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Abstract: The growth mechanism of nanocolumnar silver thin film deposited on a smooth silicon
substrate using electron beam evaporation process at an oblique angle was simulated with the
Kinetic Monte Carlo method. Following the simulated silver nanostructured thin film, a further
computational simulation was done using COMSOL for surface-enhanced Raman scattering effects.
The simulation results were compared against corresponding experimental results, which demon-
strated high agreement between simulation results and experimental data. It was found that as the
incident deposition angle increased, the density of the Ag thin film significantly decreased and the
surface roughness increased. When the incident deposition angle was at 75◦ and 85◦, the resulting
nanocolumnar structure was significantly tilted. For Ag thin films deposited at all investigated
angles, surface-enhanced Raman scattering effects were observed. Particularly, the Ag nanocolumns
deposited at 85◦ showed remarkable Surface-enhanced Raman Scattering effects. This was seen in
both COMSOL simulations and experimental results: Enhancement factors were 2 × 107 in COMSOL
simulation and 3.3 × 105 in the experiment.

Keywords: Kinetic Monte Carlo simulation; Oblique-Angle Deposition; silver thin film; nanocolum-
nar structure; SERS

1. Introduction

The Oblique-Angle Deposition (OAD) method is a thin-film deposition method that
can be used to obtain a thin-film nanostructure or a specific thin-film surface morphol-
ogy [1]. Nanostructured films produced by OAD are also known as sculptured thin films [2].
Compared with the traditional deposition method, the vapor-phase atomic beam or ion
beam current is incident at an angle to the substrate rather than just being perpendicular
to the substrate. The nanostructure, morphology, and porosity of the thin film are formed
by the ballistic shadowing effect, which is dependent on the incident angle. Increased
incident angle increases the shadowing length, which, in turn, increases the percentage
of substrate that is self-blocked from deposition [3]. Therefore, the void area between the
columns is increased and the density of the film is reduced [4]. Using this OAD method,
a porous nanostructure, different from the traditional dense film, can be obtained. The
porous, nanostructured film is not only sculptural but also has anisotropy, controllable
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refractive index, and other useful characteristics, which can be widely used for Surface-
Enhanced Raman Scattering (SERS), phase retarders, biosensors, optoelectronic crystal
devices, virus/bacteria/toxin detections [5–7], optical fiber probes [8], and ultrathin-layer
chromatography plates [9]. Among these applications, the SERS [10] sensor is one of the
more typical applications of these nanostructured films deposited using OAD method.

Raman spectroscopy is versatile non-destructive testing and molecular recognition
technology, which can provide fingerprint information of chemical and biological molecular
structures [11]. Ordinary Raman scattering signals are exceedingly weak. However, it was
found that the Raman scattering signals can be dramatically enhanced by placing the ana-
lyte close to nanostructured metal surfaces, thereby improving detection of trace molecular
signatures. Generally, this enhancement of Raman scattering is through the hot spot effect
(the strong electromagnetic field area generated by the metal nanostructure). Therefore,
exploring and designing an effective metal substrate with a suitable electromagnetic field
area is the primary goal of SERS researchers.

Currently, the research on the SERS substrates is mainly through batch experiments.
In actual practice, not only are the process parameters during fabrication very complicated
and the morphology of SERS substrates difficult to finely control, but the batch experiment
itself is a long and tedious process.

In this work, simulation of the growth process of Ag nanostructured films at var-
ious incident depositions’ angles was done using Kinetic Monte Carlo (KMC) code for
the simulation of deposition, diffusion, nucleation, and growth of a film on a substrate,
NanoSacle Modeling (NASCAM) [12]. Based on the results of NASCAM simulations,
the nanostructured, thin-film physical models were obtained and further simulated for
SERS effects using finite element analysis by COMSOL 5.4. Simulation results were then
compared to and verified by a corresponding experiment.

2. Background of Simulation
2.1. Nanostructure Simulation Using the KMC Method

The systematic investigation on the time evolution of nanostructured Ag films de-
posited using the OAD method at various oblique angles on smooth Si substrate was
simulated at the atomic scale using NASCAM software (NASCAM (4.6.2)), which is based
on the KMC method [13–15].

Figure 1 displays the geometry schematic of the OAD method in NASCAM. The
substrate and circular thermal evaporation source were located at (50, 50, 100) and (50, 50,
0), respectively. The unit of geometry is millimeter. The shape of the vapor distribution
emitting from the thermal source was defined by the Cosine law, p(θ) = cosnθ, wherein,
the directionality of the vapor flow is dependent on the value of n. The larger the n, the
better the directionality of flow [16]. Besides, the value of n is related to the shape of the
crucible. The deep and narrow crucible has a large n value, so the evaporation material
can be limited to a small divergence angle [16]. In general, the range of the n is from 1 to 7.
In this simulation, to ensure good directional vapor flux and make an agreement with the
experimental condition, the value of n was defined as 7.
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In the KMC method, kinetic events, such as diffusion, can be associated with the
physical mechanisms and events that happen in any given direction. The Arrhenius law
can be used to describe an elementary event rate for a given event i [17]:

wi = w0exp(−Ei/kBT). (1)

The w0 refers to the attempt frequency and Ei refers to the activation energy for event
i. A type of kinetic event is chosen according to its occurrence probability, pi. This is the
ratio of the rate of event i to the total rate (the sum over all event rates) [17]:

pi = Niwi/ ∑
i

Niwi (2)

where Ni is the number of atoms and wi is the rate of corresponding kinetic event. Table 1
shows the kinetic events with the corresponding activation energies used to simulate the
Ag film growth. The activation energy of Ag free diffusion (Ea_diff) was estimated to be
0.5 ev by referring to the results of published work [17–19]. In this work, the activation
energies were estimated by using the nudged elastic band (NEB) method. Furthermore, a
series of activation energies were estimated by referring to the reported values of activa-
tion energies in published literature and a general activation energy relationship (Ea_up,
Ea_down > Ea_nn_inc, Ea_nn_dec, Ea_detach > Ea_diff, and Ea_detach > Ea_nn_dec; the
definitions of each parameters are shown in Table 1) in NASCAM manual [12,18–21]. The
substrate temperature was set as 323 K, which made a good agreement with the experi-
ment. In this situation, the probability of an evaporation event occurring was lower than a
diffusion event. Therefore, Ag evaporation’s activation energy from the substrate or layers
(Ea_evap) was fixed at 4.5 eV, which was much higher than free diffusion energy (Ea_diff).
Si substrate bind energy was a default constant value in NASCAM.

Table 1. The basic parameters of the Si substrate and substrate physical constant.

Parameters and Physical Constant Value

Free diffusion (Ea_diff) 0.5 ev
Hops with an increase or decrease of neighboring atoms number

(Ea_nn_inc/Ea_nn_dec) 1.9 ev

Hop down or up from one level to another (Ea_up/Ea_down) 2.0 ev
Detachment from an island or substrate feature (Ea_detach) 1.95 ev

Evaporation from the substrate or layers (Ea_evap) 4.5 ev
Substrate temperature 323 k
Substrate bind energy 3.52 ev

Table 2 displays the deposition parameters in this simulation. The deposition rate
was fixed as 0.3 monolayers per second (0.15 nm/s), which was close to the experimental
value. The incident energy of the atom was set as 0.6 ev, in accordance with the condition
of the e-beam evaporation [16]. The deposition angle was defined as the angle between the
incident vapor flux and the substrate normal. Ag thin-film binding energy was predefined
in NASCAM as a default value.

Table 2. Deposition parameters in simulation.

Deposition Parameters Value

Thin-film binding energy 2.97 ev
Incident energy of an atom 0.6 ev

Deposition angle 0◦/45◦/75◦/85◦

Deposition rate 0.3 mL/s



Coatings 2021, 11, 458 4 of 15

2.2. SERS Performance Simulation Model

Figure 2 displays the geometry schematic of the SERS simulation model. Gaussian
beam was incident on the nanostructure. The polarization direction of the incident was
defined as the connection direction of nanocolumns. The reason is when the polarization
direction of the incident is parallel to the connection direction of the nanocolumns, the
nanocolumns will act as dipoles with each other and the plasmon effect will occur on
the surface of the nanocolumns, inducing a significant enhancement of the horizontal
electromagnetic field. Chosen Gaussian beam and the two-dimensional Gaussian beam
expression [22] are shown below:

EGauss(x, y) = E0

√
w0

w(y)
exp(−x2/w(y)2)exp

(
−ikx2/(2R(y)

)
+ iη(y)) (3)Coatings 2021, 11, x FOR PEER REVIEW 5 of 16 
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In this expression, w0 is the minimum waist, w is the angular frequency, k is the
wavenumber, and η(y) is the phase correction. The wavefront of the beam is not exactly
planar. It propagates like a spherical wave with radius R(y).

Plane-wave expansion of Gaussian beam is:

EPW =
M

∑
j=−M

1

∑
k=0

ajkûk
(
kj
)

exp
(
−i
(
kj·r

))
(4)

where each wave vector kj points in different directions for each value of the index j and
ajk is the amplitude that has a different value for each wave vector and also for each of the
two possible polarization directions per wave vector, ûk

(
kj
)
.

The wavelength of incident light was chosen as 638 nm since 638 nm is commonly
used as excitation wavelength in the Raman spectrum. The propagation medium of
electromagnetic waves was defined as air, and the material of nanostructure was defined
as Ag. The dispersion formula [23] of the relative dielectric constant of Ag is:

ε(ω) = 1−
ωp

2

ω2 (5)

The angular frequency is defined as:

ω =
2πc

λ
(6)

where ωp is the plasma frequency of the material, the plasma frequency of Ag is about√
21ω, and the relative dielectric constant obtained is a negative value. For many

metals, this phenomenon is normal when the incident light frequency is lower than the
plasma frequency.
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3. Experiment
3.1. Deposition

The Ag nanostructured films were deposited by e-beam evaporation at different vapor
incident angles, θ = 0◦, 45◦, 75◦ and 85◦. The tilt angle of the sample can be manually
controlled by motion feedthrough. Silver with a purity of 99.99% was used as deposition
material. Silicon wafers were used as substrates and a standard substrate cleaning process
was performed before film deposition, as follows. A mixture of ether and anhydrous
ethanol in a ratio of 1:3 was used to clean the substrate, and then the substrate was put into
an ultrasonic cleaner for 2 min. We repeated the steps two times, and, finally, dried the
surface with nitrogen gas. The thicknesses of samples were controlled by using a quartz
crystal monitor. The current of the electron gun and the system bias voltage were set
as 120 mA and 7 kv, respectively. The deposition temperature was fixed as 323 K. The
configuration of the OAD system is shown in Figure 3.
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3.2. Characterization

The SERS was investigated using Rhodamine 6G as a probe molecule at an excitation
wavelength of 638 nm. Rhodamine 6G was chosen because it has a relatively large Raman
cross section and is commonly used as a Raman probe molecule on silver substrates.
A droplet of Rhodamine 6G solution with a concentration of 10−5 M was dispensed
on the surface of silver samples. Another droplet of Rhodamine 6G solution with a
concentration of 5 × 10−2 M was dispensed on a silicon wafer as a reference substrate.
For the enhancement factor, the enhancement factor (EF) of the Raman scattering was
estimated by the following formula [23].

EF =
ISERS/CSERS
IREF/CREF

(7)

where ISERS and CSERS are the SERS peak intensity and the concentration of R6G
molecules adsorbed on the Ag SERS substrate, respectively. IREF and CREF are the
normal Raman peak intensity and the concentration adsorbed on the reference substrate,
respectively. The Raman system was calibrated by using a silicon standard before silver
sample measurements.

The morphology of silver samples was observed by using SEM and the tilt angles
of nanocolumns were measured by a free screen protractor software in the SEM pictures
and took an average value of several sets of measurements. The surface roughness of the
film was measured with a non-contact surface profiler. The fabrication process is shown in
Figure 4.
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4. Results and Discussions
4.1. Comparison of KMC Simulation and Experimental Result
4.1.1. KMC Simulation Results

Figures 5 and 6 display the film growth results at different stages. Figure 5 demon-
strates that, in the initial stage of islands’ growth, in which the size of deposited monolayers
was 0.5 mL, owing to the diffusion effect between the atoms and the substrate, the atoms
can migrate and adsorb each other. However, due to a few numbers of deposited atoms
at this stage, it was difficult to form a continuous and prominent island-like structure.
Nevertheless, it is worth mentioning that when the deposition angle was 85◦, the initial
island structures on the substrate were slightly larger than the islands obtained from other
deposition angles. This phenomenon was explained to be the initial shadowing effect that
prevented free diffusion of some atoms on the substrate. Thus, it was easier for atoms to be
captured by large atomic groups.
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Figure 6. Film growth simulation results at the initial nanostructure growth stage (2.5 mL) under
different deposition angles.

Figure 6 displays the film growth results under various deposition angles at the initial
nanostructures’ growth stage, in which the size of deposited monolayers was 2.5 mL. In
this stage, more atoms covered the substrate, forming a layered film or initial nanostructure.
Figure 6 indicates that when depositing at a low angle, the deposited atoms can diffuse and
combine readily with each other on the substrate due to the relatively weak shadowing
effect, resulting in a continuous layered film without any nanostructure. However, the
film obtained at a high deposition angle showed prominent initial nanocolumn structures.
The reason is the shadowing effect is drastically enhanced by increased deposition angle,
inducing many atoms’ failing to diffuse and migrate into the shadowing area. As the
deposition process continued, the atoms continuously adsorbed and deposited on the
atomic group, resulting in oriented growing along a specific direction and forming the
initial nanostructures. Figure 7 gives the top view of the initial nanostructure of Ag thin
film. It can be observed clearly that the initial nanostructure of Ag thin film became more
significant due to a more substantial shadowing effect, which was related to increased
deposition angles.
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Figure 8 displays the ratio of the number of islands (Ni) to the total number of atoms
deposited at the same moment (Nt) on the substrate at the initial growth stage. It is worth
noting that the software defines an island as two or more particles being within each nearest
lattice points. (The island size, as defined, started at 2 atoms) [12,17]. The island number
as used in Figure 8 was an averaged value from several simulations that were conducted.
Figure 8 demonstrates that the ratio of number of islands to number of atoms decreased
with the deposition time during the initial growth stage. In this stage, atoms combined,
nucleating to form the initial island-like structure. As the number of deposited atoms
increases, these independent island-like structures can aggregate into atomic layers or can
form a continuous film, resulting in a decrease in the ratio of number of islands to number of
atoms. It can also be observed that the ratio eventually decreased to 0 (i.e., no more islands,
just a continuous film) at the deposition angles of 0◦, 45◦, and 75◦, whereas when the
deposition angle was 85◦, no continuous film was formed under our simulation conditions.
For simulations done at deposition angle of 85◦, the ratio dropped sharply but did not
reach 0. This result indicates that under high-angle deposition, the gap/shadowed areas
between the titled nanocolumns were relatively large and it was difficult for new incident
atoms to reach these shadowed gaps, therefore, inhibiting formation of continuous film.
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Figure 9 shows the relationship between the free atoms’ mean diffusion path on the
substrate and the deposition time. The calculation method of mean diffusion path in
NASCAM was demonstrated as follows. For each atom, the number of jumps between the
deposition and the first attachment and between a possible next detachment and further
attachments was calculated. Then, this number was divided by the number of periods
of time when the atom was free [12,17]. Obviously, the atom was free before the first
attachment and between further detachments and subsequent attachments. In this way, a
mean diffusion path for a given atom can be estimated. The mean path was then obtained
via statistical approach for all atoms in the system that was simulated. The value of
mean diffusion path presented in Results was an averaged value from several simulations
conducted. It can be found from Figure 9 that a longer diffusion distance of free atoms
on the substrate was produced by the increase of the deposition angle. The reason is that,
under large-angle deposition, the shadowing effect is extremely strong and the shadowing
area is relatively large, which can provide sufficient area for free atoms to diffuse a longer
distance on the substrate before combining with other atoms.
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Figure 9. The curves of the free atoms’ mean diffusion path at the initial stage of film growth under
different deposition angle.

Figure 10 shows the final results of the nanostructured film in simulation. It suggests
that the film had a more significant nanocolumnar structure with the increase of the
deposition angle. To be specific, a flat and smooth film surface was obtained at the
deposition angle of 0◦. When the deposition angle was increased to 45◦, many nano-tips
appeared on the surface of the film, although there was still no significant nanocolumnar
structure. However, the film had a significant tilted nanocolumnar structure when
depositing at the angles of 75◦ and 85◦. The tilt angle of nanocolumn was defined as the
angle between the nanocolumn and substrate, and the angles were measured by a free
protractor software and took the average of several sets of measurements It was found
that the average tilt angles of nanocolumn at the angles of 75◦ and 85 were 49.1◦ and
32.8◦, respectively. Figures 11 and 12 show the film’s surface roughness and density as
a deposition time function. The results show that the thin-film surface roughness and
thin-film density were associated with the deposition angle. Thin-film surface roughness
dramatically increased with deposition angle, especially when the deposition angle
was greater than 45◦. Besides, an increase in deposition angle led to a decrease in film
density. These results are related to the shadowing effect. The length of the shadowing
area increased with the deposition angle. Therefore, atoms could enter the shadowing
area only through the diffusion effect under high-angle deposition, which reduced the
number of atoms in the shadowing area and resulted in a decrease in film density.
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4.1.2. Experimental Results

Figure 13 shows experimental results of nanostructured Ag film obtained under
different deposition angles. The films only obtained at 75◦ and 85◦ had the obvious tilted
nanocolumnar structure. The tilt angle of nanocolumn was defined as the angle between the
nanocolumn and substrate, and it was found that the average tilt angles of the nanocolumns
obtained under 75◦ and 85◦ from simulation and experiment showed a good consistency,
wherein the tilt angles in simulation were 49.1◦ and 32.8◦ and the tilt angles in experiment
were 47.4◦ and 31.8◦, respectively. These results also indicated that there was a relatively
good agreement with the tilt angle predicted by the law of cosine (Equation (8)) [24].

β = α− sin−1
(

1− cosα

2

)
(8)

where α is the deposition angle and β is the angle between the nanocolumn and substrate
normal. So, the tilt angle of nanocolumn was (π/2)− β. Table 3 displays the comparison
of tilt angle of nanocolumn between simulation, experiment, and theoretical estimation
(Equation (8)). It indicates that the tilt angles of nanocolumn obtained at 85◦ in simulation
and experiment demonstrated a high consistency with theoretical estimation. However,
when the deposition angle was 75◦, there was a difference between the theoretical estima-
tion and simulated and experimental results. The reason is that the cosine law focuses on
and considers the shadowing effect’s influence on the tilt angle. Especially when a very
high deposition angle can lead to an extremely strong shadowing effect, the column tilt
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angle predicted by this equation is very accurate [1]. However, 75◦ is not a very high angle,
which cannot lead to an extremely strong shadowing effect. So, the tilt angles predicted
by the cosine law did not totally agree with experimental and simulation results. This
difference of tilt angle of nanocolumn was also reported in other published papers and
references [1,25]. Besides, the predicted angle by Equation (8) is a reference data for this
work, and the simulation results and experiment results achieved a good agreement in this
work. The KMC simulation results shown in Figure 10 and the experimental results shown
in Figure 13 demonstrate that the obvious nanocolumn structure only was observed at
high angle of deposition by the OAD method, which was similar to the relevant published
literature in this research area. In particular, the nanostructures had the same growth
pattern and trend due to the shadowing effect under high angle deposition. Although the
tilted angles of nanocolumn had a little difference, since the difference of film material and
deposition method such as the tilt angle was 34◦ in Dr. Song’s work and 38◦ in Dervaux’s
work at 85◦ deposition angle, it still implies that the results in this work agreed with
reported work [1,2,21,26].
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Table 3. Comparison of nanocolumns’ average tilt angle between simulation, experiment, and
theoretical estimation.

Deposition Angle Simulation(Average) Experiment(Average) Theoretical Estimation

75◦ 49.1◦ 47.4◦ 40◦

85◦ 32.8◦ 31.8◦ 33◦

Table 4 shows a comparison of the surface roughness of simulation and the experi-
mental results. Both of the roughness values calculated from NASCAM simulations and
experiment were defined as the arithmetic average of the absolute value of the surface
height deviation, RMS =

√
< h2 >−< h >2, where h is the local thickness of the film

and 〈 〉 means the averaging over the whole film. The roughness unit in simulation was
lattice unit (l.u.), which is defined as the smallest repeating unit having the full symmetry
of the structure [12]. Typical RMS roughness values ranging from 2–3 to 20 nm have been
reported for OAD thin films prepared by e-beam evaporation [27,28]. This table demon-
strates that the trend of surface roughness in the simulation results was in approximate
agreement with experiment results: The thin-film surface roughness increased with the
increasing of the incident deposition angle.



Coatings 2021, 11, 458 12 of 15

Table 4. Comparison of surface roughness of simulation results and the experimental results.

Deposition Angle Thin-Film Surface
Roughness (Simulation)

Estimation from Simulation
(nm)

Thin-Film Surface
Roughness (Experiment)

0◦ 6.5 l.u 2.6 nm 1.8 nm
45◦ 7.6 l.u 3.1 nm 2.1 nm
75◦ 14.7 l.u 6.0 nm 6.7 nm
85◦ 36.6 l.u 14.9 nm 18 nm

Note: The roughness in lattice unit can be estimated to nanometer unit by multiplying the lattice constant of Ag. For example, the film
roughness obtained at 85◦ was 36.6 l.u. By multiplying the lattice constant of Ag (0.408 nm), the film roughness was estimated to 14.9 nm.

4.2. Comparison of SERS Performance Simulation Results and Experimental Results

According to the KMC simulation results, approximated nanostructure models were
carried out and then the local enhanced electric field of nanostructures was simulated after
being irradiated by the Gaussian beam. The contribution of the electromagnetic field in
Raman scattering can be expressed as:

EFEM = |E(ω)|2
∣∣E(ω′)∣∣2 (9)

where E(ω) is the electric field intensity of incident light and E(ω’) is the electric field
intensity of scattered light with frequency ω’. Since the frequency of the scattered light
and the frequency of the incident light were relatively close, it can be considered that
the contribution of the electromagnetic field in the Raman spectrum was proportional
to the fourth power of the intensity of the incident electric field. Figure 14 displays the
approximated nanostructure models based on KMC results and the simulation results of
the electric field distribution of the enhanced local electric field. As shown in Figure 14, the
enhanced electric field distribution demonstrated that the strong enhanced electric field
only occurred between the nanocolumn obtained under high-angle deposition. The reason
is that the dipole coupling electromagnetic excitation occurred between the nanocolumns
and plasmon resonance occurred on the surface of nanocolumns.
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Figure 14. Electric field distribution diagram of Ag film obtained from different deposition angles.

The curves in Figure 15 show the local enhanced electric field intensity of nanos-
tructure film obtained under different deposition angles in simulation. From the figure,
when the deposition angles were 0◦ and 45◦, the intensity of the local enhanced electric
field was about 3 to 5 times compared to the incident electric field. However, when the
deposition angles were 75◦ and 85◦, the intensity was 18 times and 69 times compared
to the incident electric field. According to the contribution of the electromagnetic field
in Raman scattering that is proportional to the fourth power of the incident electric field
intensity, the enhancement factor of Raman scattering was about 102 when the deposition
angles were 0◦ and 45◦. However, the enhancement factor of Raman scattering had a
significant promotion, such that the enhancement factor could reach 105 and 2 × 107 when
the deposition angles were is 75◦ and 85◦, respectively.
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Figure 16 demonstrates the SERS performance in the experiment. From the experimen-
tal results, it can be found that the Ag film deposited at 85◦ angle has a remarkable SERS
intensity and the simulation results agreed with the experimental results. Enhancement
factor of the Raman scattering was also estimated by the formula 5. Herein, the reference
concentration of R6G was determined to be 10−5 M for CSERS and 5 × 10−2 M for CREF.
For maximum Raman intensity peak, the maximum enhancement factor was estimated to
3.3 × 105.
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From the comparison of simulation and experimental results for Ag nanocolumnar
thin films deposited at all investigated angles, it was found that Ag thin-film nanocolumns
were deposited at an angle of 85◦, had the strongest local electric field enhancement and
SERS intensity, followed by deposition at 75◦, and there was no significant promotion
of SERS intensity at 45◦ and 0◦ deposition. The SERS enhancement factor had a drastic
promotion with the increase of deposition angle. This result is also similar to other reported
work that nanostructured or sculptured film obtained under high-angle deposition has a
better SERS performance [2,3]. The reason for the promotion of film SERS performance is
the low density and separation of nanocolumns of the film under high-angle deposition.
After the film was irradiated by incident light, dipole coupling electromagnetic excitation
occurred between the separation nanocolumns and plasmon resonance occurred on the
surface of nanocolumns. The electrons on the film surface collectively moved to form
surface plasma, which coupled and oscillated with the incident and scattered photoelectric
fields to generate a strong local electric field to enhance the SERS intensity.
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5. Conclusions

The growth mechanism of nanocolumnar Ag thin film deposited on a smooth Si
substrate using electron beam evaporation process at an oblique angle was simulated
with the KMC method. Following the simulated silver nanostructured thin film, a further
computational simulation was done using COMSOL for SERS performance. The experi-
mental results were compared with corresponding simulation results and showed a good
agreement. The conclusions were drawn as follows.

Firstly, an increase of deposition angle induces an increase of the Ag thin-film surface
roughness, and a high deposition angle leads to a significant decrease of thin-film density.
The initial nanostructure formation at the early stage of film growth is caused by the strong
ballistic shadowing effect associated with oblique-angle deposition.

Secondly, the KMC simulation results showed good consistency with experimental
results, either the morphologies or tilt angle of nanocolumns. It is worth noting that when
the deposition angles were 75◦ and 85◦, the Ag film had an obvious nanocolumnar structure
and the tilt angles of the nanocolumns obtained both from simulation and experiment were
followed by the cosine law.

Furthermore, after being irradiated by a Gaussian beam with a wavelength of 638 nm,
the Ag film obtained at a high deposition angle had a relatively strong, locally enhanced
electric field intensity than a low deposition angle one. For Ag nanocolumnar thin films
deposited at all investigated angles, nanostructured Ag film only obtained at 85◦ deposition
angle gave the strongest SERS performance, both in simulation and experiment.

Finally, the NASCAM simulation greatly supported the experimental observation, es-
pecially for film growth process and nanostructures. This implies that the KMC simulations
realistically reproduce the island formation, atomics’ diffusion process, ballistic understand-
ing of the mechanisms governing the growth of nanostructured Ag film. Meanwhile, SERS
performance of nanostructured film based on KMC simulations showed good consistency
with experimental data, which provides a convincing example for us. This KMC/COMSOL
modeling and experimental method can be used in the future to investigate nanostructured
film applications.
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