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Abstract: The surface-electrode ion trap is one of the most promising devices to realize large-scale
and integrated quantum information processing. However, a series of problems are faced in the
micro-nano fabrication of surface-electrode ion traps. A prominent one is the difficulty to control the
thick film surface roughness. A rough electrode surface could produce excessive radio frequency
(RF) loss and deteriorate trapping ability of the surface-electrode ion trap. In this paper, a thick film
micro-nano fabrication technology to control the surface roughness is presented, which can reduce
the roughness of thick film surface-electrode down to 6.2 nm, while being controllable between
6.2 nm and 45 nm. Therefore, it can also provide a basis for studying the influence of electrode
surface roughness on trap performance. The micro-nano fabrication technology is not only suitable
for surface-electrode ion traps with various configurations, but also be further applied to researches
of MEMS, solar cells and surface science.

Keywords: surface-electrode ion trap; micro-nano fabrication; thick film; surface roughness

1. Introduction

The trapped ion system is one of the candidates for realizing a quantum computer [1,2].
The microfabricated traps are used to scale up [3], integrate [4] and miniaturize trapped ion
system [5]. Both surface-electrode ion trap (SEIT) [6] and 3D microscopic ion trap [7] are
microfabricated traps, while the structure and fabrication of SEIT are simpler. At present,
SEIT already has been widely applied to quantum simulation [8] and quantum information
processing [9].

A well designed and fabricated SEIT should be able to trap ions steadily with a low
heating rate, and shuttle ions without exciting their motional states [10]. Currently, the
methods for designing SEIT have been well established [11]. However, the micro-nano
fabrication technologies of SEIT are not mature yet, mainly manifested in the difficulty to
control the surface roughness of SEIT during the fabrication process [12]. The electrode
fabrication of SEIT mainly includes two categories, i.e., the thin film [13] and the thick
film [14]. The thick film fabrication is focused in the paper for two reasons. First, the
electrode of SEIT must be thick enough to withstand high RF voltage in the trapped ion
experiments [15]. Secondly, thick-film electrode allows a larger distance between the ions
and the substrate, so the ion heating rate could be effectively suppressed, as the influence
of the charged substrate on trapping ions is reduced [16].

The ions are trapped by the pseudopotential generated by the electrodes of SEIT. Thus,
the electrode surface roughness will definitely affect the performance of SEIT, such as ion
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trapping, ion manipulation, quantum gate fidelity, and ion heating rate [17]. A simpler
explanation is that reducing surface roughness would bring a more uniform electric field
and less surface adsorbate, which will reduce the electrical noise due to the electrode
surface [18]. However, both quantitative relation and intrinsic mechanism of such effect are
not clear yet. Not only the theoretical research is almost blank, but also the experimental
study is rare due to the challenge of fabricating thick film SEITs with controllable surface
roughness [19]. Therefore, to fabricate an electrode with controllable surface roughness is
vital to the experiments with SEIT.

The control of surface roughness is actually a common problem faced in many research
fields. The arithmetical mean deviation Ra is a general metric of roughness. It is defined as
Ra = 1

n ∑n
i=1|yi − A|, where n represents the number of measurements, yi represents the

i-th measured height, and A represents the average height of surface sampling points [20].
Ra is around 50 nm for most thick-film SEIT electrode surface [15,21]. Besides, the surface
roughness of electroplated Au films for connector contact materials is Ra = 62 nm [22], while
Ra = 10.7 nm for ultra-fine grained Au films with high compressive strength [23]. There is
also special technology in surface scientific field which could achieve several nanometers
roughness [24,25]. However, the specialized equipment required is inaccessible for most
SEIT research [26]. Usually in-situ argon-ion-beam cleaning [27], pulsed-laser cleaning [28]
and other methods are used to clean the electrode surface of SEIT to reduce negative
influence which is caused by the surface roughness. However, these methods are far
from enough to achieve ideal surface roughness. In the paper, the research on reducing
electrode surface roughness at its source is carried out and a new fabrication process of
SEIT is proposed, which can control and reduce the surface roughness. This micro-nano
fabrication process can also be applied to thick film SEITs with other geometry [29,30].

The paper is organized as follows. Section 2 gives the working principle of SEIT,
analyzes and verifies a new fabrication process. Then in Section 3, the electroplating
was systematically designed and optimized. The relationship between pulse frequency,
electroplating solution temperature and electrode surface roughness under pulse electro-
plating was discussed. The fabrication of SEITs with various roughness can be achieved
by carefully adjusted electroplating process. The SEIT fabricated in this work achieved a
low roughness Ra = 6.2 nm, and Ra can be controlled to change within 6.2 nm to 45 nm by
varying the electroplating parameters. Conclusion is presented in Section 4.

2. Method and Fabrication

The research on the micro-nano fabrication process of thick film SEIT is based on
a symmetrical five-wire SEIT (Figure 1a). The SEIT includes two 145 µm-wide radio
frequency electrodes, one 180 µm-wide ground electrode and multiple 150 µm-wide DC
electrodes. The pseudopotential distribution is generated by two radio frequency electrodes
(Figure 1b). According to this distribution, it can be known that the ions are trapped at
100 µm above the surface of SEIT (Figure 1c). In order to obtain the ideal electric potential
field like Figure 1b, it is very important to reduce the surface roughness of SEIT by micro-
nano fabrication.

2.1. Thick Film Micro-Nano Fabrication Process with Controllable Surface Roughness

Seidelin et al. [14] and Ou et al. [15] have already used the conventional thick film
fabrication process in ion traps research, which includes magnetron sputtering coating,
patterning lithography, electroplating and wet etching. In the etching process, the etching
solution can not only etch the seed Au layer, but also etch the Au electrode surface. These
will make electrode surface roughness increase dramatically. To compare the electrode
surface roughness before and after etching, at least three specimens were fabricated under
each test condition, the roughness profile of all specimens has been rated, and the results
are very close, one of them is shown in Figure 2. Figure 2a,d demonstrates the scanning
images of scanning electron microscope (SEM Device: S-4800, HITACHI, Tokyo, Japan).
Through the comparison of SEM images, it can be clearly seen that the electrode surface
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becomes much rougher after etching. In order to further quantify the electrode surface
roughness, atomic force microscope (AFM) was used (Device: NTEGRA, SPM Mode:
Semicontact Topography, Scan velocity: 10.12 µm/s, Step: 19.61 nm, NT-MDT, Moscow,
Russia). The electrode surfaces are scanned by AFM in 5 µm × 5 µm region, each profile
has 65536 sampling points of height (Figure 2b,e). The statistical diagrams of the height
of the sampling point are shown in Figure 2c,f. The scanned data is processed by Nova
software (NT-MDT, v1.1.0.1918, Moscow, Russia) to determine Ra, whose values before
and after etching are 9.6 nm and 54.9 nm, respectively. This shows that wet etching has a
great influence on the surface roughness.
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Figure 2. The surface of the electrode before and after etching without protective layer. SEM images before etching (a) and
after etching (d); AFM images before etching (b) and after etching (e); The counts of the height of the sampling point before
etching, Ra = 9.6 nm (c) and after etching, Ra = 54.9 nm (f).

To protect the Au thick film electrode surface from wet etching, a new proposal to
optimize the thick film micro-nano fabrication process is given in Figure 3. Based on the
routine thick film fabrication process, a 10 nm titanium film has been magnetron sputtered
as a protective layer after electroplating. The titanium has been chosen for two reasons. On
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the one hand, the titanium protective layer and the bonding layer are completely etched in
the process of the Figure 3h,i. On the other hand, comparing with photoresist or nonmetallic
materials, there will be no nonmetallic residue or influence from the distribution of surface
charge on the electrode.
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The comparison of the electrode surface roughness before and after etching with
protective layer is given in Figure 4. The SEM images and AFM images are shown in Figure
4a,d and Figure 4b,e. It can be seen that there is no obvious change of the electrode surface.
The statistical diagrams of the height of the sampling point are shown in Figure 4c,f. The
scanned data is processed by Nova software to determine Ra, whose values are 8.9 nm and
6.2 nm (Both values are achieved under the optimized electroplating conditions explained
in Table 1. (Section 3)) before and after etching, respectively. It shows that the titanium
protective layer is very effective in protecting the electrode surface during etching. So,
the fabrication of SEITs with different roughness can be effectively controlled by the
electroplating process.

Table 1. Optimized pulse electroplating parameters.

Parameter Name Value

Pulse peak current density ip 5 A/dm2

Duty ratio λ 1:9
Pulse frequency f 200 Hz

Electroplating solution temperature T 40 ◦C
Pulse electroplating time 366 s

Distance between cathode and anode 80 mm
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2.2. Fabrication of Thick Film Surface-Electrode Ion Trap with Different Roughness

The experimental results of thick film micro-nano fabrication process show that elec-
troplating is the major influence on the surface roughness. Therefore, the relationship
between electroplating parameters and electrode surface roughness has been analyzed to
optimize the fabrication of SEIT.

The methods of electroplating are diverse [31], mainly including DC electroplating and
pulse electroplating. DC electroplating is widely used nowadays in SEIT research [15,21],
but the controllability of DC electroplating is poor because there are only two parameters for
DC electroplating, i.e., current density and electroplating time. By contrast, the parameters
of pulse electroplating include pulse duration ton, duty ratio λ = ton/to f f , pulse peak
current density ip, and average current density im =

(
λ·ip

)
/(1 + λ). Meanwhile, the pulse

electroplating has many advantages. It yields more compact coating structure, smaller
grain size, lower porosity, and fewer impurities [23]. Thus, there is more room for the
optimization of pulse electroplating, which is exactly to be used in the following.

In the electroplating experiment, the cathode substrate is a P-type heavily doped
silicon wafer (Nanjing MKNANO Tech. Co., Ltd., Nanjing, China), on which there are in
turn 20 nm titanium bonding layer, 40 nm seed golden layer, and a pattern structure with a
thickness of 10 µm. The area of cathode and anode is 3 cm2 and 30 cm2, respectively. The
distance between the cathode and anode is 80 mm. The gold electroplating solution used is
a sulfite solution (METALOR® ECF-88K).

Pulse peak current density ip = 5 A/dm2, duty ratio λ = 1:9 are the proper parameters
for thick film electrode fabrication, also strong stirring is needed. The thickness of the
electrode is determined by [32],

t = adh/ZI (1)

where t the electroplating time, a the cathode electroplating area, d the gold density, h the
target electrode thickness, Z the electrochemical equivalent, and I the cathode current. The
film thickness of the target electrode in this experiment is 5 mm, and the electroplating
time used is 366 s based on the calculation of the above formula.
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3. Results and Discussion

In this section, the following parameters are fixed in this experiment: Pulse peak
current density ip = 5 A/dm2, duty ratio λ = 1:9. Experiments show that the electrode
surface roughness can be significantly reduced by optimizing the pulse frequency f and
electroplating solution temperature T, so these two parameters are mainly discussed in
this section. At least three specimens were fabricated under each test condition and each
specimen was characterized four times by AFM.

As shown in Figure 5, the roughness of the thick film electrode decreases signifi-
cantly with the pulse frequency f increasing from 166.7 Hz to 333.3 Hz (pulse duration
ton = 0.3 ms) at 20 ◦C. Then, the electrode surface roughness begins to increase until the
pulse frequency reaches to 1000 Hz. At 40 ◦C, the relationship between roughness and
frequency is similar. The electrode surface roughness begins to increase when the pulse
frequency reaches to 200 Hz.
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During one pulsed electroplating cycle, gold atoms are deposited on the cathode.
With the consumption of ions near the cathode, there is a concentration difference in the
solution. It makes the ions move toward the cathode and leads to a competition between
consumption and replenishment of ions near the cathode. Different pulse parameters
yield different patterns of ion concentration near the cathode. Keep the temperature and
duty ratio unchanged, then ton and to f f will increase (decrease) with the pulse frequency f
decreasing (increasing). If there are always enough ions near the cathode throughout the
pulse, a large number of gold atoms will be deposited on the surface of the cathode. As
time passes by, the distribution of gold atoms on the electrode surface tends to be uniform.
A low-roughness electrode would be formed. When the pulse frequency f is too low, the
ion concentration near the cathode can’t recover quickly enough. Then it is more likely
to get a high-roughness electrode. However, when the pulse frequency f is too high, the
number of gold atoms deposited on the cathode within one pulse period is too small, the
distribution of gold atoms on the electrode surface can hardly be uniform. This also can
increase the electrode surface roughness.

Moreover, the surface roughness of the thick film electrode is related to the tempera-
ture of the electroplating solution during the pulse electroplating, which is shown in Figure 6.
It can be seen from Figure 6 that the order of Ra is Ra40◦C < Ra60◦C < Ra20◦C. With
the temperature increasing above room temperature, the solubility of the salt increases so
that anode passivation is prevented, then the conductivity of the solution also increases so
that the dispersion ability of the electrolyte is improved. The series of changes eventually
lead to the reduction of the electrode surface roughness. However, if the temperature in-
creases beyond a critical value (about 40 ◦C under the specific condition shown in Figure 6,
the activation energy of the discharged ions near the cathode will increase. Then the
electrochemical polarization is reduced and the electrode surface roughness increases [33].
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The pulse electroplating parameters are optimized through many experiments and
shown in Table 1. A bunch of thick-film SEITs were fabricated under the optimized
conditions. The overall surface profile is observed and characterized by the metallographic
microscope, SEM and AFM (Figure 7a,b). Because the measuring range of AFM is in
nanometers, a step device was used to measure the thickness of the electrode. It is about
4.16 µm (Figure 7c).
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The SEIT fabrication process with a protective layer can greatly reduce the negative
impact of wet etching on the surface roughness. In addition, the relationship between Ra
and pulse frequency and electroplating solution temperature is studied. The experimental
results show that there is a set of optimal pulse frequency and solution temperature
under which the lowest surface roughness could be achieved. The general optimization
process of pulse electroplating can be divided into two steps: First, the variation of Ra
with temperature is experimentally calibrated in order to find an appropriate temperature;
Then, the relationship of Ra with pulse frequency is experimentally studied under the
appropriate temperature. By this calibration method, not only the minimum surface
roughness can be obtained, but also the electrode surface roughness can be controlled
within a certain range by changing the solution temperature and pulse frequency of the
pulse electroplating. Ra can be reduced to 6.2 nm under the optimal temperature of 40 ◦C
and frequency of 200 Hz (Table 1). Meanwhile, the controllable range of Ra is between
6.2 nm and 45 nm. At present, Ra of SEIT with thick film used in ion traps research is about
50 nm [15,21], and the influence of experimental parameters on the surface roughness
of SEIT has never been discussed. In this work, the surface roughness is reduced by an
order of magnitude, and how the electroplating parameters affect the electrode surface
roughness is discussed in detail. The proposed thick film micro-nano fabrication can also
be used to study the influence of electrode surface roughness on abnormal heating of ions.
Most importantly, the electrode with low surface roughness can reduce the RF loss of the
electrode, thereby improve the performance of SEIT for quantum computation. Moreover,
the fabrication technology is simple and effective, far superior to the complicated surface
cleaning techniques currently used [27,28]. Chen et al. [23] compared the effects of DC
electroplating and pulse electroplating and found that pulse electroplating is better than
DC electroplating, Ra can achieve 10.7 nm, while this paper mainly discusses optimization
of pulse electroplating parameters and obtains a lower surface roughness Ra = 6.2 nm.

4. Conclusions

A thick film micro-nano fabrication process with controllable surface roughness is
proposed in the paper, which overcomes the difficulty to control the surface roughness. By
adjusting the pulse frequency and solution temperature during the pulse electroplating,
Ra can be reduced to 6.2 nm, and Ra within 6.2 nm to 45 nm can be achieved. Through
this controllable process, the relationship between the roughness and the heating rate of
ions and the trapping stability of SEIT can be further studied experimentally, providing
basis for chip fabrication in precise ion trap quantum computing. The thick film micro-
nano fabrication process is not only suitable for surface-electrode ion traps with various
configurations, but also can be further applied to researches of MEMS, solar cells and
surface science.
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