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Abstract: TiSiN-Ag composite coatings with different Si doping contents were prepared by multi-arc
ion plating technology on 316L, TC4, and H65 copper substrates, respectively. The microstruc-
ture of the prepared coatings was characterized by X-ray diffraction, scanning electron microscopy,
and energy-dispersive spectroscopy, respectively. The mechanical properties, electrochemical prop-
erties, and tribological properties were characterized by a micro-hardness tester, electrochemical
workstation, scratch tester, and friction and wear tester, respectively. Results showed that the coatings
with 8 wt.% Si doping content had a smaller average grain size, denser structure, excellent mechanical
properties, and better anti-tribocorrosion performance than those with 5 wt.% Si doping content.
The coating on the TC4 substrate with 8 wt.% Si doping content presented the best combination of
properties and is a candidate for an anti-tribocorrosion material in seawater.

Keywords: TiSiN-Ag coating; tribocorrosion; substrate; Si doping; seawater

1. Introduction

Due to the strong corrosiveness, low viscosity, and poor lubricity of seawater envi-
ronments and the existence of various forms of friction and wear during the operation
of mechanical systems, key friction pair components in marine engineering equipment
are facing more severe service conditions than those on land. This restricts the service
performance of marine engineering equipment [1–3]. Many scholars use various methods
to solve this problem by using coatings [4–12]. However, in many methods and mate-
rials, the physical and chemical properties of ternary or quaternary composite coatings
formed by adding some doping elements to the basis of binary coatings can be improved
by changing the microstructure [13–15]. For example, the intergranular slip with lower
critical shear stress took place easily in the Si crystals and Si is often used as the solid
lubricants [16]. The combination of soft metal Ag and a hard coating can improve its ability
to resist brittle failure, refine grain size, and reduce the damage of the corrosion medium to
the coating [17,18]. Therefore, TiSiN-Ag coatings formed by combining doped elements Si
and Ag with hard TiN coatings can significantly improve the toughness of nanocomposite
coatings and exhibit self-lubricating characteristics while maintaining their high hardness.
Q Wan et al. [19] found that a TiSiN coating had good corrosion resistance when the Si
doping content in the coating was 5 at.%. Yirong Yao et al. [20] found that a TiSiN coating
had better tribological behavior than TiN in seawater and reached the best performance
when Si doping content was 8 wt.%. However, there are many studies on the effect of Si
doping content on the structure and properties of TiSiN coatings. Nevertheless, the effect
of Si doping content on the structure and tribocorrosion performance of TiSiN quaternary
nitride coatings with a Ag phase is rarely reported.
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Therefore, different Si-doped TiSiN-Ag composite coatings on 316L, TC4, and H65
copper substrates were prepared by a multi-arc ion plating method. The microstructure
and tribocorrosion performance of the coatings were characterized. The effects of substrate
and bias voltage on the microstructure and tribocorrosion performance of the prepared
coatings are discussed. The tribocorrosion mechanism is also presented.

2. Materials and Methods

The coatings were deposited by Hauzer Flexicoat F850 multi-arc ion plating equipment.
In the experiment, first, 316L, TC4, and H65 copper substrates were degreased and descaled
before deposition. The TiSi target and Ag target (purity = 99.5 wt.%, Φ63 × 32 mm) were
used as the raw materials.

During deposition of the TiSiN-Ag coating, nitrogen gas was used as the nitrogen
source. The first layer of TiSiN coating was deposited by the TiSi target. The bias voltage,
target current, argon flow, and deposition time were −20 V, 65 A (×6), 800 sccm, and
10 min, respectively. The second layer of TiSiN-Ag coating was deposited. The bias voltage,
target current, argon flow, and deposition time were −20 V, 35 A (×3), 350 sccm, and 1 min,
respectively. The above two coatings were deposited alternately 6 times. The sample table
rotated at a speed of 3 r/min. After deposition, the samples were taken out after cooling.

The microstructure (phase structure, surface morphology, energy spectrometry, surface
hardness, and adhesion of the prepared coatings), properties (tribological performance,
electrochemical corrosion behavior, and profile of wear scar of the prepared coatings), and
related equipment are referred to in our previous study [21]. The indenter on the tester
was of a 0.2 mm radius and a 120◦ taper angle. A normal load range of 0–120 N, a scratch
length of 5 mm, and a scratching velocity of 6 mm/min were used in the experiments.
The preparation of artificial seawater refers to the ASTMD 1141-98 standard, and the
specific components are shown in Table 1.

Table 1. Chemical composition of artificial seawater.

Components Concentration (g/L) Components Concentration (g/L)

NaCl 24.530 KCl 0.695
Na2SO4 4.090 NaHCO3 0.201
MgCl2 5.200 KBr 0.101
CaCl2 1.160 H3BO3 0.027
SrCl2 0.025 NaF 0.003

3. Results

Figure 1 shows the XRD patterns of different Si-doped TiSiN-Ag composite coatings
on different substrates. Peaks corresponding to the TiN phase, Ag phase, and Ti phase were
observed. The generation of the Ti phase was due to the incomplete reactive deposition
of the TiSi target on the substrates during evaporation [22]. Compared with the 5 wt.%
Si-doped TiSiN-Ag composite coating, all the TiN diffraction peaks of the XRD patterns of
all of the 5 wt.% Si-doped TiSiN-Ag composite coatings were weakened. According to the
Scherrer equation, the preferred growth direction was weakened, and the generated colum-
nar crystals decreased with the increasing Si doping content. This is because the increasing
Si doping content led to the transformation of columnar crystals to TiN nanocrystals coated
by the amorphous Si3N4 interfacial phase (nc-TiN/Si3N4). At the same time, the increasing
Si doping content led to the higher hardness and better corrosion and oxidation resistance
of the coatings due to the interfacial strengthening effect. However, no peaks corresponding
to the Si3N4 and TiSi phase were observed because the Si element existed in the form of
amorphous Si3N4 in the prepared coatings [23,24]. In addition, pure Ag peaks appeared in
all XRD patterns, indicating that there were no reactions between Ag and Si, Ag and Ti,
or Ag and N [17].
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Figure 1. XRD patterns of different Si-doped TiSiN-Ag composite coatings on different substrates:
(a) 316L, (b) TC4, (c) Cu.

Figure 2 shows the surface micro-morphologies and cross-sections of different Si-
doped TiSiN-Ag composite coatings on different substrates. It could be seen that there
were no obvious cracks, pores, or other defects on the surfaces of the coatings, and the
large, irregular-shaped crystals were dominant for the TiSiN-Ag composite coatings on
the 316L and TC4 substrates. These large particles were evenly distributed. The larger
particles could reach more than ten microns and the smaller particles could reach hundreds
of nanometers. This was due to the localized evaporation and sputtering of the cathode arc
target during deposition [25]. When the Si doping content increased to 8 wt.%, the coating
surface became denser, the number of large particles decreased, and the agglomeration of
large particles occurred in some areas, which was related to the increase in amorphous
phase content [26]. The morphology of the TiSiN-Ag composite coating on the H65 Cu
substrate was different from those of the 316L and TC4 substrates. The prepared coatings
were vermicular due to the low hardness of the Cu substrate and the high impact of incident
particles on the Cu substrate. In addition, it could be seen that the thickness of the coating
was approximately 7–8 µm.

Table 2 shows the micro-hardness values (HV0.3) of different Si-doped TiSiN-Ag com-
posite coatings on different substrates. It can be seen that when the Si doping content was
5 wt.%, the average hardness values of the TiSiN-Ag composite coatings on the 316L, TC4,
and Cu substrates were 494HV0.3, 562HV0.3, and 230HV0.3, respectively. However, the aver-
age hardness of the 8 wt.% Si-doped coatings on the 316L, TC4, and Cu substrates increased
to 516HV0.3, 588HV0.3, and 253HV0.3, respectively. This indicates that the micro-hardness
of the coating increased slightly with increasing Si doping content. This is because the
coating structure was looser, and there was a large gap between grains for the lower Si-
doped coatings. When the indenter was pressed and the dislocation had a larger extension
space, it showed lower hardness [27]. When the Si doping content increased, more Si atoms
dissolved into the TiN lattice and played the role of solid-solution strengthening. In ad-
dition, the nc-TiN/Si3N4 composite’s structure was formed continuously with increasing
Si doping content. The network structure generated by nc-TiN/Si3N4 could effectively
hinder crack initiation and propagation, inhibit the growth of crystal grains, and thus effec-
tively improve the hardness of the coating [28,29]. However, relevant studies have shown
that the hardness of the coating decreases when the Si doping content increases, up to a
certain limit [30,31]. This is because the greater generation of the amorphous Si3N4 phases
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increases the spacing of TiN columnar crystal clusters, weakening the grain-boundary
strength and leading to a decrease in the hardness of the coating. Therefore, there is an
optimal Si doping content for TiSiN-Ag composite coatings.
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Figure 2. Surface micro-morphologies and cross-section of different Si-doped TiSiN-Ag composite
coatings on different substrates: (a) Si-5 wt.%, 316L; (b) Si-8 wt.%, 316L; (c) Si-5 wt.%, TC4; (d) Si-8
wt.%, TC4; (e) Si-5 wt.%, Cu; (f) Si-8 wt.%, Cu; (g) cross-section, Si-8 wt.%, TC4.

Table 2. Micro-hardness values (HV0.3) of different Si-doped TiSiN-Ag composite coatings on
different substrates.

Substrates 316L TC4 Cu

Si doping
content
(wt.%)

5 8 5 8 5 8

Average
micro-

hardness
(HV0.3)

493.83 515.65 561.52 587.64 230.31 252.53

Figure 3 shows scratch test results of different Si-doped TiSiN-Ag composite coatings
on different substrates. The scratch length of the coating surface was 5 mm. It could be
seen that initial cracks in the 5 wt.% Si-doped TiSiN-Ag composite coating on the 316L and
TC4 substrates were 11 N and 20 N, respectively. When the Si doping content increased
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to 8 wt.%, the initial cracks increased to 19 N and 72 N, respectively. However, there was
no obvious acoustic wave for the TiSiN-Ag composite coating on the H65 Cu substrate,
indicating that there was no micro-crack inside the scratch.
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Figure 3. Scratch test results of different Si-doped TiSiN-Ag composite coatings on different sub-
strates: (a) Si-5 wt.%, 316L; (b) Si-8 wt.%, 316L; (c) Si-5 wt.%, TC4; (d) Si-8 wt.%, TC4; (e) Si-5 wt.%,
Cu; (f) Si-8 wt.%, Cu.

Compared to the TiSiN-Ag composite coatings with different Si doping content, the ad-
hesion of the coating on the 316L and TC4 substrates increased with increasing Si doping
content. This is because increasing the Si doping content improved the solid dissolution
enhancement and multi-element enhancement effects. It changed the microstructure and
stress–strain distribution of the coating and reduced the mechanical properties and porosity
of the coating, increasing the adhesion of the coating [16].

However, related studies [32,33] show that the adhesion of coatings first increases and
then decreases with an increase in doping element content. When the Si doping content
increases slightly, the large particles on the surface of the coating decrease continuously,
which makes many large particles under the compressive stress decrease obviously, and the
density of the coating increases. These can effectively inhibit the initiation and expansion of
cracks, and the coating’s adhesion is continuously improved. When the Si doping content
increases to a specific value, excessive stress and cracks inside the coatings are generated
easily during the loading process.

Figure 4 shows the open circuit potential (OCP) curves of different Si-doped TiSiN-
Ag composite coatings on different substrates. The OCP of the coating before friction
was higher, and there was no significant difference in the TiSiN-Ag composite coating
with different Si doping content. At the beginning of friction, the OCPs of the coatings
decreased significantly. This is because the passivation film had been destroyed due to
contact friction on the coating’s surface, and the activation area appeared at the wear
scar [34]. In the process of friction, the potential always decreases steadily due to the
increasing corrosion current density and decreasing corrosion potential, caused by the
failure of the passivation film covering the surface of the coating during mechanical wear.
This accelerates the corrosion rate [35,36]. The OCPs of the coating increased again at the
end of friction. During the friction process, there were small fluctuations in the OCPs of
some coatings. This showed that the passivation film was gradually destroyed, and that
dissolution and adsorption occurred. Additionally, the potential of different coatings before
friction was also similar. Compared with the initial potential of the coatings on the 316L
and Cu substrates, the initial potential of the coating on the TC4 substrate was significantly
greater, indicating better corrosion resistance. When the Si doping content increased from
5 wt.% to 8 wt.%, the OCPs slightly decreased. This is because the Si atom entered the
TiN lattice to generate the solid solution at low Si content and the coating presented the
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typical columnar structure. When the Si doping content increased, the nc-TiN/Si3N4 phase
dispersed more between grains, which reduced the hole defects between grains and made
the coating structure denser, thus effectively hindering the penetration of seawater into the
coating. Therefore, the corrosion resistance of the coating was effectively improved with
increasing amorphous phase content. The 8 wt.% Si-doped TiSiN-Ag coating on the TC4
substrate presented the better corrosion resistance.
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Figure 5 and Table 3 show dynamic polarization curves and corrosion current density and
corrosion potential of different Si-doped TiSiN-Ag composite coatings on different substrates.
It can be seen from the figure that the corrosion potential (Ecorrs) and self-corrosion current
density (Icorr) of the coating on the 316L substrate in a seawater environment were −0.1 V
(5 wt.% Si), −0.079 V (8 wt.% Si), 0.07 mA/cm2 (5 wt.% Si), and 0.06 mA/cm2 (8 wt.% Si),
respectively. The corrosion potential and self-corrosion current density on the TC4 substrate
were 0.05 V (5 wt.% Si), 0.05 V (8 wt.% Si), 0.0063 mA/cm2 (5 wt.% Si), and 0.0013 mA/cm2

(8 wt.% Si), respectively. The corrosion potential and self-corrosion current density of the Cu
substrate were −0.1 V (5 wt.% Si), −0.1 V (8 wt.% Si), 0.1 mA/cm2 (5 wt.% Si), and 0.063
mA/cm2 (8 wt.% Si), respectively. Combined with the microstructure analysis of the coatings
with different Si doping amounts, the corrosion resistance of the coating with the 8 wt.%
doping amount was further improved compared with the coating with the 5 wt.% doping
amount. The main reason for this is that the coating with the 8 wt.% doping amount had a
denser crystal structure and fewer defects, which greatly hindered the corrosion medium’s
penetration into the coating and further enhanced the corrosion resistance. Compared with the
316L and Cu substrates, the composite coating based on TC4 had the best corrosion resistance.
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Table 3. Corrosion current density and corrosion potential of different materials.

Substrates 316L TC4 Cu

Si doping
content (wt.%)

Pure
316L 5 8 Pure

TC4 5 8 Pure
Cu 5 8

Icorr (mA/cm2) 0.008 0.1 0.079 0.001 0.0063 0.0013 17.404 0.1 0.063
Ecorr (V) −0.30 −0.07 −0.06 −0.22 0.05 0.05 −0.347 −0.1 −0.1

Figure 6 shows the friction coefficients of different Si-doped TiSiN-Ag composite
coatings on different substrates against Si3N4 balls in seawater. When the Si doping content
was 5 wt.% and 8 wt.%, the average friction coefficients of the coatings on 316L, TC4,
and Cu substrates were 0.51, 0.46, and 0.54, and 0.49, 0.43, and 0.55, respectively. It can
be seen that the friction coefficients of 8 wt.% Si-doped TiSiN-Ag coatings on 316L and
TC4 substrates were larger than those of the 5 wt.% Si-doped TiSiN-Ag coatings. At the
same time, the friction coefficient exhibited less fluctuation and generally maintained a flat
trend. This is because: (1) when the Si doping content increased from 5 wt.% to 8 wt.%, a
more nanocrystalline composite structure (nc-TiN/Si3N4) was generated, which decreased
adhesion of coating on substrates and shear stress in the friction process. In addition,
the more nanocrystalline composite phase also made a more compact coating structure,
resulting in a reduction in the plastic deformation of the coating during friction. (2) The
amorphous SiO2 was generated by tribochemical reaction during the friction process,
which dissolved in the seawater solution and formed a thin boundary lubrication film
between the friction interfaces, thus reducing the friction coefficient [37,38]. The reactions
are as follows:

Si3N4 + 12H2O = 3Si(OH)4 + 4NH3 (1)

SiO2 + 2H2O = Si(OH)4 (2)
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However, the friction coefficient of the 8 wt.% Si-doped TiSiN-Ag coating on the
Cu substrate was larger than that of the 5 wt.% Si-doped TiSiN-Ag coating. For the
samples with low Si-doping content, there are no obvious large particles on the coating’s
surface. This decreased the number of large ruptured particles under compressive stress
significantly and increased the density of the coating continuously. These factors could
effectively reduce the friction coefficient. However, when the Si doping content increased
to a threshold value, the larger internal stress of the coating easily generated cracks in the
friction process. Related studies showed similar results [39,40]. In addition, the ductility
and low shear strength of the soft metal Ag phase also played a role in lubrication, which
reduced the friction coefficient of the TiSiN-Ag composite coating [17,18].

In order to better illustrate the tribological properties of TiSiN-Ag composite coatings,
wear track profiles were introduced. Figure 7 shows the wear track profiles of different Si-
doped TiSiN-Ag composite coatings on different substrates against Si3N4 balls in seawater.
When the Si doping content was 5 wt.%, the wear scar width and depth of coatings on 316L,
TC4, and Cu substrates were around 0.605 mm and 2.329 µm, 0.448 mm and 2.195 µm,
and 0.566 mm and 3.162 µm, respectively. However, when the Si doping content was 8
wt.%, the wear scar width and depth were around 0.482 mm and 2.149 µm, 0.367 mm
and 1.986 µm, and 0.519 mm and 4.174 µm, respectively. It can be seen that fluctuations
appeared in the center of the wear track profile. This shows that adhesive wear of the
coatings took place during the friction process. Figure 8 shows the wear rate of TiSiN-Ag
composite coatings with different Si doping content on different substrates against Si3N4
balls in seawater. Because the coatings on the Cu substrate were worn through, the wear
rate is not presented. When the Si doping content was 5 wt.%, the wear rates of coatings on
the 316L and TC4 substrates were around 9.7850 × 10−6 mm3/(N·m) and 6.8289 × 10−6

mm3/(N·m), respectively. When the Si doping content was 8 wt.%, the wear rates of
coatings on the 316L and TC4 substrates were around 7.1933 × 10−6 mm3/(N·m) and
5.0617 × 10−6 mm3/(N·m), respectively. Obviously, the wear rates of the 5 wt.% Si-doped
coatings were significantly higher than those of the 8 wt.% doped coatings. This was
because the columnar crystals’ structure in the 5 wt.% Si-doped coatings could provide
diffusion channels for the corrosive medium, weaken the bonding effect of the coating,
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and accelerate wear. However, the number of columnar crystal structures in the 8 wt.%
Si-doped coatings was small, which could effectively hinder crack growth and decrease
the wear rate. In addition, the wear rate of the coating on the TC4 substrate was lower
than that of the 316L substrate. This was because as TC4 belongs to a dual-phase alloy,
the crystal density was much greater than that of 316L, and its specific strength was higher.
When the corrosive medium entered the crystal through the wear scar to reach the interface
between the substrate and coating, the faster diffusion rate was the cause of serious damage
and even peeling of the coating on the 316L substrate. In the process, the soft Ag could
block the continuous growth of the columnar crystal of the coating and refine the grains,
reducing the damage of the corrosion media to the coating. Moreover, the combination
of the soft Ag phase and the high hardness TiSiN layer could reduce the hardness and
elastic modulus of the TiSiN layer, improve its ability to resist brittle damage, and play a
lubrication role in the friction process.
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In order to further study the mechanism of friction and wear of TiSiN-Ag composite
coatings with different Si doping content on different substrates in seawater, the wear scar
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morphologies of different Si-doped TiSiN-Ag composite coatings on different substrates
against Si3N4 balls in seawater are shown in Figure 9. The coatings on the 316L and TC4
substrates were smooth and flat. There was no peeling or obvious micro-pores in the
surface, though flattened furrows were observed. This indicates that the wear mechanism
of the coating was a combination of adhesive wear and plastic deformation. Compared with
different Si-doped coatings on the same substrate, the wear scar area and width of 8 wt.%
Si-doped coatings were less than those of the 5 wt.% Si-doped coatings due to its denser
microstructure [41]. In this process, the Si3N4 ball was also prone to hydration reaction,
which could alleviate the cutting effect of abrasive particles and reduce the wear rate.
Meanwhile, white salt crystals with uneven distribution and different sizes attached to the
coating surface could be observed, which was caused by the viscosity of seawater and the
precipitation of calcium and magnesium salts.
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Figure 10 shows the EDS of friction marks of different Si-doped TiSiN-Ag composite
coatings on different substrates against Si3N4 balls in seawater. Besides the composition
of the substrate material and the coating itself, the existence of the O element at the wear
mark indicates that oxidation occurred during the friction process. In addition, it can be
seen that elements such as Na, Mg, Al, and Cl in the seawater environment settled to the
wear marks, and the Mg(OH)2 and Al(OH)3 formed during the friction process were also
good lubricating media.
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4. Conclusions

TiSiN-Ag composite coatings with different Si doping content on different substrates
were prepared by multi-arc ion plating technology. The microstructure (phase structure,
surface morphology, energy spectrometry, surface hardness, and adhesion), and properties
(tribological performance, electrochemical corrosion behavior, and profile of wear scar)
were characterized. Compared with 5 wt.% Si-doped TiSiN-Ag composite coatings, the 8
wt.% Si-doped TiSiN-Ag composite coatings had smaller average grain size, more compact
structures, higher hardness and adhesion, better tribological properties, and larger OCPs
and slope of the anodic polarization curve in the friction. The main reason for this is
that there are many nanocrystalline composite structures of amorphous Si3N4 interfacial,
phase-wrapped nanocrystalline TiN phases (nc-TiN/Si3N4) in 8 wt.% Si-doped TiSiN-Ag
composite coatings. The generated network structure can effectively hinder the generation
and expansion of coating cracks. Moreover, increasing Si doping content can also reduce
the influence of pinholes, cracks, and other defects in the coating due to the interfacial



Coatings 2021, 11, 459 12 of 13

enhancement effect. The 8 wt.% Si-doped TiSiN-Ag composite coatings on the TC4 substrate
presents good anti-tribocorrosion performance in artificial seawater.
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