− − − − 1.0 − 0.106677 0.134407
− − − − 1.5 − 0.102281 0.135322
− − − − − 0.1 0.110879 0.137607
− − − − − 0.3 0.102933 0.131509
− − − − − 0.5 0.096511 0.126388

5. Conclusions

This section concludes the main findings of the present research work. The investigation
of mass and thermal energy transfer of the 3D Carreau fluid moving through a permeable and
stretching (shrinking) sheet is undertaken by considering the effects of thermal radiations,
cross diffusion, and Hall current. Suitable similarity relations are employed in order to
transform the set of coupled PDEs to a system of coupled ODEs. The set of coupled ODEs is
then solved through the well-known standard analytical technique of HAM. The influence of
the relevant physical variables on the hydromagnetic behavior of the Carreau fluid 3D flow
is examined through various plots. The variations of the coefficients of skin friction, local
Nusselt, and Sherwood numbers with the changing parameter values are shown through
various tables. The important findings of this work are outlined as below:

• The gradient in velocity f
′
(η) reduces with the augmenting M, We, and χ1, whereas

it enhances with the Hall parameter (m) and the shrinking parameter ($).
• The velocity component g(η) enhances with augmenting M, m, while it declines with

Wesinberg number (We).
• The Carreau fluid temperature enhances with the rising Rd, We, and Du, while it

reduces with the increasing Pr (Prandtl number) values.
• The concentration of the fluid augments with enhancing χ1 while it reduces with the

augmenting Sc values.
• The skin friction coefficients (C f x) drops with the enhancing m, χ1, and We. The other

component (C f z) enhances with the rising M, χ1, and We.
• The local Nusselt number depreciates with the enhancing Sr, Du, Rd, and χ1, while the

Sherwood number increases (depreciates) with the rising n, Du, and Rd (Sr and χ1).
• The published and obtained results show an agreement which validates the employed

analytical procedure accuracy.
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Abbreviations
The below mentioned parameters and abbreviations with their possible dimensions are used in
this article:

σ Electrical conductivity S
m

B0 magnetic field strength T
Rex Local Reynolds number
C f x Local Skin friction
m Hall parameter m3

C
$ Suction/ injection parameter
Jw Mass flux (

kg
s m2 )

f Dimensionless velocity
φ Dimensionless concentration
θ Dimensionless temperature
∞ Condition at infinity
x, y, and z Coordinates (m)
0 Reference condition
η Similarity variable
Sc Schmidt number
γ Thermal relaxation parameter
Du Dufour number
uw Stretching velocity ( m

s )
Pr Prandtl number
T Fluid temperature (K)
ρ Density (

kg
m3 )

υ Kinematic viscosity m2

s
µ Dynamic viscosity mPa
t Time (s)
Cp Specific heat ( J

kg K )

n Power law index
kT Thermal diffusion ratio
L1 Velocity slip factor
h2 Convective mass transfer coefficient
h1 Convective heat transfer coefficient
τ Extra stress tensor
M Magnetic field interaction parameter
Π Strain rate tensor
σ∗ Stefan Boltzmann constant
χ1 Velocity slip parameter
χ2 Thermal profile slip parameter
χ3 Concentration profile slip parameter
We Weissenberg number
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