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Abstract: The stray fields produced by ferromagnetic layers in Superconductor/Insulator/Ferromagnet
(S/I/F) heterostructures may strongly influence their superconducting properties. Suitable magnetic
configurations can be exploited to manipulate the main parameters of the hybrids. Here, the
nucleation of the superconducting phase in an external magnetic field that periodically oscillates
along the film width is studied on the base of the numerical solution of the linearized system of Usadel
equations. In addition, the effect of the magnetic configuration of the F-layer on the temperature
dependence of the critical current density, Jc(T), is investigated in the framework of the Ginzburg–
Landau phenomenological theory on the base of the oscillating model of a stray field. By following
this approach, the Jc(T) dependence of a Nb/SiO2/PdNi trilayer is reproduced for different magnetic
configurations of the PdNi layer.

Keywords: S/F hybrids; electromagnetic coupling; theories and models of superconducting state

1. Introduction

The literature devoted to the investigation of the interplay between superconductivity
and ferromagnetism in artificial heterostructures is very rich, due to both the fundamental
and applicative interest to Superconductor (S)/Ferromagnet (F) hybrids [1–4]. One of the
most interesting problems concerns the role of the stray fields produced by the F-layers on
the superconducting properties of S/F samples [1–3,5]. In fact, due to the influence of an
inhomogeneous external magnetic field on the superconducting order parameter, a new
class of phenomena in the physics of superconductors has been observed. On the other
hand, the spatial inhomogeneity of the stray fields, generated by a ferromagnet located in
intimate contact with a superconductor, represents a challenging problem in describing the
superconducting properties of such S/F systems.

In this regard, the first experiments [1,2,6–10] focused on the study of the Abrikosov
vortex-lattice and its pinning properties in a superconducting film subjected to the non-
uniform stray field produced by either a system of magnetic inclusions (particles, dots,
nanorods, etc.) or an F-layer [11–22]. More recently, the properties of proximity-coupled
S/F hybrids have been studied in a great detail and superconducting spintronic devices
have been proposed [1,3,23–31]. One of the main ingredients to control the superconducting
state in these systems is the change of the direction and/or amplitude of the magnetization
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of the F-layer. In this tuning process, demagnetized and remanence (both in- and out-of-
plane) states may cause unaccounted effects [27,28].

Moreover, the presence of an inhomogeneous magnetic field, as the one due to stray
fields, makes it difficult to solve the problem of the nucleation of the superconductivity in
a thin film. This task was studied in S/I/F systems (here “I” indicates an insulating layer).
In most of the works, the theoretical investigation was performed in the framework of the
Ginzburg–Landau (GL) theory [2,32–42] (except in the case of reference [36], where the
possibility of triplet superconductivity induced by the domain walls was considered). One
of the most interesting results was the prediction of maxima in the Tc as a function of the
external homogeneous magnetic field H0. These maxima can be asymmetric for different
orientations of the applied field with respect to the plane of the sample. Apart from this,
the location (relative to the domain wall) and the shape of the superconducting nuclei was
studied [38]. In the case of stripe domains, when the field close to the ferromagnet can be
approximated by a step function, the nucleation in the S-film is similar to the case of S/N
structures (N is a normal metal) [43–45].

Another problem, which received great attention, was the study of the critical current
density, Jc, of a superconductor in the presence of magnetic interactions. In particular,
the increase of Jc due to the magnetic pinning of vortices was analyzed. Peaks in the
Jc(H0) dependence due to the matching effect, predicted in reference [46], were observed
in numerous experiments [2,9,10,16,19]. These data, along with the numerical analysis
performed in [47], proved the ability to influence the critical current in a controlled manner.
Moreover, measurements of the critical currents in layered S/I/F [48] and S/F [49] hybrids
demonstrated a nontrivial dependence of Jc on the magnetic state of the ferromagnet,
especially at temperatures significantly smaller than Tc.

From the theoretical point of view, it is worth emphasizing that the presence of
an inhomogeneous magnetic field, H(r), makes it extremely difficult to both formulate
and solve the problems related to the properties of the vortex matter, the nucleation
of the superconducting phase at a critical field Hc(r), and the vortex-free state at weak
magnetic fields.

In this paper, we consider two problems related to the critical parameters of a super-
conductor in a non-uniform magnetic field in a S/I/F hybrid. The first one is related to the
nucleation of the superconductivity and the second concerns the study of the temperature
dependence of the critical current density, Jc(T), in a vortex-free superconducting film.
The problem of the nucleation of the superconductivity in the presence of an inhomoge-
neous stray field is formally considered as the problem of the upper critical amplitude of
an “elementary” external inhomogeneous field. The strength of the field is assumed to
have a sinusoidal shape. This kind of approach was already proposed and investigated
experimentally in reference [32] in the framework of the GL theory for two limiting cases,
i.e., for great and small amplitudes of the magnetic field. In reference [34] the GL equations
were solved numerically in the case of a uniform and periodical field, modelled by a
step-like periodic function. A two dimensional problem was solved within the framework
of the phenomenological GL theory in reference [35] assuming a periodic repetition of a
solution for the stray field of a domain wall [33]. In this work, we solve the problem for an
elementary periodic model of an inhomogeneous magnetic field in the framework of the
microscopic theory of superconductivity applying the formalism of the Usadel equations.
In our case, the results are valid for the entire temperature range, from Tc down to 0 K.
The second task is related to the determination of the Jc(T) dependence in the case of an
S/I/F hybrid where F is a weak ferromagnet and I is a sufficiently thick layer. Therefore,
the magnitude of the stray field is weak enough to induce vortex nucleation in the super-
conductor. The configuration of the stray field was experimentally varied by applying
an appropriate magnetizing/demagnetizing procedure which creates in- or out-of-plane
remanence states (IPR- and OPR-states, respectively), as well as fully demagnetized state
(D-state). We demonstrate that in all the magnetic states the spatial profile of the stray fields
can be described by a smooth function that can be well approximated by several terms of
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a Fourier series. This justifies the use of the proposed elementary model for qualitative
estimations. Under these assumptions, we were able to qualitatively explain the difference
in the measured Jc(T) dependencies for different magnetic states in the framework of the
GL formalism.

2. Experimental

In the S/I/F system under study the superconducting and ferromagnetic layers of
equal thickness dS = dF = 30 nm are separated by a 20-nm-thick SiO2 film. Here, PdNi is
a dilute ferromagnetic alloy with composition Pd84Ni16, and Nb was used as a supercon-
ductor. The heterostructure is deposited on a Si(100) substrate by sputtering technique
in three different steps. First, a layer of Nb was sputtered on a silicon substrate by dc
magnetron. Then the SiO2 barrier was realized by RF sputtering (MRC 8602), breaking
the vacuum. Afterwards, the final PdNi layer was deposited by dc sputtering [49,50]. A
sketch of the resulting substrate/Nb/SiO2/PdNi trilayer is shown in the inset of Figure 1.
Finally, the sample was patterned by lift-off into a strip of width w = 20 µm and length
l = 300 µm. All the transport measurements were performed in a 4He cryostat by following
the same procedure described in reference [49]. The Jc values were determined applying
the 3 mV/m electric field criterion. The critical temperature of the trilayer is Tc ≈ 4.5 K,
smaller when compared to the corresponding proximized Nb/PdNi hybrid investigated
in reference [49] (Tc

Nb/PdNi ≈ 6 K). This result can be attributed to the vacuum breaking
during the deposition and the lift-off procedure. The estimated low-temperature resis-
tivity of the Nb film is ρ ≈ 20 µΩ·cm, while the superconducting coherence length is
ξ =
√
}D/2πkBTc~ 9–10 nm [51], which results in a Ginzburg–Landau (GL) coherence

length at T = 0 ξGL(0) = (πξ/2) ~ 14–16 nm. This means that the ratio ds/ξGL(T) varies
in the range 1–1.6 over the entire temperature range of measurements, so that the Nb layer
can be considered as a thin film. Jc was measured as a function of the temperature for three
different magnetic configurations of the PdNi layer. The demagnetized state (D) is reached
by cooling the as-grown sample from room temperature without any applied magnetic
field. The IPR (OPR) state is obtained by first warming the sample above the PdNi Curie
temperature, TCurie ≈ 190 K [49], then cooling it down to T = 4.2 K, and later applying a
parallel (perpendicular) magnetic field well above the saturation field in order to magnetize
the PdNi layer. Finally, the field is switched off. Jc(T) is always measured in the absence of
the magnetic field. In Figure 1 we show the dependence of Jc as a function of T measured
for the three magnetic states. It follows that the Jc(T) dependencies coincide for all states
from Tc down to T ≈ 4 K. In addition, only a slight difference can be observed between the
critical current densities in the D and IPR states for lower temperatures, while the OPR state
is characterized by more reduced values of Jc. This result is radically different from the one
reported in reference [49], where a pronounced dependence of the Jc(T) values for the three
different configurations was observed. In particular, the relation Jc

OPR < Jc
IPR < Jc

D was
fulfilled in the entire measured temperature range.
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as the domain structure of the PdNi film is concerned, it is widely assumed that in the D 
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about dd ≈ 100 nm, with a domain wall size not larger than dw ≈ 10 nm [53]. Moreover, the 
perpendicular magnetic anisotropy (PMA) of thin PdNi films [49,53] implies the out-of-
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is typical for thin films of ferromagnets with PMA [54–58]. This information is needed to 
estimate the distribution of the (orthogonal) z-component of the induction field, Bz, of the 
F-layer in the D, OPR, and IPR states. Therefore, for simplicity we assume a periodic 
domain lattice [59,60] in agreement with what reported for another weak ferromagnetic 
alloy with out-of-plane magnetization, such as Cu47Ni53 [61]. The calculated distribution 
of Bz(x) is shown in Figure 2 for the profile y = 0 for some representative values of z. In 
particular, the dark yellow lines show the field on the surface of the ferromagnet (z = 30 
nm), namely the stray field present at the S/F interface in proximity coupled systems. It is 
evident that in this case the stray fields are rather intense (~100 mT) with a large gradient 
at the domain edges. The other simulations refer to other characteristic values of z, namely 
at the SiO2/Nb interface (z = 50 nm), and in the middle (top surface) of the Nb layer [z = 65 
nm (z = 80 nm)] (see inset of Figure 1). 

Figure 1. Critical current density as a function of the temperature for the three different magnetic
configurations described in the text. Inset: schematic representation of the sample under study.

3. Stray Fields of PdNi

Before analyzing the problem of the nucleation of the superconductivity in the pres-
ence of an inhomogeneous magnetic field, we focus on the magnetic properties of the
PdNi layer and the produced stray fields. From the magnetization measurements pre-
sented in reference [52] it is µ0M||sat ~ 0.15 T and µ0M⊥sat ~ 0.2 T, where M||(⊥),sat is the
in-plane (out-of-plane) saturation magnetization. Moreover, according to the data given
in references [49] and [53] concerning the magnetocrystalline anisotropy of Pd81Ni19 and
Pd88Ni12 films, respectively, we can assume that in the IPR (OPR) state of PdNi layer of the
heterostructure under study it is µ0M||,rem ≈ 30% µ0M||sat (µ0M⊥,rem ≈ 70% µ0M⊥,sat).
As far as the domain structure of the PdNi film is concerned, it is widely assumed that in
the D state the PdNi layer is arranged in randomly oriented domains of average diameter
of about dd ≈ 100 nm, with a domain wall size not larger than dw ≈ 10 nm [53]. Moreover,
the perpendicular magnetic anisotropy (PMA) of thin PdNi films [49,53] implies the out-of-
plane magnetization of domains in the D state. Perpendicular magnetization of domains
is typical for thin films of ferromagnets with PMA [54–58]. This information is needed
to estimate the distribution of the (orthogonal) z-component of the induction field, Bz, of
the F-layer in the D, OPR, and IPR states. Therefore, for simplicity we assume a periodic
domain lattice [59,60] in agreement with what reported for another weak ferromagnetic
alloy with out-of-plane magnetization, such as Cu47Ni53 [61]. The calculated distribution
of Bz(x) is shown in Figure 2 for the profile y = 0 for some representative values of z. In par-
ticular, the dark yellow lines show the field on the surface of the ferromagnet (z = 30 nm),
namely the stray field present at the S/F interface in proximity coupled systems. It is
evident that in this case the stray fields are rather intense (~100 mT) with a large gradient
at the domain edges. The other simulations refer to other characteristic values of z, namely
at the SiO2/Nb interface (z = 50 nm), and in the middle (top surface) of the Nb layer
[z = 65 nm (z = 80 nm)] (see inset of Figure 1).
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Figure 2. Distribution of the orthogonal component of the stray magnetic field Bz versus x for y = 0 in the D (a), OPR (b) 
and IPR (c) states of the PdNi film and for different values of z.

In the D state, the amplitude of the stray field decreases with distance from the
ferromagnetic layer from 36.5 mT at z = 50 nm (at the SiO2/Nb interface) to 25.0 mT at z = 
65 nm (namely in the middle of the Nb layer) and 16.5 mT at z = 80 nm. The field strength 
in the OPR state is on average about 4 mT over positive domains and varies in amplitude
from 24 mT to 44 mT over negative domains. In the IPR state, regions with sufficiently 
large field values alternate with regions of the same size with a zero z-component of the
field. In this configuration the amplitude of the stray fields is 35 mT at z = 50 nm, 23 mT
at z = 65 nm, and 15 mT at z = 80 nm. Some important observations can be mentioned. The
D and IPR states are both characterized by dd ≈ 100 nm and symmetric field distributions, 
i.e., for a regular domain structure, each region with a positive field corresponds to exactly 
the same region with a negative field. On the contrary, in the OPR state the dimensions of
the domains depend on the field polarity, with larger positive domains of about dd ≈ 600 
nm. Here, the stray field is very weak over positive domains and sharply increases in 
magnitude in the region of negative domains. Moreover, from the calculations it emerges 
that the presented characteristic values of the stray fields weakly depend on the
distribution of domains in the XOY plane (this is explained by the fact that the structure 
is effectively infinite in the OX and OY directions). Finally, from the simulations it emerges 

Figure 2. Distribution of the orthogonal component of the stray magnetic field Bz versus x for y = 0 in the D (a), OPR (b)
and IPR (c) states of the PdNi film and for different values of z.

In the D state, the amplitude of the stray field decreases with distance from the
ferromagnetic layer from 36.5 mT at z = 50 nm (at the SiO2/Nb interface) to 25.0 mT at
z = 65 nm (namely in the middle of the Nb layer) and 16.5 mT at z = 80 nm. The field
strength in the OPR state is on average about 4 mT over positive domains and varies
in amplitude from 24 mT to 44 mT over negative domains. In the IPR state, regions
with sufficiently large field values alternate with regions of the same size with a zero
z-component of the field. In this configuration the amplitude of the stray fields is 35 mT at
z = 50 nm, 23 mT at z = 65 nm, and 15 mT at z = 80 nm. Some important observations can
be mentioned. The D and IPR states are both characterized by dd ≈ 100 nm and symmetric
field distributions, i.e., for a regular domain structure, each region with a positive field
corresponds to exactly the same region with a negative field. On the contrary, in the OPR
state the dimensions of the domains depend on the field polarity, with larger positive
domains of about dd ≈ 600 nm. Here, the stray field is very weak over positive domains
and sharply increases in magnitude in the region of negative domains. Moreover, from the
calculations it emerges that the presented characteristic values of the stray fields weakly
depend on the distribution of domains in the XOY plane (this is explained by the fact
that the structure is effectively infinite in the OX and OY directions). Finally, from the
simulations it emerges that the periodicity of the magnetic profiles changes in the different
states, the period, d, being 200, 400, and 700 nm in the D, IPR, and OPR states, respectively.

In the following, we consider the values of the stray fields experienced by the super-
conductor. It is worth noticing that our case differs from those considered in the literature
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since here the insulating layer which separates the S and F ones is rather thick (dI = 20 nm),
and of the order of dF. As a result, the stray fields are significantly weakened in the
S-layer. We empirically determine the characteristic values of B for each magnetic con-
figuration as the maximum value assumed by the stray field in the middle of the S layer.
For instance, Bz,OPR+ ~ 8 mT (Bz,OPR− ~ 30 mT) is the maximum value of the field induc-
tion in the middle of the S layer over “positive” (“negative”) domains in the OPR state,
while Bz,D ~ Bz,IPR ~ 20 mT is the stray field strength in the D and the IPR states. The first
question here is, how strongly does such a field depress Tc? By following reference [34],
the shift in Tc due to the “orbital effect”, namely the difference between the critical tem-
perature at zero field and the one in the presence of the stray field, can be expressed as
∆Tc

orb = Tco – Tc = Tco(ξGL(0)/L)2, where a characteristic length L = (Φ0/2πB0)1/2 is intro-
duced. For the above-mentioned configurations, it is LOPR+ ~ 200 nm, LOPR− ~ 105 nm, and
LD ~ LIPR ~ 130 nm. Therefore, by considering an average stray field value of about 30 mT
and Bc2(T) ~ 3 T, the largest critical temperatures suppression is ∆Tc ~ Tc·0.01 < 0.05 K
for our system. Summarizing, since the stray fields are significantly smaller than the
upper critical field, it results that the “orbital effect” is negligible here, as it can be inferred
from Figure 1, where the Jc(T) dependence for the three configurations goes to zero at the
same temperature.

4. Superconductivity in Presence of Inhomogeneous Magnetic Fields

This section is devoted to the influence of the magnetic fields previously derived on the
superconducting state. It is known that the distribution of the stray field for a ferromagnetic
slab is determined by the relation between its thickness dF and the distance between the
domain walls [2,34,62]. When dw << dF << dd, the resulting distribution produces only a
local suppression of the superconductivity in a region of the order of dd above the domain
wall [62]. These conditions can be considered fulfilled in the case of the Nb/SiO2/PdNi
tri-layer under study. Indeed, we have just seen that the stray field in the superconductor
region is quite weak and has small effect on the critical temperature. In the next section,
we will investigate the problem of the critical magnetic field in presence of an oscillating
stray field. We can name this new concept “critical inhomogeneous field”.

4.1. Stray Field Induced Distribution of the Superconducting Condensate

As already mentioned in the introduction, the problem of the nucleation of the su-
perconductivity in a periodic magnetic field was first formulated in reference [32] and
further considered in [34,35] on the base of the approximate solution of GL equations.
Here, the same problem is formulated and solved in the framework of the Usadel equation
formalism, which is valid over the entire temperature range from 0 to Tc.

In the elementary model, the induction field is orthogonal to the surface of the film
and changes along one of the planar axes (OX) with periodicity d according to the os-
cillating law Bz = B(x, z) ≈ B0 cos(πx/d). This field is associated to the vector-potential
A(r) = (0, Ay(x), 0), where Ay(x) = (B0d/π)sin(πx/d). This model is not only formal. Indeed,
such a periodic field can be created by a stripe periodic domain structure with perpen-
dicular magnetic anisotropy and alternating signs of the magnetic moments of stripes of
width d [11–13,63]. However, it is obvious that this model is not suitable to describe the
magnetic stray fields generated in the OPR state. Indeed, in this case, due to the relatively
strong remanence, the magnetic profile of a domain strip is quite complex, namely, the
periodic function B(x) cannot be well approximated even considering several terms of
the Fourier series (see Figure 2). The critical state of the superconductivity of the film
is derived in the diffusive limit within the formalism of a linearized system of Usadel
equations for the anomalous Green’s functions Fω(r) (h̄ω = πkBT(2n + 1), h̄ is the reduced
Planck constant, kB is the Boltzmann constant, n = 0, 1, 2...) [64]. Given the expression of
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A(r) (see above), this system is reduced to the equation for a single function Ψ(x/ξ) by the
substitution Fω(r) = c ω eiky/Ψ(x/ξ):

− Ψ ′′(τ) +
(

k− B0

νB2
sin(ντ)

)2
Ψ(τ) = µΨ(τ), (1)

where the scaled coordinate τ ≡ x/ξ and the scaled field B2 ≡ Φ0/2πξ2 are introduced.
Furthermore, k is the superfluid velocity parameter [65], ν = πξ/d is the wave number, and
cω are the coefficients that satisfy a homogeneous system of linear algebraic equations. The
condition of the existence of a nontrivial solution of this system leads to the characteristic
equation for µ:

ψ

(
1
2
+

µTS
2T

)
− ψ

(
1
2

)
= ln

(
TS
T

)
, (2)

where ψ(z) is the digamma-function [66] and TS is the critical temperature of the isolated
film. The solution of Equation (2) is expressed by the De Gennes universal function
(T) = Un(T/TS)/(2π) [67], which monotonically decreases with T. Therefore, the problem
of the largest (i.e., critical) temperature, for which a bounded solution of the Equation (1)
exists, is equivalent to the problem of the minimum of µ. Note that Equation (1) belongs to
the class of Hill equations that have been studied in detail (see, e.g., reference [68]), so only
the main results of the calculations and their physical interpretation are given here.

First of all, we reformulate the problem of the minimum of µ as the problem of the
maximum of the amplitude B0, which depends on three parameters, namely ν, T and k.
Then, the following algorithm was used. For a given wave number ν, we look for the
maximum value of the parameter B0, which we denote as B0m(T; k), since it depends
on both k and T. Afterwards, for a fixed temperature we determine the k value, which
corresponds to the maximum of B0m(T; k). This will be the critical amplitude B0c(T). Thus,
for each ν we have a family of B0m(T; k) curves from which we extract the characteristic
B0c(T). An example of such a calculation is shown in Figure 3 for ν = 0.2, a value comparable
with the one calculated for our S/I/F system. In particular, Figure 3a shows the family
of characteristics B0m(T; k) for fixed values of the reduced temperature t = T/TS in the
interval 0.01–0.9. Figure 3b shows the extracted critical characteristics B0c(T) compared to
the dependence obtained for k = 0 (the physical meaning of this value will be explained
below), denoted as B0m(T; k = 0).
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The characteristic obtained in the particular case ν = 0.2, reflects the form of the
dependence of B0c(T) obtained also for other values of the wave number ν. At the same
time, by considering the left side of Equation (1), we can formulate the following statements
about two limiting behaviors:

(i) for ν→ ∞ (d→ 0) the influence of the magnetic field disappears;
(ii) in the limit d→ ∞ (ν→ 0), for arbitrary τ << ν−1 the periodic function in Equation (1)

becomes linear. This means that the dependence B0m(T; k = 0) merges with the
characteristic Bc2(T) (the upper critical field of an isolated film). This limit is reached
for d & 2πξ (ν . 0.5).

Moreover, important considerations can be derived by analyzing Figure 3b. First, the
critical field B0c(T) is significantly larger than the upper critical field Bc2(T) over almost
the entire temperature range. This result demonstrates that the definition of the critical
parameters in a nonhomogeneous magnetic field is not trivial. Next, from Figure 3b we see
that the critical state corresponds to kmax(T) 6= 0 in the same T range. Finally, only in the
immediate vicinity of TS, the value k = 0 gives the maximum to the function B0m(T; k), and
this maximum almost coincides with Bc2(T). This result is presented in the inset of Figure 3b.
In this temperature range our results almost coincide with the ones of reference [34]. It is
clear in view of the fact that in the latter case (i.e., in the region of the applicability of the
GL theory) and for small values of ν, Equation (1) reduces to the equation for the upper
critical magnetic field.

The process of nucleation becomes clear as soon as we consider the “evolution” of the
condensate wave function Ψ(x) while moving along the B0m(T; k) curve at a fixed temperature.

In Figure 4 we show the functions Ψ(x) calculated at the same ν = 0.2 and for the
reduced temperature t = 0.92 for different values of k from zero up to kmax.
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for different values of the superfluid velocity parameter k.

As follows from Figure 4, as soon as the superfluid velocity parameter k becomes
non-zero, the topology of the wave function changes. Namely, from being d-periodic it
becomes 2d-periodic with two adjacent maxima. Further, as the parameter k increases, the
neighboring maxima of the wave function converge in pairs, with the minimum between
them being smoothed out while the minimum between the pairs deepens. At last, at the
critical point, kmax, two neighboring maxima merge, and the minima between the pairs
touch the abscissa axis. Therefore, we can say that a 2d periodic lattice of superconducting
phase nuclei is formed at the critical point. From a physical point of view, it means that,
when the magnetic field amplitude increases above the value of Bc2(T), the condensate ac-
quires a phase multiplier eiky/ξ, with a corresponding redistribution of the superconducting
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current, to minimize the effect of the magnetic field on the superconducting nuclei; this is a
general property of inhomogeneous superconductivity.

4.2. Superconducting Critical Current of a Thin Film in a Periodic Magnetic Field

Now we can qualitatively examine the experimental dependences Jc(T) of Figure 1.
Analyzing the experimental S/I/F structure, we assume an approximation of the uniform
distribution of the condensate over the thickness of the unperturbed S-film. To validate this
assumption, we calculate the scaled critical current density of the isolated S film, jc (directed
along the OY axis), the distribution of the magnetic field due to the current, Bx, and the
condensate wave function. As an example, Figure 5 demonstrates the result obtained by
solving numerically one-dimensional GL equations (see, for example, reference [69]) with
κ = (λ/ξGL) = 10 (λ is the magnetic field penetration depth) and dS = 4ξGL.
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It follows from the Figure 5 that the total change in the condensate wave function
does not exceed 0.5%; therefore, the critical current density is determined by the classical
formula of the GL theory. This confirms the validity of the approximation of a uniform
condensate distribution for the considered dS thicknesses. It is worth noting that as soon as
we take into account the finite size of the film in the OX direction (perpendicular to the
current), a complex question about the vortex phase immediately arises. In the following,
we assume that the film is infinite in the OX direction and, consequently, edge effects are
not taken into account [70].

Therefore, by following the oscillating model of the stray field, we can write the
expression for the dimensionless current density j of the GL model in the following form:

j(τ) = κ2
(

k− B0

Bc2(T)νGL(T)
sin(νGL(T)τ)

)
Ψ2(τ) (3)

Here, the normalized current density is defined as j ≡ J/Jsc, where Jsc = Bc2/(µ0ξGL).
Further, contrary to Equation (1), the quantities τ, νGL, are rescaled with respect to ξGL(T)
and natural scale Bc2(T) = Φ0/2πξGL

2(T) is used for the critical magnetic field. (Now
the wave number is expressed as νGL(T) = πξGL(T)/d.) Note that for B0 = 0, as it is
obvious, the classical law for the temperature dependence of the critical current density
Jc(T) ~ (1 − T/Tc)3/2 [65,67,70] follows directly from Equation (3) by simply taking into
account the temperature dependence of the used scales.

Now let us pay attention to the value of the ratio b0 ≡ B0/Bc2(T) in Equation (3).
By using the values of the stray fields evaluated in Section 3, we obtain that b0 is of the
order of 0.01 at T = 0 K. Furthermore, taking into account the previously given values
d ~ 100 (200) nm for the D (IPR) state and ξGL(0) ~ 15 nm, we get νGL,D(0) ~ 0.5 for the
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D state and νGL,IPR(0) ~ 0.25 for the IPR state (see the profiles distribution of the stray
field in Figure 2). In addition, it should be emphasized that, according to reference [22],
the low critical magnetic field is determined by the domain size which in our case is of
the order of 100 nm, namely smaller than λ [49]. In other words, the average value of the
stray field on the half-period is smaller than the low critical magnetic field. Therefore,
the possibility of the vortex–antivortex pairs nucleation can be ignored. As a result, it
reasonable to assume that almost in the entire temperature range, the stray fields weakly
perturb both the order parameter modulation and the uniformly distributed current. For
this reason the temperature dependence of the average measured critical current density,
〈j〉, can be evaluated by the variation principle for the GL functional [71] using a trial
function Ψ̃(τ) = ψ0 + (b0/νGL)ψ1 sin(νGLτ) (the term proportional to cos(νGLτ) vanishes).
Substituting the derived constants ψ0, ψ1 in the expression for j, followed by the routine
procedure of averaging and, further, maximizing 〈j〉 in the parameter k, with an accuracy
of the third order in the parameter (b0/νGL), we finally get the expression in the usual
measurement units.

Jc(T) = J0

(
1− T

Tc

)3/2
[

1− ϕ(νGL(T))
(

b0(0)
νGL(0)

)2(
1− T

Tc

)]
(4)

Here the constant J0 is the critical current density of an isolated S film at T = 0. The
positive quantity ϕ(νGL(T)) is determined by the expression ϕ(νGL) = ∑

n=0,1,2
an
(
ν2 + c2

0
)−n,

where an and c0 are numbers of order of unity. Since ϕ(νGL(T)) only moderately changes
in the interval T ∈ [0,Tc] and the parameter νGL

2(0) is small, it is reasonable to assume
ϕ(νGL(T)) ≈ ϕ0 = const.

In accordance with Equation (4), for the relative difference ∆Jc(T) = Jc,D(T) − Jc,IPR(T)
of critical currents Jc,D(T) and Jc,IPR(T) describing D and IPR states, respectively, we estimate
∆Jc(T)/Jc,D(T)≈ 3ϕ0·(b0/νGL,D)2(1− T/Tc) (here νGL,D = 2νGL,IPR). The result of the fitting
procedure to the Equation (4) for Jc(T) for two states, D and IPR, is shown in Figure 5. It
results that the proposed model reproduces the overlap of the Jc,D(T) and Jc,IPR(T) curves
close to Tc and their small difference at low temperatures, with the critical current density
for the D state laying above the one for the IPR state, as expected. It is worth underlining
that the quantitative agreement of the theoretical dependences of the critical current density
with the corresponding experimental characteristics can be achieved by the implementation
of a theoretical model based on the formalism of the Usadel equations. The meaning of
the estimations of the Jc(T) is that the observed equality of Jc close to Tc and difference
when the temperature decreases can be easily explained by the interplay between the
νGL,D(0) and νGL,IPR(0) on one side and the term (1 − T/Tc) in Equation (4) on the other
side. When T tends to Tc, the difference between νGL,D(0) and νGL,IPR(0) can be neglected
in Equation (4), whereas this is not true at low T. Thus the morphology of the stray field
enters the temperature dependence of the critical current density in S/I/F hybrids. It is
necessary to underline that the observed effect could be important in the vortex-free state.
In this regard, we pay attention on the Jc,OPR(T) dependence in Figure 1, which was not
fitted in Figure 6. In this case, it is difficult to talk about the vortex-free state, since we have
a fairly large size of the “positive” domains and the stray field over the negative domains
is quite large. As a result, the elementary model is not applicable, i.e., the consideration of
this case does not fit the format of this work. This issue, together with the full theoretical
explanation of the Jc,OPR(T) curve, will be the subject of a future work.
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5. Conclusions

The nucleation of superconductivity in strongly nonuniform magnetic field is a chal-
lenging problem. Here we made a progress on the idealized case of weak sinusoidal
magnetic field created by a thin ferromagnet layer in S/I/F hybrid. The I-layer thickness
is such that the magnetic field created by a dilute F in the D- and IPR-states does not
exceed the first critical magnetic field of superconductor. Thus we exclude the process of
vortex-antivortex pair formation, which inevitably distorts the topology of the pair wave
function. As a result, two problems were solved.

First, within the formalism of the Usadel equations we made accurate predictions for
important properties of the critical amplitude of the non-uniform magnetic field and its
temperature dependence. Only close to the critical temperature B0c ≈ Bc2 in thin S-film,
whereas at t << 1 it is B0c >> Bc2. This effect can be understood as a result of redistribution
of the superconducting current in a strongly non-uniform magnetic field to minimize its
effect on the superconducting nuclei.

Second, considering the same periodic modulation for the amplitude of the magnetic
field, the qualitative explanations for the Jc(T) dependencies for the D- and IPR-states have
been provided in the framework of the GL theory. The equality of the critical currents near
the Tc and lower Jc values for the IPR-state with respect to that for D-state at T << Tc are
explained through the difference in the period of the stray field modulation in these two
states, and demonstrate that smaller period has a greater impact on Jc.

On the base of these results, the perspectives of this work can be delineated. In
particular, in the case of S/I/F systems with variable thickness of the different layers,
the control of the magnetic state of the F layer may give important indications for the
realization of samples with tunable Jc(T). The suitable choice of both the thickness and
the materials may help in the design of S/I/F switching devices. The approach we used
is quite general and can be employed to understand other similar systems, such as S/F
hybrids with a triplet component of the wave function, and provide a solid foundation on
which even more complicated behaviors of the critical current and superconducting nuclei
can be explained.
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