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Abstract: For the purpose of a deeper understanding of thin film growth, in the last two decades
several groups developed models for simulation on the atomistic scale. Models using molecular
dynamics as their simulation method already give results comparable to experiments, however
statistical analysis of the simulations themselves are lacking so far, reasoned by the limits imposed
by the computational power and parallelization that can only be used in lateral dimensions. With
advancements of software and hardware, an increase in simulation speed by a factor of up to 10
can be reached. This allows either larger structures and/or more throughput of the simulations.
The paper analyses the significance of increasing the structure size in lateral dimensions and also
the repetition of simulations to gain more insights into the statistical fluctuation contained in the
simulations and how well the coincidence with the experiment is. For that, glancing angle incidence
deposition (GLAD) coatings are taken as an example. The results give important insights regarding
the used interaction potential, the structure size and resulting important differences for the density,
surface morphology, roughness and anisotropy. While larger structures naturally can reproduce the
real world in more detail, the results show which structure sizes are needed for these aspects without
wasting computational resources.

Keywords: glancing angle deposition; thin film growth; molecular dynamics

1. Introduction

The simulation and modeling of processes is an important area far beyond thin
film growth. However, the computation of the deposition of thin films is a challenge,
because for a concise model several orders of magnitude in space and time have to be
covered by a multi-scale model. As described in [1–3], this involves several models from
direct simulation Monte Carlo (DSMC), to atomistic models like molecular dynamics
(MD) or kinetic Monte Carlo (kMC), to quantum mechanical density functional theory
(DFT) calculations. Within the framework of the theoretical description, the complete
virtualization of the coating process place enormous demands on both the computational
technology and the numerical procedures. In addition, the computational effort and
numerical precision have to be carefully balanced for each individual sub-area of the
virtual coating. Atomistic models are employed to explore the nanostructure properties
of the thin films [1,4,5], while glancing angle deposition (GLAD) is of high interest due
to its concise nanostructure [6–8]. Results that correspond well between experiment and
simulation have already been obtained [6,7] taking into account the size of the simulated
structures.

The size is limited due to computational resources, and although parallelized algo-
rithms are used, this allows mainly the increase of the lateral structure dimensions. The
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growth height is more restricted by the computational resources, because the deposition of
atoms can be parallelized to an only very limited extent. Therefore, it is important to choose
a structural size, which describes the properties of the material well, while not exhausting
resources more than needed. Despite advances in computer technology, software and
algorithms, the thickness of structures calculated by classical molecular simulation are
still about one order of magnitude away from the structures of experimentally produced
single layers, while the factor for multi-layers considering optical thicknesses is about two
to three orders of magnitude. The technological advances will not be able to close this
gap completely at least for multi layers in the foreseeable future. Therefore, it is crucial to
evaluate the significance of the virtual structures as accurately as possible.

The intention of this manuscript is to conclude which structural sizes are useful
to consider for virtual material investigations by a quantitative statistical analysis of
several simulations and different structure sizes. Also, the impact of the chosen interaction
potential is investigated. Only in this way can the maximum benefit by correlation of the
theoretical results with the experiments be derived. The following presentation makes a
substantial step towards improved knowledge of the significance of the simulations.

2. Materials and Methods

A major challenge for the simulation is to describe correctly the nanostructure, which
occurs especially in thermal coating processes. In particular, the application of GLAD
coatings relies on the proper use of these structural properties, making this coating process
ideally suited for evaluation of the simulation results. For the investigation the thin film
growth of TiO2 and SiO2 is analyzed, while the recent publications from Badorreck et al.
and Grineviciute et al. [6,7] serve as a basis. The growth of the thin films is investigated by
means of atom deposition within the framework of classical molecular dynamics.

Badorreck et al. [6] investigated GLAD coatings of TiO2 with regard to the birefrin-
gence properties. However, the former performed simulations with deposition under 0◦,
30◦, 50◦ and 70◦ exhibit a small size in lateral dimension of 7 × 8 nm2; therefore, here
the results will be compared to structures grown on a substrate area of 30 × 20 nm2. In
addition, the impact of using different interaction potentials will be analyzed here, namely
the potentials from Matsui et al. [9] and Zhang et al. [10]. The latter has the advantage, that
it can be combined with potentials for other materials, e.g., SiO2, from the same publication,
as was performed in [5]. The substrate temperature is assumed to be at 300 K. More
sophisticated potentials, e.g., modified embedded atom method (MEAM) [11] like from
Lee et al. [12] are not considered here, because the computational effort is at least more
than one order of magnitude higher compared to the potentials from Matsui and Zhang,
which are of the Buckingham type [13], and therefore are not feasible for the investigation.

Grineviciute et al. [7] analyzed also birefringent properties, here of SiO2 serial bi-
deposition coatings, with the emphasis on the effect through continued coating onto these
porous structures, which is essential for the application in all silica GLAD coatings. Here,
the first layer grown by serial bi-deposition is performed for two different substrate areas of
16 × 7 nm2 and 30 × 20 nm2, while the growth of the second layer is repeatedly simulated
for the one with 16 × 7 nm2. The interaction potential from Zhang et al. [10] is used here.
The substrate temperature is also assumed to be at 300 K.

The algorithm for the deposition simulation consists of placing several atoms at the
top surface of the structure. For each iteration, the starting positions are computed by a
randomly positioned grid, where each position on the grid has its own random position
variation. Simultaneously, it is ensured that the distance between each position is larger
than the interaction cutoff, which is sufficient for low deposition energies, exceeding
thermic energies not significantly. With the direction of their velocity vectors, the atoms are
directly moved towards the surface keeping the limits of the interaction cutoff of 1.2 nm,
so that the computationally expensive part of the MD is minimized. An illustration of this
state from different viewpoints is shown in Figure 1 with the atoms to be deposited viewed
in green, traveling into the direction of the atoms marked in blue as indicated by the pink
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arrow. One MD deposition iteration is performed within Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS) [14] in two stages, the first within a NVE (constant
number of particles, volume and energy), the second within a NVT (constant number of
particles, volume and temperature) ensemble. The integration time step is 1 fs, while
the number of integration steps is determined automatically for each deposition iteration
depending on how fast the atoms reach the surface and usually lies in the range of 104

for the NVE step and 50 for the NVT step with a damping parameter of 0.01. Long-range
coulomb interactions are calculated by Wolf’s summation [15]. A more detailed description
of the algorithm can be found in [6]. The computational effort used for the following
simulations ranges, depending on the structure size, from one month to about six months
on a system capable of 10 TFlops.
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Figure 1. (a) Illustration from the top of a deposition step with a glancing angle of incidence of 50◦

directed to the top-left. Atoms to be deposited (green) are placed at the top and moved towards the
structure keeping the limits of the interaction cutoff. The blue marked atoms indicate the direction
of the depositing atoms and would be hit without any interaction, also indicated by the pink arrow.
(b) 3D view of the same illustration with the dimension of the simulation box. Graphics generated
with NGL [16,17].

The analysis of the finally grown thin films is then performed for the density behavior
and the surface roughness. Further their anisotropy is analyzed as described in Ref. [6].

3. Results
3.1. TiO2

GLAD coatings are manufactured under very specific conditions. The particle energy
must be kept low and the coating temperature is low so that the structures can develop in
a suitable manner. In addition, the angle of incidence must be set in such a way that the
shadowing effect leads to the tailored growth of columns. Therefore, we will compare the
results for structures grown for different deposition angles of 0◦, 30◦, 50◦ and 70◦ for the
two different substrate areas of 7 × 8 nm2 and 30 × 20 nm2. Comparing the smaller with the
larger substrate the surface area increases by a factor of 10. Due to the computational effort,
the smaller structures are simulated with the potential from Matsui et al. [9], while for the
larger ones the potential from Zhang et al. [10] is used. To allow still a comparison between
the structures despite the different used potentials, the structure for 0◦ and 7 × 8 nm2

substrate size is simulated also with the potential from Zhang.
The structures in Figure 2 and especially the structures grown under 70◦ show that the

larger structures exhibit a higher variation of the microstructure than can be modeled by
the smaller ones. While the small structure for 70◦ deposition angle effectively returns one
slanted column, which is periodically continued at the lateral borders and actually can be
considered as a wall, the larger structure exhibits several individual and complete columns.

A simple qualitative consideration of the structures shows for the large structures
that the direction of growth seems to change slightly with an increasing layer thickness
resulting in curved columns. Such details cannot be seen in the smaller structures. This
already indicates a qualitative difference.
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Figure 2. Simulated structures of TiO2 for different deposition angles of 0◦, 30◦, 50◦ and 70◦ and
substrate sizes of 7 × 8 nm2 and 30 × 20 nm2. The substrate is shaded in grey. Graphics generated
with NGL [16,17].

The investigation is performed for two different interaction potentials, to also get
an idea of the impact of the potential itself onto the structural properties. For a better
understanding of the comparison between the thin film growth for different substrate
sizes, first the impact of both used interaction potentials from Matsui et al. [9] and Zhang
et al. [10] is explored. In Figure 3, a comparison of the density is shown for the small
substrate size of 7 × 8 nm2, performed four times with the Matsui potential and one time
with the Zhang potential. For the thin film growth using the Matsui potential the mean of
the density profiles with about 3 g/cm3 (excluding the region of the substrate and initial
growth zone) is plotted with the standard deviation as shaded region. Compared to the
growth with the Zhang potential, that results in a significantly lower density of about
2.25 g/cm3 over the full height. The difference is much larger than the standard deviation
of about ±0.25 g/cm3 shown for the Matsui potential. While here no standard deviation
for the simulation with the Zhang potential can be given, the analysis of the following
30 × 20 nm2 structures divided into several 7 × 8 nm2 lateral-sized parts with regard to the
density profile indicates a very similar standard deviation as shown for the Matsui potential.
Compared with experimental results [6], the structures grown using the Zhang potential
obviously underestimate the density. The cross check for high energetic grown structures
at 10 eV shows also a difference in density for both potentials of 4.05 g/cm3 and 3.25 g/cm3

for the Matsui and Zhang potential, respectively. Although the structures in Figure 2 are
grown with different potentials, we are analyzing the results without correction factors.

Looking at the density profiles in Figure 4 for the structures from Figure 2, two inter-
esting aspects are revealed. On the one hand, the density profiles for the small structures
are very noisy. As already shown in Figure 3, a standard deviation of ±0.25 g/cm3 can be
expected, therefore a variation of up to ±0.5 g/cm3 is not uncommon. Here, the increase of
the structure size results in a considerable improvement, with a reduction of the density
variation to about ±0.1 g/cm3. Therefore, the dependency of the density on the deposition
angle can be considered with much more significance. While in principle also the small
structures show this dependency, the fluctuation makes it especially hard to determine a
difference between 0◦ and 30◦. The large structures show here very clearly that the density
for 30◦ is a bit less than for a 0◦ deposition angle.
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area of 7 × 8 nm2. The comparison between using different interaction potentials is shown. For
the Matsui potential [9] the standard deviation shown as shaded region is computed from four
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Figure 4. Density in growth direction z of TiO2 for small (a) and large (b) structures with a resolution of 0.5 nm in z. The
reduction of the density from small to large structures results not only from the change of the structure size but also from
the change of the potential used.

On the other hand, the larger structures show a significantly lower overall density
than the small structures. With the results shown in Figure 3, a significant amount of the
difference of 0.75 g/cm3 can be attributed to applying different potentials. However, the
reduction of the density is still larger with a remaining additional drop of about 0.5 g/cm3.
While the density roughly varies between 2 and 3 g/cm3 for the small ones, for the larger
ones this is reduced to 1 to 1.75 g/cm3. In sum that is about a factor of 2. Compared to the
experimental results presented in [6], the density for the structures grown with the Zhang
potential are significantly too low. Consequently, a modification of the potential seems to
be necessary for its application in the future.

Regarding the surface morphology in Figures 5 and 6 for the small and larger struc-
tures respectively, the morphology shows that the growth for 0◦ starts with many columnar
structures (mean height of 5 nm), while for 70◦ fewer columns are recognized. This can
be considered a direct result of the shadowing effect. Also, thicker structures reduce the
number of columns, which is caused by the coalescence or overgrowth of the columns. The
comparison of the morphology and roughness of the small structures with the larger ones
show fewer columns and much less roughness for the small ones.
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In Figure 7, the structures from Figure 2 are analyzed with regard to the root mean
square (rms) roughness [18]. This is calculated by Welch’s method [19] as implemented in
NumPy/SciPy [20,21]. The maximum roughness for 7 × 8 nm2 is reached after 5 to 10 nm
while with a larger angle of incidence the maximum is reached faster. When the maximum
is reached, the roughness in the following is characterized by a large fluctuation around the
maximum with no significant difference between the incidence angles. For 30 × 20 nm2 the
roughness is much higher already for a height of 10 nm and a plateau cannot be identified
yet. In addition, the incidence angle of the deposited atoms shows a significant impact on
the roughness, the value for 70◦ compared to 0◦ at a height of 12 nm is about twice as large.
This indicates that the lateral size of 7 × 8 nm2 cannot image the full surface morphology
and roughness. For a representative image of the roughness, structures have to cover all
characteristic features completely. If the structure and, therefore, the surface area, is smaller,
the relevance of the analysis is reduced.

The analysis of the anisotropy is presented in Table 1. While the fill factors are corre-
sponding to the density distribution of the simulations shown in Figure 4, the birefringence
show no similar behavior comparing small and large structures. For the substrate size
7 × 8 nm2, the birefringence steadily increases with larger deposition angles, and this is not
reproduced for 30 × 20 nm2. The result of the birefringence ∆n for 0◦ angle of incidence
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and 30 × 20 nm2 is larger than for 7 × 8 nm2, although here a value closer to 0 is expected
due to smaller statistical fluctuation. The structure for 30◦ deposition angle shows a larger
value of ∆n, while for 50◦ and 70◦ the values are between 0◦ and 30◦. This can be a result
of the extremely porous structure, which prevents a pronounced anisotropy.
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In sum the analysis shows, that regarding especially the Zhang potential for TiO2,
there is a need for further investigation and optimization of the potential parameters, due
to the produced densities, which are much too low. However, the different structure sizes
are still comparable qualitatively. For reproducing features like several columns, changed
growth during deposition and imaging the surface roughness to a much better extent, the
use of a substrate size of at least 30 × 20 nm2 can be recommended.

Table 1. Evaluation of the anisotropy for the TiO2 structures.

TiO2
7 × 8 nm2 30 × 20 nm2

0◦ 30◦ 50◦ 70◦ 0◦ 30◦ 50◦ 70◦

Fill factor
in % 86.2 83.3 74.3 62.5 63.4 59.6 52.0 37.1

∆n 0.0036 0.0286 0.0429 0.0625 0.0050 0.0185 0.0074 0.0131

3.2. SiO2

For SiO2, an initial porous layer, grown by serial bi-deposition, is continued with a
second layer. For the second layer deposition configurations for different incidence angles
of 0◦, 30◦ and 50◦ with a rotating substrate are chosen. Each simulation is performed
three times, to evaluate the variation of the continued growth caused by the randomized
deposition algorithm. The structures are shown in Figure 8. While the lower thirds of the
structures are nearly identical, the upper two thirds exhibit differences.

When looking at the density profiles of the structures in Figure 9, an improvement to
the results in previous works from the authors in collaboration with the Vilnius university
in [7] can be presented. The plot shows the mean and standard deviation of the density
profiles evaluated for the three repeated simulations. Here, the impact of the second layer
deposition onto the first layer can be better distinguished for the 30◦ and 50◦ cases in the
growth height region between 15 and 20 nm.
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Figure 9. Density profiles in growth direction of SiO2 structures. The lines present the mean values
from each three structures with the shaded regions indicating the standard deviation. For comparison,
the density profile for only the first layer is also given (red).

The standard deviation shows that the impact and its variation is minimal for 50◦,
while for 30◦ the impact is larger and with a higher fluctuation. Due to this variation the
difference for 30◦ and 50◦ was hard to determine in [7]. For the height region of the second
layer (25 to 50 nm) a slightly more dense structure is obtained for 0◦ compared with 50◦,
while the density for 30◦ is fluctuating between both. This is also an improvement on [7],
where no significant difference between all three deposition angles can be quantified.

The surface morphology and roughness are presented in Figures 10 and 11 and show
a large increase of the surface roughness for the first layer (zig zag), which is followed by a
decrease with the continuation of the second layers. For 0◦ incidence, the largest decrease
in surface roughness can be reached, and for 50◦ the value is constantly larger, while for
30◦ the roughness is fluctuating between the values for 0◦ and 50◦.

The evaluation considering the anisotropic properties of the structures is also im-
portant for obtaining an idea of the random variations. Table 2 give the results for the
first layer region between 7 and 20 nm (which is impacted by the second layer) and the
second layer region between 25 and 47 nm, respectively. The fill factor is determined
within limits of the standard deviation between 0.6% and 0.9% for 0◦ and 30◦. Interestingly,
for 50◦ the impact on the first layer has a very small variation of 0.05%, which is also
caused by the fact that the impact itself is small, while the variation of the second layer
is significantly larger with 1.59%. The variation of the birefringence is very small for the
first layer, however here only the impact of the second layer on to the first one is obtained.
For the second layer, the variation is slightly larger, while the influence from the first layer
is still significant at least for 0◦. In sum, the standard deviation is much lower than the
birefringence values computed for the first layers and in the range of the changes that
describe a decreased birefringence for smaller incidence angles. The number of m = 3
simulations for each angle have to be considered as a compromise between computational
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effort and statistical significance. Assuming a normal distribution, for calculation of a 95%
confidence interval, the multiplicative factor with regard to the Student’s t distribution
with m-1 degrees of freedom results in being 4.30, while the factor of 1.96 would be reached
for m = ∞. Therefore, the statistical significance could be doubled roughly, but with a much
higher computational effort.
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Table 2. Evaluation of the first layer region between 7 and 20 nm after deposited second layer and the second layer region
between 25 and 47 nm with different angles of incidence performed three times each. Given are the values of the fill factor
and the birefringence for each single structure and the mean and standard deviation calculated from each three values.

7–20 nm2 0◦ 30◦ 50◦

Fill factor
in %

46.6
47.37 ± 0.65

45.2
46.37 ± 0.83

44.8
44.77 ± 0.0547.3 46.8 44.7

48.2 47.1 44.8

∆n
0.0123

0.0122 ± 0.0004
0.0129

0.0127 ± 0.0003
0.0137

0.0132 ± 0.00040.0127 0.0123 0.0129
0.0118 0.0128 0.0130

25–47 nm2 0◦ 30◦ 50◦

Fill factor
in %

63.3
64.03 ± 0.52

61.8
62.60 ± 0.65

62.0
59.80 ± 1.5964.3 63.4 59.1

64.5 62.6 58.3

∆n
0.0041

0.0033 ± 0.0006
0.0046

0.0023 ± 0.0018
0.0020

0.0013 ± 0.00070.0031 0.0021 0.0004
0.0026 0.0002 0.0015
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4. Discussion and Conclusions

The results show several aspects that have to be considered for performing and
evaluation of the simulated thin film growth. The analysis of TiO2 reveal, that the chosen
interaction potential has a significant impact onto the structural properties, most notably
the density and at least as a secondary effect also on the surface roughness and anisotropy.
Here, the potential from Zhang et al. produces densities that are much too low compared
to experimental values. While showing this already for the small structures, the effect is
increased for the larger structures. This corresponds partly to the findings from Grigoriev
et al. [8] (p. 7), who investigated SiO2 thin film growth with high energetic Si, and observed
a small decrease of the density for larger structures. However, our results for TiO2 and the
decrease in density for larger structures are more pronounced.

Nevertheless, the increase of the lateral structure size from 7 × 8 nm2 to 30 × 20 nm2

results in a significantly better description, which means much less fluctuation, of the
density profiles in the growth direction and the development of the surface rms roughness.
Furthermore, qualitatively the description of the rms roughness is enhanced, so that much
higher values are reached and show a dependence on different angles of incidence. The
small structures of 7 × 8 nm2 cannot reproduce that. The analysis of the anisotropy is not
clear. Here, further investigations have to be conducted into how large the influence of
the different chosen potentials really is and which effects can be solely attributed to the
structure size.

The analysis for repeated simulations of SiO2 GLAD coatings gives results that are
more reliable and also an estimate of the significance of the simulated structural properties
and their difference. Therefore, repetitions of the simulations can help to gain more insights,
while e.g., the columnar structure is probably not a complete representation of the real
world, as learned from the analysis regarding TiO2 structures. The size of the dimension in
y with 7 nm does not allow the buildup of independent columns, instead forms of walls
due to the periodic boundary conditions are grown. The density of the SiO2 structures
grown with the potential from Zhang et al. [10] results in experimentally reasonable values.

The presented data allows an estimation of the significance of structural properties
depending on the structure size. While for a detailed dependence more data are needed,
the results already give an important idea of how large the structures have to be for
the respective property. Furthermore, the importance of the choice of the potential is
emphasized, which needs to be thoroughly tested and compared to experimental findings,
especially regarding the density.
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