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Abstract: In this paper, we report on the effect of titanium dioxide (TiO2) target sintering temperature
on the morphological and optical properties of amorphous titanium dioxide thin films synthesized
by pulsed laser deposition (PLD) on indium tin oxide (ITO) glass substrate and subsequently heat-
treated in air at low temperature (150 ◦C). Three types of targets were used, unsintered (pressed
at room temperature), sintered at 500 ◦C and sintered at 1000 ◦C. The surface morphology of the
samples was investigated by scanning electron microscopy (SEM), and profilometry was used for
thickness measurements. The structural properties of the films were examined by X-ray diffraction
(XRD), while their optical properties were studied by UV-vis spectroscopy. The obtained TiO2 thin
films have an amorphous nature, as shown by XRD analysis. Profilometer showed that sintered
target samples have more reliable thicknesses than unsintered ones. The SEM studies revealed the
sufficient structural homogeneity of sintered target nanosized TiO2 films and agglomerates in the
case of unsintered target film. The UV-vis transmittance spectra showed high transparency in the
visible range of PLD films, proportional to the target sintering temperature. The optical band gaps of
the films deposited using the 500 ◦C and 1000 ◦C sintered targets are closer to those of anatase and
rutile phases, respectively, which provides a promising approach to the challenges of amorphous
TiO2-based nanostructures.

Keywords: TiO2; thin films; amorphous; PLD; target; sintering

1. Introduction

Titanium dioxide (TiO2) in thin films has been extensively used in a wide range of
applications, such as sensors, self-cleaning, protective or antireflective layers, electrodes
in electrochromic devices, electron transport layers in emerging photovoltaic cells (dye-
sensitized, perovskite and polymeric cells), photocatalysts, pigments, etc., due to its high
transparency across the visible spectrum, appropriate band gap, effective charge separation
ability, low toxicity and low price [1–8]. Titanium dioxide (titania) also displays abun-
dant surface hydroxyl (OH) groups, high defect density and enhanced absorption in the
ultraviolet (UV) range, such as UV materials [9–13].
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Titania is a n-type semiconductor material and displays three stable polymorphic
forms: anatase (tetragonal), rutile (tetragonal) and brookite (orthorhombic) phases, which
provide flexibility and versatility in applications [8,14]. At increased temperatures (~500 ◦C),
amorphous TiO2 transforms to crystalline anatase, and at temperatures higher than about
~700 ◦C to 800 ◦C, to rutile phase. The transformation to rutile phase is irreversible, and
the melting point of TiO2 is 1858 ◦C [8,14,15]. Furthermore, the currently known methods
to crystallize amorphous TiO2 films into anatase or rutile phases require the annealing
step, including oxygen plasma treatment [16–18]. Anatase crystals exhibit excellent optical
properties, higher photocatalytic activity and gas sensing properties than rutile ones, and a
lower electron–hole recombination rate. Further, the band gap of anatase phase (3.2 eV) is
larger than that of rutile (3.0 eV), and the charge carrier mobility is higher [16,19]. However,
rutile phase is more thermodynamically stable and durable than anatase, while brookite is
not commonly studied because it is difficult to prepare due to its metastability [15,20,21].
The transport mechanism of carriers (electrons and holes) in titania can be improved in the
case of mixed-phase TiO2 (rutile-anatase), which exhibits higher photocatalytic activity [16].

Although amorphous TiO2 films have numerous advantages, including simple syn-
thesis conditions and a larger surface area, allowing the integration of more chemicals
and compatibility with the largest variety of substrates [1,22], they are much less studied
compared to crystalline (anatase or rutile phases) films. In addition, the oxygen vacancies
and disordered arrangement of intrinsic atoms have important effects on the electronic
structure, which could improve the separation efficiency and transfer of photogenerated
charge carriers [22–24]. Moreover, the electronic structure and optical properties of amor-
phous TiO2 are much closer to those of anatase TiO2 [24]. A new approach to TiO2 thin
film exploration and applications was provided by Addonizio et al. [1], Kim et al. [17] and
Sun et al. [24].

Various methods have been used to obtain TiO2 thin films, such as electron beam
evaporation [25], radiofrequency (RF) magnetron sputtering [26], chemical vapor deposi-
tion [27], sol–gel technique [28], and pulsed laser deposition (PLD) [29,30]. The properties
of deposited films are highly dependent on the processing techniques and the deposi-
tion conditions [31]. Pulsed laser deposition offers several benefits: the simple system
operation, flexibility, a wide range of deposition conditions, rich choice of materials, the
possibility to use in situ heating and reactive background gases, and a relatively high
reproducibility [8,19,32,33]. This technique also allows the deposition of films with de-
termined thickness, morphology, stoichiometry, grain size and composition by varying
the deposition parameters (laser pulse geometry, laser fluence, wavelength or repetition
frequency, target-substrate distance, substrate temperature, deposition time, etc.) [11,34,35].
The composition, purity and density (sintering temperature) of the bulk target have an
important influence on the quality of laser ablated films [36]. Furthermore, in vacuum,
PLD provides compact and continuous films, whereas porous structures can be achieved
at relatively high background gas pressures [37].

In this study, we report the successful synthesis of nanosized amorphous TiO2 films
by PLD on indium tin oxide (ITO) glass substrate (due to their high visible transmittance,
among transparent conducting oxides materials [38]) at room temperature (25 ◦C), without
reactive background gases, from two targets sintered at different temperatures (500 ◦C and
1000 ◦C) and an unsintered one (25 ◦C), as-deposited films were then thermally treated at
150 ◦C for 30 min. The study of PLD-synthesized amorphous nanosized TiO2 thin films is
still poorly reported in the literature. The influence of target sintering temperature on the
morphological and optical properties was investigated by scanning electron microscopy
(SEM) and UV-vis spectroscopy, respectively. The obtained thin films may not only display
a satisfactory uniformity and highly transparent TiO2 nanostructures via low-temperature
processing, but also exhibit similar optical properties to those of crystalline TiO2.
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2. Experimental Details

The experimental setup used for pulsed laser deposition of TiO2 films is similar to
that described in [39]. The disk-shaped targets with ~20 mm diameter and about 2 mm
thickness were prepared from commercially available high purity (>99.50%) titanium (IV)
oxide powder (BIOCHEM Chemopharma; product code: 320150500). The powder was
ground in an agate mortar and pressed at 2 MPa. Three targets were used for deposition:
one target was prepared at room temperature (25 ◦C), while two others were sintered in
air for 5 h (one at 500 ◦C and the second at 1000 ◦C, both with a 10 ◦C/min heating rate),
using a Apriltherm 5L furnace. The films were deposited on ITO (thickness: ~150 nm,
sheet resistance: ~10 Ω/sq, transmittance > 80% and with (400) texture)-coated glass
substrates (10 mm × 15 mm × 1 mm), which were ultrasonically cleaned using acetone
for 10 min and dried in air before loading them into the PLD chamber. Three thin-film
samples were used, labeled as as 25-TiO2, as 500-TiO2 and as 1000-TiO2, according to the
target sintering temperature. All the depositions were performed at room temperature
without reactive background gases, using the experimental parameters shown in Table 1.
The targets were rotated during the laser irradiation in order to avoid the formation of
deep surface craters [16]. Thermal treatments (5 ◦C/min heating rate, 30 min dwell at
150 ◦C) were performed ex situ on the as-deposited samples to ensure good adherence and
compactness, and to moderate the transmittance of the titania films. Heat-treated samples
were labeled similarly, as ptt 25-TiO2, ptt 500-TiO2 and ptt 1000-TiO2.

Table 1. Deposition parameters used for the nanosized TiO2 film preparation.

Laser Nd:YAG, 2nd Harmonic, λ = 532 nm

Pulse duration 10 ns
Repetition rate 10 Hz
Pulse energy 50 mJ/pulse

Spot size ~2.5 mm2

Fluence 2.0 J/cm2

Target TiO2, sintered at 25 ◦C, 500 ◦C, and 1000 ◦C
Substrate ITO glass

Target-substrate distance 50 mm
Pressure 50 mTorr

Deposition time 10 min

The thickness of thin-film samples under study was measured with a Dektak XT
stylus profilometer (Bruker, Paris, France) with a resolution of 1 nm, while the morpho-
logical properties of the films were studied by SEM (JSM 6390/JEOL apparatus at 30 kV
accelerating voltage). The UV-vis transmittance spectra of the films in the 300–900 nm
wavelength range were recorded using a UV-vis Avantes spectrometer (AvaSpec 2048,
Schiphol, The Netherlands). The XRD patterns in the 10–80◦ 2θ range were obtained using
a Shimadzu LabX XRD-6000 diffractometer (Shimadzu, Kyoto, Japan) with a CuKα radi-
ation (λ = 1.54 Å) and further used in structural analysis of samples. The diffractograms
were recorded with a scanning angle step of 0.02◦ and 1◦/min scan speed.

3. Results and Discussion
3.1. Morphological Properties

Figure 1 shows the influence of target sintering temperature on the film thickness.
The thickness of three thin-film samples, as 25-TiO2, as 500-TiO2 and as 1000-TiO2, were
found to be approximately equal to 67, 47 and 34 nm, respectively. The lower thickness
of the as 500-TiO2 and as 1000-TiO2 films compared to that of as 25-TiO2 one could be due
to the greater density (high sintered temperature) of sintered targets compared to that of
the unsintered one (i.e., the films obtained from higher density targets are more compact
than those prepared from the sparse one, containing agglomerations, which can affect the
accuracy of the film thickness measurement).However, the films obtained from sintered
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targets had slight differences in the thickness. Consequently, the thicknesses of sintered
targets films were determined more accurately than in the case of unsintered one.
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Figure 1. Target sintering temperature influence on thin-film thickness.

Scanning electron microscopy micrographs of TiO2 samples grown on ITO glass
substrates were acquired to study the thin-film morphology (Figure 2). The as 25-TiO2
(Figure 2a) film displays a granular structure, with significant agglomerates (white partic-
ulates) and weak small cracks. The as 500-TiO2 (Figure 2b) and as 1000-TiO2 (Figure 2c)
samples display relatively uniform and flat surfaces composed of small irregular-shaped
grains, with slight agglomerates in the case of as 500-TiO2. The presence of agglomerates
can be attributed to the sparse target or lower density [36]. However, the reason for these
small cracks is still not very clear. They may result from the presence of agglomerates
combined with lower thickness of the film (i.e., in some cases, the particulates larger than
film thickness, as shown by profilometry, can affect the film adhesion).

After thermal treatment for 30 min at 150 ◦C, the ptt 25-TiO2 (Figure 2d), ptt 500-TiO2
(Figure 2e) and ptt 1000-TiO2 (Figure 2f) films were not distinctively changed, except for the
reduction in agglomerates. The morphology of the agglomerates was influenced by the heat
treatment, resulting in a reduction [40], while the slight change in the films morphology is
due to the low temperature treatment [1,41].

3.2. Structural Properties

Figure 3a shows the XRD patterns of TiO2 unsintered and sintered targets at 1000 ◦C.
It clearly indicates the transformation of the anatase phase (anatase TiO2, ICSD file
no. 01-089-4921) with particle sizes of 47.9 nm dominant in the unsintered target (25 ◦C)
of TiO2 to the rutile phase (Rutile TiO2-ICSD file no. 01-087-0710) with particle sizes of
41.7 nm in the 1000 ◦C sintered target, due to the high sintering temperature, according to
the current literature [14,15]. However, in the unsintered target, Ti3O5 peaks (Ti3O5-PDF
file no. 96-152-7091) are also observed as secondary phases, which could be converted
partially to Ti6O (Ti6O-ICSD file no. 01-072-1471) in the target sintered at 1000 ◦C, due to
the oxygen deficiency during the sintering process [20].
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On the other hand, the XRD patterns of the samples and ITO glass substrate before and
after heat treatment at 150 ◦C for 30 min are presented in Figure 3b,c, respectively. It can be
clearly noticed that the ITO (ITO-ICSD file no. 01-089-4596) glass substrates exhibit the (400)
preferred orientation, and consequently, this plane contains more oxygen vacancies than the
(222) one [42]. As can be easily observed, all diffractograms exhibit no obvious diffraction
peak except those corresponding to the ITO glass substrate, suggesting that nanosized TiO2
films under study, both untreated and heat treated, are amorphous. The broad amorphous
halo between 15◦ and 40◦ is mainly due to the amorphous glass substrate, as well as to the
amorphous TiO2 phase. The thermal treatment of titania thin-film samples, conducted at
150 ◦C for 30 min, is most likely not sufficient to result in a detectable crystallization [1].

3.3. Optical Properties

In order to investigate the effect of target sintering temperatures on the optical proper-
ties of titanium dioxide thin films, optical transmittance and optical band gap studies were
performed in the UV−visible region.

Figure 4 shows the UV−vis transmittance spectra of TiO2 thin films and ITO glass
substrate reference before (Figure 4a) and after thermal treatment (Figure 4b). In the spectral
range from 300 nm to 400 nm, the transmittances increased from 60% to 120% and from 55%
to 110% for as deposited and post-thermally treated films, respectively. The transmissions
were approximately 100% for as-deposited films and 95% for thermally treated films
in the visible range. The transmission of as-deposited films in the visible range can be
conditioned by the large band gap of amorphous TiO2 [1]. However, the transmission in
the UV region and high transmission in the visible range, particularly that which exceeds
100%, remain ambiguous. This can be explained by sample photoluminescence, PL (i.e.,
when irradiated, TiO2 nanostructures exhibit luminescence emission, which may increase
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the transmittance intensity), which is strongly related to the presence of surface states
and defects [41], whereas amorphous TiO2 displays high defect density and disordered
arrangement, as mentioned in the introduction. Moreover, amorphous TiO2 nanoparticles
exhibit a green PL band that is almost always visible, and highlighted the potential for
PL-based applications using amorphous TiO2 nanoparticles [41]. As a result, and more
often, one can observe PL emissions in the UV region of transmittance spectra. Thus, TiO2
thin films display originally high transmittance in the visible range, and nanostructured
TiO2 thin films are able to emit a luminescence spectrum under light excitation, which
can result in transmittance intensities higher than 100%. The oscillations present (two
main bands with maxima in the visible range) in transmittance spectra of both untreated
and thermally treated films are interference-based effects (interference of reflected light
from both faces of the film) [43]. The interference fringes suggest that examined films
are optically plane, homogeneous and display smooth surfaces [15,43]. In the UV−vis
region, the transmittance of TiO2 films, thermally treated at 150 ◦C for 30 min, decreased
slightly compared to that of the as-deposited films, and became reasonable in the visible
spectrum range, due to scattering enhancement after thermal treatment [44]. Additionally,
the transmittance of ptt500-TiO2 film was found to decrease more sharply compared to
the others. This decrease might be the result of the increased surface roughness of thinner
films, in the presence of mentioned cracks and agglomerations. The films from sintered
targets exhibit slightly higher transmittance than those prepared at the room temperature
(25 ◦C) pressed target, owing to their lower thickness [45]. Hence, the optical transmittance
is proportional to the target sintering temperature.
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The optical band gap, Eg, was calculated using the Tauc equation for indirect
transitions [22,46]:

(α hν)1/2 = k(hν − Eg) (1)

where α denotes the optical absorption coefficient, defined as α =
[

1
d ln
(

1
T

)]
(under the

assumption of a negligible reflectance, R<<1), d is the film thickness, T is the transmittance,
hν is the photon energy and k is a constant. The optical band gap was estimated at the
absorption edge, by extrapolating the linear part of the (α hν)1/2 = f (hν) plots to zero
absorption [43], as shown in Figure 4c,d for as-deposited and thermally treated thin films,
respectively. The estimated band gaps (Eg) are summarized in Table 2.

As can be inferred from the data listed in Table 2, the Eg values of the as-deposited
amorphous nanosized TiO2 films ranged between 3.25 eV and 3.35 eV, in good agreement
with those reported by Zhang et al. [43] and Addonizio et al. [1] for amorphous TiO2 films.
After thermal treatment, the Eg value of the compact layers deposited from sintered targets
decreased due to the change in the thin-film nanostructure (density) [44]. On the contrary,
ptt 25-TiO2 showed a slight increase in Eg value, which could be caused by an artifact
of the nanostructure [15]. As one can observe, the optical band gap of ptt 500-TiO2 film
(3.17 eV) is closer to that of anatase TiO2 {3.20 eV [47]}, confirmed by Sirgh et al. [48] and
Sun et al. [24], while the Eg value of ptt1000-TiO2(3.06 eV) is much closer to that of rutile
TiO2 {3.02−3.05 eV[47]}. In this way, amorphous TiO2-based nanostructures can provide a
promising method for overcoming crystalline titania crystalline-related challenges.
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Table 2. The estimated band gaps (Eg) of TiO2 thin films deposited from unsintered and sintered
targets, before and after thermal treatment.

As-Deposited Post-Thermal Treatment

Sintering temperature (◦C) 25 500 1000 25 500 1000
Film thickness, d (nm) 67 47 34 67 47 34

Optical band gap, Eg (eV) 3.32 3.25 3.35 3.41 3.17 3.06

4. Conclusions

In this work, the properties of TiO2 thin films deposited by the PLD technique were
examined. The effect of target sintering temperature on the morphological and optical
characteristics of titania thin films was investigated in detail. The results showed that
amorphous nanosized TiO2 films from sintered targets can be successfully prepared via
PLD with actual deposition parameters. Profilometer measurements demonstrated that
TiO2 thin film thicknesses obtained from sintered targets are more reliable than those
obtained from unsintered target. SEM characterization revealed flat and relatively good
homogeneity of the nanosized films from sintered targets, and the presence of small cracks
and agglomerates in the film from the unsintered target. A correlation between the target
sintering temperature and film morphology was observed: thinner films from higher
sintering temperature targets (more than 500 ◦C) can assure good adherence of the titania
films; however, sparse targets (below 500 ◦C) provoke agglomerate formation on the film
surfaces. The low temperature thermal treatment (30 min at 150 ◦C) of the nanosized TiO2
films led to a reduction in particulates in the film prepared from unsintered target. The
TiO2 thin films exhibited high transparency in the visible range, which corresponded to the
large band gap and was proportional to the sintering temperature of target. In addition,
the optical transmission was moderate in the visible range, and the optical band gaps of
the films prepared from 500 ◦C and 1000 ◦C sintered targets were found to be similar to
those of anatase and rutile TiO2 phases, respectively, which offers a promising perspective
on the challenges of amorphous TiO2-based nanostructures.
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