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Abstract: Degradation by wear and corrosion are frequently encountered in a variety of tribosystems,
including materials and tools in forming operations. The combined effect of wear and corrosion,
known as tribocorrosion, can result in accelerated material degradation. Interfacial conditions can
affect this degradation. Tribocorrosion maps serve the purpose of identifying operating conditions at
the interface for an acceptable rate of degradation. This paper proposes a machine learning-based
approach to generate tribocorrosion maps, which can be used to predict tribosystem performance.
Two tribocorrosion datasets from the published literature are used. The materials have been chosen
based on the wide availability of their tribocorrosion data in the literature. First, unsupervised
machine learning is used to identify and label clusters from tribocorrosion data. The identified
clusters are then used to train a support vector classification model. The trained support vector
machine is used to generate tribocorrosion maps. The generated maps are compared with those from
the literature. The general approach can be applied to create tribocorrosion maps of materials widely
used in material forming.

Keywords: tribocorrosion maps; machine learning; support vector machine; K-means clustering

1. Introduction

The development and implementation of predictive models from experimental data
using machine learning (ML) has been an active research topic in material science and
engineering. In ML, a computer program based on an algorithm learns from historical data
to improve a performance metric. The selection of the algorithm and metric depend on
the specific data and problem at hand. The commonly used ML algorithms can be divided
into regression, probability estimation, classification and clustering [1]. Recently, ML tools
have been used in tribology to build predictive models for friction coefficient [2,3], wear
rate [4] and wear volume [5], to design lubricants [6–8] and functional materials [9], for
tribocorrosion [10] and surface roughness [11] modeling, for wear particle classification [12],
in corrosion modeling [13–19], and in medical implant classification [20].

Tribocorrosion, which is the combined effect of wear and corrosion, is often undesir-
able and can accelerate material degradation. It is frequently encountered where surfaces
are in contact with each other in a corrosive environment. Interfacial conditions such as
materials, lubrication, normal load, type of contact (sliding, fretting, rolling, impact), rela-
tive speed, surface topography, temperature, humidity and pH can affect the degradation
process [21]. This phenomenon is relevant to a range of industries such as material forming
and machining [22–26], mining and energy [27–29], healthcare [30], and transportation [31].
The total mass change by tribocorrosion (Kwc) can be explained using the analysis in [32] as

KWC = KW + KC (1)

where Kw is the total mass of material removed due to wear, Kc is the total mass of material
removed due to corrosion. Kw is Kwo + ∆Kw, where Kwo is the mass loss by wear in
the absence of corrosion, and ∆Kw is the synergistic effect of corrosion on wear. Kc is
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Kco + ∆Kc, where Kco is the mass loss by corrosion in the absence of wear, and ∆Kc is the
additive effect (enhancement) of corrosion due to wear. These terms can be determined
experimentally and used to characterize the dominant degenerative mechanism for the
tribosystem. Tribocorrosion regimes [33] are defined based on the ratio Kc/Kw as follows:

KC
KW

≤ 0.1, wear (2)

0.1 <
KC
KW

≤ 1, wear− corrosion (3)

1 <
KC
KW

≤ 10, corrosion−wear (4)

KC
KW

> 10, corrosion (5)

Tribocorrosion mechanism maps and synergy maps illustrate these regimes as func-
tions of interfacial conditions such as normal load, sliding speed and pH. These maps are
helpful to optimize material forming processes, identify conditions of minimal degradation,
improve tool life, and design functional materials and coatings [34].

The standard approach to create tribocorrosion maps involves extensive experiments
to generate data, determine the regimes and create graphical illustrations. Machine learning
can be used to quickly and automatically create accurate predictive models from the
experimental data. Although ML tools are widely used in tribology, no previous studies
have dealt with identifying clusters and creating tribocorrosion maps using ML tools.
This study uses both unsupervised and supervised learning techniques to make predictive
models for tribocorrosion and to generate maps. The two datasets used to create the models
are from published tribocorrosion studies. The materials used in these studies are the alloys
Ti–25Nb–3Mo–3Zr–2Sn and Co–Cr. These have been chosen because their tribocorrosion
data are widely available in the literature.

The titanium alloy has mechanical properties that make it suitable for a wide range of
applications. It has a yield strength in the range of 440–500 MPa, elastic modulus in the
range of 50–80 GPa, and ultimate tensile strength in the range of 708–715 MPa [35]. The cor-
rosion potential of−0.51 V and the corrosion current density of 0.13 µA/cm2 were reported
for the alloy in phosphate-buffered solution simulating physiological environment [36].
Their high strength-to-weight ratio, low modulus of elasticity, corrosion resistance, and
biocompatibility make them ideal for biomedical implants.

Co–Cr alloys are also widely used in biomedical implants due to their high specific
strength, hardness, corrosion resistance, and biocompatibility. Their tensile strength is in
the range of 145–270 MPa and hardness in the range of 550–800 MPa [37]. The corrosion
potential and corrosion current density of Co–Cr in artificial saliva is about −0.45 V and
0.16 µA/cm2 [38].

This study presents an ML-based general methodology to create tribocorrosion maps.
The same process can be applied to create similar maps of materials widely used in material
forming. The ML methodology is discussed in the following section.

2. Methodology

The predictive model is developed in two parts. The first part involves identifying
clusters in tribocorrosion experimental data using the K-Means clustering technique. The
second part involves training a support vector classifier using the data and the cluster
labels. The support vectors can then be used to draw wear-corrosion mechanism, syn-
ergy, and wastage maps. The schematic in Figure 1 shows an overview of the proposed
methodology. Two experimental datasets from the published literature are used in this
study. The materials in these studies, albeit related to medical implants, are the subject
of several tribocorrosion studies. Therefore, their relatively large volume of experimental
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tribocorrosion data is widely available. Note that the volume of the dataset is decisive in
effectively training an ML algorithm.
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Figure 1. An overview of the methodology for creating tribocorrosion maps.

Wang et al. [39] studied the tribocorrosion of Ti–25Nb–3Mo–3Zr–2Sn alloy in a simulated
Hank’s solution at different loads and abrasive silicon carbide concentrations. The data
from Wang et al. are labelled Dataset 1 (see Supplementary Materials, Table S1). Dataset 2
(see Supplementary Materials, Table S2) was collected from the work of Stack et al. [40].
That study focused on the tribocorrosion of Co–Cr in Ringer’s solution mixed with silicon
carbide particles at different loads and applied potentials.

It is essential to understand the degradation and predict the lifecycle of the materials
under various conditions, both of which can possibly be done with ML. The data were
standardized by removing the mean and scaling to unit variance before training the model.
The models were developed using the open source ML package scikit-learn [41].

2.1. Unsupervised Learning

Clustering is a multivariate statistical technique used to group data into clusters based
on their underlying structure. A commonly used technique is K-means clustering. The
number of clusters (K) and the starting centroids are provided as input parameters. This is
followed by an iterative process of assigning the data points to each cluster based on their
Euclidean squared distance to the corresponding centroid, and recalculating the centroids,
until the centroids can no longer be adjusted.

In this study, K-means clustering was used for exploratory analysis. For this, an
unsupervised ML model was developed using the standardized datasets. In order to
determine the optimal value of K for each dataset, the elbow method [42] and the silhouette
coefficients [43] were used.

2.2. Supervised Learning

Support vector machines (SVMs) [44] are supervised ML algorithms that can be used
for classification and regression [45]. SVMs use kernel functions to map datapoints from
an input space to a high dimensional feature space to establish linear decision boundaries
(hyper planes). These boundaries become nonlinear when transformed back to original
input space, thus making non-linear classification possible. The datapoints closest to
the hyperplane are called support vectors. Four basic kernel functions k(xi,xj) are linear
(Equation (6)), polynomial (Equation (7)), radial basis function (RBF) (Equation (8)) and
sigmoid (Equation (9)). The hyperparameters γ, r, and d associated with the SVMs are
generally tuned using cross-validation or grid search [46]:

k
(
xi, xj

)
= xi

Txj (6)

k
(
xi, xj

)
=

(
γxi

Txj + r
)d

, γ > 0 (7)

k
(
xi, xj

)
= exp

(
−γ‖xi − xj‖2

)
, γ > 0 (8)

k
(
xi, xj

)
= tanh

(
γxi

Txj + r
)

, γ > 0 (9)
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The labelled datasets obtained after clustering is used to train SVM classification
models. Since SVMs are designed for binary classification, different strategies can be
adopted based on the multiclass classification problem at hand [47].

3. Results and Discussion
3.1. Identifying the Clusters

Clustering was done for a range of K values based on the data, and the resulting
within-cluster sum of squares (WCSS) was obtained. The red lines in Figure 2a,b show
the WCSS for datasets 1 and 2, respectively. An elbow point in the WCSS graph typically
signifies the optimal K value. The elbow can be observed at K = 3 in Figure 2a. However, the
elbow in Figure 2b is not obvious. Further analysis was done by calculating the silhouette
coefficients. The blue lines in Figure 2a,b show the silhouette coefficients for a range of
K values for datasets 1 and 2, respectively. The best value of K is where the silhouette
coefficient is maximum, which is equal to 3 for both the datasets.
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It is worth noting that among the two methods discussed above to determine the
optimal K, the elbow method can be ambiguous when the data are not very clustered. In
such cases, the WCSS curve may not have a sharp elbow. Silhouette coefficient, on the
other hand, is a value between +1 and−1, with values closer to the upper bound indicating
appropriate clustering. Thus, a silhouette coefficient is a more robust metric to determine K.

The two datasets were clustered and labelled using K-means clustering with K = 3.
The three clusters in dataset 1 can clearly be distinguished on a Kw vs. Kc plot as shown in
Figure 3a. The single datapoint that forms a distinct cluster is identified as the corrosion–
wear cluster, as it has a high Kc compared to Kw. The other two clusters are closer to the Kw
axis, denoting wear-corrosion synergy. The cluster near the origin is labelled as the low
wear-corrosion synergy cluster, and the cluster in the lower right-hand corner is labelled as
the high wear-corrosion synergy cluster.

Similarly, the three clusters in dataset 2 can be clearly identified on a Kc vs. Kw plot as
shown in Figure 4a. The cluster with the very small values of Kc, and large values of Kw
can be identified as having wear as the predominant degradation mechanism. The cluster
in the top left-hand corner with similar values of Kc and Kw can be identified as having
corrosion-wear synergy. The third cluster, approximately in the center of the plot, is classed
as having wear–corrosion synergy. This classification is similar to the results obtained in
the source [40].
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3.2. Tribocorrosion Maps

Since the two datasets under consideration have three clusters each, a one-vs.-one
strategy was used to train the SVM and perform classification. The clusters in dataset
1 were labelled 0, 1 and 2. The features used were abrasive concentration (g/cm3) and
normal load (N). A polynomial kernel function was chosen to map the datapoints to a
higher dimensional space. Values for the hyperparameters in Equation (7) were as follows:
kernel parameter γ = 2, penalty parameter = 10, degree d = 2 and r = 0. The model was
trained on the labelled dataset. The tribocorrosion map (Figure 3b) of the feature space—
abrasive particle concentration vs. normal load—was generated by prediction using the
trained model. The map shows the three previously identified clusters. From the map, the
major degradation mechanism is identified as wear-induced corrosion, which is similar to
the results obtained by [39]. Corrosion-induced wear is the degradation mechanism for a
small segment of the operating conditions.
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Similarly, the clusters in dataset 2 were labelled as 0, 1 and 2. The features used were
potential (V) and normal load (N). RBF kernel (Equation (8)) was used to map the dataset
2 to a higher dimensional space. The model was trained on the labelled dataset with
hyperparameter γ = 7 and the penalty parameter as 10. The tribocorrosion map obtained
by predicting using the trained model on the feature space is shown in Figure 4b. The three
degradation mechanisms—wear, wear–corrosion, and corrosion-wear—are mapped on
the potential vs. normal load graph. The wear-corrosion cluster, as identified in Figure 4a,
covers most of the area in the tribocorrosion map. Wear is the dominant degradation
mechanism in the potential range from −0.5 to −0.3 V. Corrosion-induced wear dominates
in the region near 0 V potential.

Thus, the relationship between competing material degradation mechanisms is de-
termined for the two tribosystems under consideration. From Figures 3b and 4b, the
dominant degradation mechanism for a given set of features can be identified. With this
knowledge, acceptable material loss rate can potentially be achieved by maintaining the
interfacial conditions within certain bounds identified from the maps. Based on the avail-
ability of empirical data, maps can be generated in any desired feature space. Note that
Figure 3b is mapped on load vs. abrasive concentration, while Figure 4b is mapped on
load vs. potential.

Although the data used in this study are for specific materials, the method proposed
is relevant to mapping tribocorrosion in a range of tribosystems. The maps provide an
overall framework in which we can analyze the relationship between the variables, their
correlation to material degradation rate, and the dominant wastage mechanisms. Potential
applications include prediction of degradation mechanism and wastage rate, material
selection, and lifecycle estimation of tools, material processing equipment, automotive and
marine machine components.

In this study, the performance of the models was not evaluated using test and valida-
tion datasets due to limited sample sizes. It is important to note that test and validation
datasets are necessary to prevent over-fitting the models. In future work, more robust ML
predictive models will be created using a larger training dataset.

4. Conclusions

A machine learning-based approach is proposed to generate tribocorrosion maps.
First, tribocorrosion experimental data are clustered and labelled based on their underlying
structure. The labelled datasets are used to train SVM classification models, with the
labels being the targets. Since problem is non-linear, RBF and polynomial kernels are used
to map the data and establish the decision boundaries. The trained models are used to
predict the targets on the feature space to generate the tribocorrosion maps. The proposed
methodology to create tribocorrosion maps is relevant to any tribocorrosion system. Thus, it
can find applications such as optimizing the material forming processes, material selection,
identifying degradation mechanisms, lifecycle estimation, and improving tool life.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/coatings11040450/s1, Table S1: Dataset 1; Table S2: Dataset 2.
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