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Abstract: The cold galvanizing coatings (CGCs) are used to repair old hot-dip galvanized steel
(HDG) in numerous anticorrosion engineering, but poor adhesion of the CGC restricts its large-scale
applications in the industries. For the purpose of overcoming the weak adhesion problems of the
CGC on HDG, γ-chloropropyl triethoxysilane (CPTES) was added directly into cold galvanizing
coatings (CPTES/CGC). Interface characteristics and related corrosion protection behaviors were
investigated by the pull-off adhesion test, water contact angle measurements, Fourier transform
infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscope
(SEM), and electrochemical tests. The experimental results revealed that, there is an increase by 19.1%
of the CPTES/CGC surface free energy when compared with that of CGC. In addition, Si–O–Si and
Si–O–Zn bonds were found in the CPTES/CGC, which indicate new network structures formed
inside the CPTES/CGC, between the interface of the CPTES/CGC and HDG substrate, resulting in
dry adhesion, wet adhesion, and the cathodic protection time of CPTES/CGC increased by 50% and
200% and 300% respectively compared with the CGC.

Keywords: galvanized steel; anticorrosion; silane; adhesion; zinc-rich coating; cathodic protection
effect; EIS; XPS

1. Introduction

Hot-dip galvanization (HDG) has been widely applied to the steel structure from
corrosion for decades because of their good galvanic protection and barrier protection [1].
The galvanized layer can provide corrosion resistance for the steel substrate for a period
of time when exposed in the general atmospheric environment. However, the time of
protective effect will be greatly shortened in moist and aggressive environments [2,3].
Pretreatment and coating protection were effective ways to prolong the lifetime of the HDG
constructions [4–8].

Zinc-rich coatings is that in which the ratio of the pigment volume concentration is
greater than the critical pigment volume concentration, which enables an aqueous elec-
trolyte to penetrate and allow the sacrificial action of zinc particles, containing 92% (w/w)
zinc particles, the volume fraction of zinc particles was only 52% and 19.4% was occupied
by air [9,10]. Cold galvanizing coatings (CGCs) serve as a new-type of one-component
zinc-rich organic coating that boasts of low-cost, easy construction, and good anticorrosion
properties has been regarded as suitable for the coating protection of HDG [11]. In a
bid to improve the corrosion resistance of zinc-rich coatings, researchers have developed
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various ways to prolong the lifetime of zinc-rich coatings. Such as modification of the
zinc particles [12–14], fabrication of repairable superhydrophobic surfaces [15], change
of shape and size of zinc particles [16,17], changes in the pigment/binder ratio [18,19],
and incorporation of metal or nonmetal pigments [20–23]. Almost all the above studies
have been focused on improving the corrosion protection efficiency and barrier properties
of zinc-rich coatings, which include extending the diffusion path of corrosive solution,
decreasing coating porosity, strengthening the electroconnection of the pigments, and
reducing electrochemical activities of zinc particles. However, the weak adhesion between
the cold galvanizing coating and HDG substrate greatly reduced the lifetime of the coating.
Therefore, the cold galvanizing coatings confront a big challenge of durability.

Silane coupling agents have a generic chemical structure: (XO)3Si(CH 2)nY, where
XO is a hydrolyzable alkoxy group, which can be methoxy (OCH3), ethoxy (OC2H5), or
acetoxy (OCOCH3). Y is an organofunctional group such as vinyl (C=C) or amino (NH2),
which is responsible for good paint adhesion of a silane-treated metal surface. Conse-
quently, it has recently received greater attention due to its excellent properties such as
an adhesion promotion [24,25], mechanism strength improvement [26,27], cross-linking
reinforcement [28–30], and coating anticorrosion improvement [31–33]. A lot of efforts
have been made to apply these materials as adhesion promoters between metallic sub-
strates and organic coatings for protection against a corrosion phenomenon. The effect
of silane functionalized graphene oxide on corrosion protection performance of coatings
has been evaluated by Sepideh Pourhashem [25], which showed that the coating adhe-
sion to the metallic substrate and the water contact angle of the coating have increased.
Ji, W.G. et al. [31] added 3-glycidoxypropyltrimethoxy silane directly to the coating sys-
tem, and the results showed that water uptake of epoxy coating decreases remarkably.
M. F. Montemor et al. [34] used bis-silane films modified with particles of SiO2 pretreated
galvanized steel substrates, and found out that the addition of silica particles improves
corrosion protection due to the formation of a thicker silane film and/or enhanced barrier
properties provided by the inner layers of the silane film. However, few literatures reported
the improvement of interface properties between zinc-rich coatings and HDG substrates.

In this work, cold galvanizing coating (CGC) was modified by γ-chloropropyl tri-
ethoxysilane (CPTES). The physicochemical properties of the modified coating (CPTES/CGC)
were analyzed using various surface characterization techniques, while the adhesion
strength of coating with immersion time was tested, and the anticorrosion protection
properties were investigated by the electrochemical technique.

2. Experimental
2.1. Materials and Chemicals

The hot-dip galvanized steel and zinc particles (chemical composition: Fe: 0.002%, Cd:
0.002%, Pb: 0.005%, and Zn: 99.99%) were obtained from Hunan Fuhong Zinc Chemicals
Co., Ltd., Changsha, China, which were spherical in shape and average particle size range
of 3–5 µm. SE200 resin was supplied by Shenyang Zhongke Engineering Technology Center
for Corrosion Control, Shenzhen, China. CPTES were procured from Shanghai Macklin Bio-
chemical Co., Ltd., Shanghai, China. The CPTES is known to contain chloropropyl and the
alkoxy hydrolysable substituents and the chemical structure is ClCH2CH2CH2Si(OC 2H5)3.
Xylene serves as the solvent, which was purchased at Sinopharm Chemical Reagent Co.,
Ltd., Shenyang, China.

2.2. Preparation of Coated Steel Panels

Zinc powder, resin, and silane were dispersed according to the formulation listed in
Table 1. All ingredients were dispersed at 2000 rpm with high-speed disperser for 30 min,
hot-dip galvanized steel sheets were ultrasonically treated with acetone in order to remove
grease on the surface. The coatings were sprayed on the steel sheets by air-spraying;
air pressure range of 0.6–0.8 MPa, and then cured at room temperature for 7 days. The
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thickness of coatings was 80 ± 10 µm, which were measured by a portable thickness
measurement system (Positector 6000, Ogdensburg, NY, USA).

Table 1. Formulation of cold galvanizing coatings.

Samples Zinc Powders (wt %) Resin (wt %) Solvent (wt %) Silane (wt %)

CGC 69.5 17.4 13.1 —
CPTES/CGC 69.5 17.4 11.1 2

2.3. Pull-Off Adhesion Measurements

The adhesion of the coatings at different immersion time in 3.5 wt % NaCl solution
were tested by the PosiTest adhesion tester (AT-M, ELECTROMATIC Equipment Co., Inc.
Cedarhurst, NY, USA) according to ISO 4624: 2016 [35]. Dollies of the 20 mm diameter were
glued to the surface of coatings by using a double-component epoxy adhesive. Then, a slot
was made around dollies, which were pulled at a speed of 0.5 MPa/s relative to the coating
surface until the dollies were detached from the coated substrate. The measurements were
done on the samples before (dry adhesion) and after (wet adhesion) 20 days immersion in
3.5 wt % NaCl solution. For each coating system, 10 determinations were carried out for all
samples and the average value was taken. All the samples were kept in a temperate and
humid chamber at 25 ± 2 ◦C, 50% ± 5% humidity for at least 16 h before the pull-off test.

2.4. Water Contact Angle

Water contact angle (CA) was tested by the water contact measuring device (POW-
EREACH JC2000D1, Shanghai zhongchen Digital Technology Apparatus Co., Ltd., Shang-
hai, China). Consider the wetting process between water/coating interfaces, 3 µL of a
distilled water droplet were dropped on the coating surfaces at ambient temperature and
images were collected after 10 s. By measuring five different spots on a sample and then
obtain the value of CA by goniometry.

2.5. Characterization

The microstructures of the surface and cross-sectional microscopic views of the coated
sample after experiments were observed via scanning electron microscope (Philips XL
30 type Field Emission ESEM, FEI, Hillsboro, OR, USA). The chemical bonding information
was determined by X-ray photoelectron spectroscopy (Escalab 250, Thermo, Waltham, MA,
USA) with 150-W Al Ka radiation at 1486.6 eV and the results were fitted and optimized
by XPSPEAK4.1 software. The chemical grafting and functional groups from the coated
panels were determined by Fourier transform infrared spectroscopy within the wavelength
range of 400–4000 cm−1 (IS50 FT-IR, Thermo scientific, Waltham, MA, USA).

2.6. Electrochemical Corrosion Tests

Potentiodynamic polarization curves and electrochemical impedance spectroscopy
(EIS) testing of the prepared coated panels was evaluated by PARSTAT 4000 (Princeton,
NJ, USA) electrochemical workstation, using 3.5 wt % NaCl solution as an electrolyte.
A three-electrode arrangement was used with a platinum counter electrode, a saturated
calomel reference electrode and the coated panel as a working electrode with a testing area
of about 1 cm2 and 12.56 cm2, respectively. Before EIS measurements, the samples were
put into the electrolyte solution for 30 min to obtain a stable open circuit potential (OCP).
The potentiodynamic polarization curves were measured at a scan rate of 0.167 mV/s
and range of ±0.25 V vs. OCP. A frequency range of 10−2–105 Hz were used for the EIS
measurements with a total of 50 points distributed logarithmically, and the sinusoidal
perturbation was 20 mV at an open circuit potential. At least three samples were tested to
confirm the repeatability of the results.
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3. Results and Discussion
3.1. Wettability

Figure 1 exhibits the surface morphologies and the corresponding optical photographs
for different coatings. As for blank CGC, there were few small bulges and pits were exhib-
ited and the wettability result for the coating gave the water contact angles as 98.5◦. Fewer
pits and no obvious bulges appeared on CPTES/CGC, which gave the contact angle as 91◦.
According to Zhang, D., et al. [36,37], increasing the surface hydrophobicity reduces water
wetting on coatings and thus, their interaction with water, thereby prolonging their barrier
effects and service lives. Decreased hydrophobicity implies greater wettability and stronger
adhesion strength to HDG substrates. Correspondingly, corrosive electrolyte solution
will be penetrated more susceptibly through pores or defects when the CPTES/CGC was
exposed to the electrolyte solution in the early stage because of decreased hydrophobicity.
The effect with corrosion behavior and electrochemical properties of increased wettability
of coating surface coating will be discussed in Section 3.4.
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Figure 1. SEM images of the surface morphologies of coatings, (a): CGC and (b): CPTES/CGC.
Inserts are the images of the water droplets on the corresponding coatings.

Besides that, work of adhesion (W) and surface free energy (γsv) were calculated by
Young’s Equation (1) and Neumann’s Equation (2).

Wa = γlv(1 + cos θ) (1)

Wa = 2(γ lvγsv)
0.5 exp

[
−β(γ lv−γsv)

2
]

(2)

where γlv is the surface tension of water (7.28 µJ/cm2), γsv is the surface free energy of the
coating, θ is the CA of water and β is a single parameter 0.01247 (µJ/cm2)−2 that will not
change from system to system [38,39]. The two equations can be solved numerically and
the results presented in Table 2. It is clearly seen that CPTES/CGC decreased the CA by
about 7.6% compared to the CGC. The surface free energy and work of adhesion were also
decreased. These results indicated that the incorporation of silane caused the increased
hydrophilicity and wettability of the coating surface. According to H. Vakili et al. [40],
chemistry of the coating sample is an influential parameter affecting the surface free energy
except morphology. Therefore, it can be understood that there are more hydroxyl groups
after the silane hydrolysis reaction in the coating, which show a high tendency to make
hydrogen bonds with water molecules.

Table 2. Water contact angle, work of adhesion, and surface free energy values measured on the
surface of coatings.

Sample θ (◦) Wa(µJ/cm2) γsv (µJ/cm2)

CGC 98.5 ± 0.87 6.20 ± 0.11 2.40 ± 0.06
CPTES/CGC 91.0 ± 0.71 7.15 ± 0.09 2.86 ± 0.04
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3.2. FT-IR and XPS Analysis

FTIR is a sensitive technique for surface functional group analysis of material sur-
faces [41]. Figure 2 shows the FTIR spectrum of CGC, CPTES/CGC, and CPTES. For CGC
and CPTES/CGC, the peak at 2962, 2874, and 1602 cm−1 can be attributed to –CH3, –CH2,
and benzene ring stretching vibration, respectively [42,43]. Additionally, the absorption
peaks at 1163, 1453, and 1743 cm−1 belong to the C–O–C, CH=CH, and the C=O vibration
of the ester carbonyl of resin main chain, respectively [43]. For CPTES, the absorption peaks
at 1100, 1075, and 952 cm−1 are related to the Si–O band, and the peaks at 1169, 860, and
785 cm−1 arose from O–C, C–Si, and C-H bands, respectively [42]. After addition of CPTES
to the resin, the existence of residual Si–OH (at 960 cm−1) and of characteristic bands
of the ethanol (at 880 cm−1) group indicates that the hydrolysis/condensation reactions
are a slow process. Combined with the presence with Si–OH and characteristic bands of
ethanol, the bands appear at 1104, 1079, and 476 cm−1, which are assigned to the Si–O–Si
bands between resin and the silane agent or residual of siloxane [25,42]. Meanwhile, the
peak at 1031 cm−1 is a characteristic of Si–O–C bands. These results confirmed that silane
molecules were successfully grafted onto the resin main chain.
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Figure 2. FTIR spectra of coating surfaces.

Besides that, by peeling the coating from the HDG substrates, the interface chemical
composition between the coating and HDG substrates were also determined by XPS.
Figure 3 shows the XPS curves fit spectra of CGC and CPTES/CGC. The C 1s peaks of
CGC and CPTES/CGC (Figure 3a,c) can be deconvoluted into four components: C = C,
C–C, C–O, and COOH, and the bonding energies are centered at about 284.2, 284.8, 286.5,
and 288.5 eV, respectively [44]. However, obvious distinctions in the category of surface
functional groups can be observed in C 1s peaks of CPTES/CGC, the peaks at 283.2 and
286.7 eV were assigned to the C–Si and C–O–Si bond. The presence of the C–O–Si bond
suggests that CPTES was strongly bonded to the resin. As shown in Figure 3b,d, two peaks
of O 1s at 531.9 and 533.0 eV are attributed to C=O and C–O, the appearance of two new
peaks corresponding to Si–O–Si at 531.7 eV and O–Zn at 533.7 eV, suggest that the Si–O–Si
crosslinking network was formed and chemically bonded to the substrate. The main peaks
of Si–O–C at 101.3 eV, Si–O–Zn at 102.1 eV, Si–C at 102.6 eV, and Si–O–Si at 103.8 eV of Si
2p reinforced this point further [45,46]. Meanwhile, the peak at around 199.9 eV is ascribed
to the C–Cl bond of CPTES, which indicates the stability of Cl at the tertiary carbon atom.
The XPS results indicated that CPTES reacted with the carboxyl and hydroxyl groups of
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the resin, the dehydration condensation reaction occurred between the silane molecules,
and between silane and the substrate simultaneously.
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3.3. Pull-off Adhesion Measurements

The value of adhesion strength was measured and the results are presented in Table 3.
Additionally, A is a cohesive failure of the substrate; B is a cohesive failure of the first
coating (in our samples, the first coating is the cold galvanizing coating). The 50% A/B
represents the paint system breaks at an area on each side of the site of separation, revealing
a mean of approximately 50% of the dolly area associated with cohesive failure between the
substrate and coating, and the 50% B represents the dolly area associated with a cohesive
failure of the coating. It was observed that the CPTES/CGC was better than CGC and the
CPTES/CGC showed greater adhesion strength than CGC before and after the immersion
test. The digital photo of the coating failure after pull-off was also shown in Figure 4.
It can be seen that approximately 50% cohesive failure of the CGC was between the coating
and the substrate, while the CGC broke within the coating. According to the previous
study [33], it can be understood that the excellent adhesion between CPTES/CGC and
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HDG substrate was caused by the enrichment of silane and Si–O–Me was formed at the
substrate. The wet adhesion properties of the coatings after 20 days immersion in 3.5 wt %
of NaCl solution were also studied. The adhesion loss was then calculated according to
the equation:

Adhesion loss =
Dry adhesion strength−Wet adhesion strength

Dry adhesion strength
× 100% (3)

Table 3. Dry and wet adhesion strength of CGC and CPTES/CGC.

Samples Dry Adhesion
(MPa)

Modality of
Failure

Wet Adhesion
(MPa)

Modality of
Failure Adhesion Loss

CGC 2.0 (2.28 ± 0.12) 50% A/B, 50% B 1.0 (1.12 ± 0.28) 90% A/B, 10% B 50.9%
CPTES/CGC 3.0 (3.36 ± 0.44) 100% B 3.0 (2.64 ± 0.24) 10% A/B, 90% B 21.4%

Coatings 2021, 11, x FOR PEER REVIEW 7 of 18 
 

 

CGC and the CPTES/CGC showed greater adhesion strength than CGC before and after 

the immersion test. The digital photo of the coating failure after pull-off was also shown 

in Figure 4. It can be seen that approximately 50% cohesive failure of the CGC was be-

tween the coating and the substrate, while the CGC broke within the coating. According 

to the previous study [33], it can be understood that the excellent adhesion between 

CPTES/CGC and HDG substrate was caused by the enrichment of silane and Si–O–Me 

was formed at the substrate. The wet adhesion properties of the coatings after 20 days 

immersion in 3.5 wt % of NaCl solution were also studied. The adhesion loss was then 

calculated according to the equation: 

Adhesion loss =
Dry adhesion strength-Wet adhesion strength

Dry adhesion strength
×100%  (3) 

 

Figure 4. Digital photographs after the dry adhesion tests on, CGC (a) and CPTES/CGC (b) and the wet adhesion tests on, 

CGC (c) and CPTES/CGC (d) after 20 days of immersion in 3.5 wt % NaCl. 

Table 3. Dry and wet adhesion strength of CGC and CPTES/CGC. 

Samples Dry Adhesion (MPa) Modality of Failure Wet Adhesion (MPa) Modality of Failure Adhesion Loss 

CGC 2.0 (2.28 ± 0.12) 50% A/B, 50% B 1.0 (1.12 ± 0.28) 90% A/B, 10% B 50.9% 

CPTES/CGC 3.0 (3.36 ± 0.44) 100% B 3.0 (2.64 ± 0.24) 10% A/B, 90% B 21.4% 

The results from Table 3 revealed that the adhesion loss value of CPTES/CGC were 

much lower than the CGC. It is well known that electrolyte diffusion into the coating/sub-

strate interface is responsible for the coating adhesion loss. The hydroxyl ion (OH-) cre-

ated at the coating/substrate interface as a result of cathodic reaction 

(2H
2
O + O2 + 4e- → 4OH-) can result in the increase of pH beneath the coating, causing the 

adhesion bonds to break down [40]. The results of adhesion loss can be understood by the 

following reasons: (1) there are more adhesive bonds in CPTES/CGC than CGC. (2) 

CPTES/CGC has less pores and channels because of a crosslinking network, which pre-

vents the permeation of electrolyte to the interface of the coating/substrate. Therefore, the 

CPTES/CGC has a better ability to resist the cathodic alkalization than CGC. 

The reaction mechanism of CPTES in the coating is shown in Figure 5. The formation 

of the crosslinking network and siloxane network involves two reaction stages. The first 

hydrolysis reactions are a stepwise hydrolysis process and shown in Figure 5a, where R 

represents the γ-chloropropyl group and x is an integer that ranges between 1 and 3. All 

three hydrolysis products are present in the reaction system and participate in the second 

step that is the condensation to oligomers and the formation of hydrogen bonds with the 

resin (Figure 5b) and HDG substrates (Figure 5c). There is usually one bond from each 

silicon at the interface between the coating and HDG substrate, the remaining two bonds 

are present either in the free or condensed form. Additionally, the covalent bonds for-

mation is known to occur with some level of reversibility; bonds formation, breaking, and 

reformation in order to relieve internal stress during the formation process of the siloxane 

network and crosslinking network. After the hydrolysis reaction, the other reactions are 

known to occur concurrently [47]. 

Figure 4. Digital photographs after the dry adhesion tests on, CGC (a) and CPTES/CGC (b) and the wet adhesion tests on,
CGC (c) and CPTES/CGC (d) after 20 days of immersion in 3.5 wt % NaCl.

The results from Table 3 revealed that the adhesion loss value of CPTES/CGC
were much lower than the CGC. It is well known that electrolyte diffusion into the
coating/substrate interface is responsible for the coating adhesion loss. The hydroxyl
ion (OH−) created at the coating/substrate interface as a result of cathodic reaction
(2H2O + O2 + 4e− → 4OH− ) can result in the increase of pH beneath the coating, caus-
ing the adhesion bonds to break down [40]. The results of adhesion loss can be understood
by the following reasons: (1) there are more adhesive bonds in CPTES/CGC than CGC.
(2) CPTES/CGC has less pores and channels because of a crosslinking network, which
prevents the permeation of electrolyte to the interface of the coating/substrate. Therefore,
the CPTES/CGC has a better ability to resist the cathodic alkalization than CGC.

The reaction mechanism of CPTES in the coating is shown in Figure 5. The formation
of the crosslinking network and siloxane network involves two reaction stages. The first
hydrolysis reactions are a stepwise hydrolysis process and shown in Figure 5a, where
R represents the γ-chloropropyl group and x is an integer that ranges between 1 and 3.
All three hydrolysis products are present in the reaction system and participate in the
second step that is the condensation to oligomers and the formation of hydrogen bonds
with the resin (Figure 5b) and HDG substrates (Figure 5c). There is usually one bond
from each silicon at the interface between the coating and HDG substrate, the remaining
two bonds are present either in the free or condensed form. Additionally, the covalent
bonds formation is known to occur with some level of reversibility; bonds formation,
breaking, and reformation in order to relieve internal stress during the formation process
of the siloxane network and crosslinking network. After the hydrolysis reaction, the other
reactions are known to occur concurrently [47].
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3.4. Electrochemical Measurements
3.4.1. OCP and Potentiodynamic Polarization

It is commonly believed that the galvanic effect comes from zinc particles that are
electrically connected to the steel substrate and electrochemical processes proceeding in
such systems are the oxidation of zinc particles (Equation (4)) and the reduction of the
dissolved oxygen (Equation (5)) [48].

Zn � Zn2+ + 2e− (4)

O2 + 2H2O + 4e− � 4OH− (5)

The evolution of the free corrosion potential of CGC and CPTES/CGC were measured
and presented in Figure 6a. All of the potential evolutions of the coatings show a period
of decrease for a few hours and reached the lowest point of −1.08 V/SCE. According to
Aberu et al. [49], the potential decrease process corresponds to the active progress of the zinc
particles, which implies an increase in cathodic protection intensity. This result demonstrates
that the addition of silane would not influence the permeation of Cl− and other aggressive
ions during the beginning stage of immersion process. By prolonging the immersion time,
the zinc particles were consumed and an increase of EOCP was observed for both coatings
during the immersion. This is because, the active area of the particles was reduced, caused
by the corrosion products around the zinc particles and the electrical connection between the
particles and the steel substrate was also weakened by the corrosion products. However, the
EOCP of CGC rose rapidly to −0.78 V/SCE in the following hundred hours, while the EOCP
of CPTES/CGC rose slower than that of CGC in which the time for corrosion protection
is twice more than the time for CGC. Particularly for CPTES/CGC, the time for corrosion
protection is over three times more than that of CGC and reached more than 2500 h, hence
the coating still provides sacrificial anode protection for the steel substrate.

Corrosion behavior was also evaluated by the potentiodynamic polarization technique.
Before potentiodynamic polarization measurements, the samples were put into the 3.5 wt %
NaCl solution for 0.5 h to obtain a stable open circuit potential. Figure 6b depicts the
potentiodynamic polarization curves of non-silane and silane incorporated coatings, which
was measured under the same conditions. Corrosion potentials (Ecorr), corrosion current
densities (Icorr) and Tafel constants (Ba and Bc) obtained by Tafel fit in the vicinity of
the strong polarization zone are listed in Table 4. It can be seen from Table 4 that all
CPTES/CGC showed more positive Ecorr and more negative Icorr than CGC. Meanwhile,
the Ecorr value of CPTES/CGC was−0.85 V/SCE while that of CGC was −0.98 V/SCE and
the Icorr of CPTES/CGC (1.55× 10−6 A/cm2) was more than one order of magnitude lower
than that of CGC (8.59 × 10−5 A/cm2). Additionally, the value of polarization resistance
(Rp) was used to determine the protective ability of coatings, which was directly related to
the corrosion rate and can be calculated from Equation.

Rp =
BaBc

2.303Icorr(B a+Bc)
(6)

Table 4. Corrosion potentials, corrosion current densities, Tafel constants and polarization resistance values obtained via
the Tafel fit of the polarization scan.

Samples Icorr (A/cm2) Ecorr (V/SCE) Ba (mV) Bc (mV) Rp (Ω· cm2)

CGC 8.59 × 10−5 (± 1.04 × 10−5) −0.98 (± 0.0055) 274.18 (± 15.65) −465.49 (± 31.33) 3.41 × 103 (± 154.0)
CPTES/CGC 1.55 × 10−6 (± 1.625 × 10−7) −0.85 (± 0.014) 256.53 (± 32.10) −331.32 (± 60.90) 4.74 × 105 (± 3.16 × 105)

Additionally, correspond to the Icorr values, RP reached 4.74 × 105 Ω·cm2. Thus,
CPTES/CGC showed better corrosion resistance than other coatings. However, the corro-
sion resistance capability of the coating for HDG substrate still needs to be confirmed with
the following measurements.
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3.4.2. Electrochemical Impedance Spectroscopy Test

In order to investigate the influence of the CPTES on the electrochemical properties of
the coatings, the coating samples with and without silane were immersed in 3.5% NaCl
solution and EIS was used to evaluate their anti-corrosion performance. The evolution
of low frequency (LF) modulus ZLF (|Z = 0.01 Hz|) with immersion time was shown in
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Figure 7. The values of ZLF, which are related to the diffusion of the electrolyte in the pores
of the coatings, are commonly used to evaluate the corrosion resistance of the coatings.
At higher ZLF, the diffusion of the electrolyte in the pores of the coatings will be blocked
more tempestuously, suggesting lower porosity of the coatings or longer distance for
electrolyte diffusion to the zinc surface [7,50]. From Figure 6 it can be seen that the ZLF of
CGC reached a high at about 1.89 × 105 Ω·cm2, while CPTES/CGC showed a low and was
1.85 × 104 Ω·cm2. By prolonging the beginning immersion time, the ZLF of CPTES/CGC
at 5 h decreased gradually to 1500 Ω·cm2 and maintained a stable value. This is due to
the degradation of the protective coating as the immersion time increases and then tends
to provide cathodic protection. The ZLF of CGC was 1.28 × 105 Ω·cm2, which is nearly
2 orders of magnitude larger than CPTES/CGC at 5 h. It could be deduced that the presence
of silane increases the hydrophilicity of the coating and the surface wettability caused by
the silane makes it easier for electrolyte diffusion, resulting in a decrease of the ZLF. After
the zinc particles were completely activated by the electrolyte, there was an increase in the
impedance at the middle of immersion, this phenomenon is due to the pores being blocked
by a corrosion product and the blocking effect gradually became dominant. However, a
decrease of ZLF observed was caused by the formation of new defects and channels in the
coating, which weakened the blocking effect.
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Nyquist of CGC and CPTES/CGC are presented in Figure 8a,b. Eight of EIS mea-
surements data for CGC and CPTES/CGC were chosen as representatives to illustrate the
impedance behavior in 3.5% NaCl solution: 5, 24, 168, 540, 840, 1340, 2016, and 2736 h. The
symbol and solid line represent the experimental value and fitting value are presented in
Figure 8c–f, respectively. For CGC, at an immersion time of 5 h, the semicircles in the low
frequency domain showed a greater diameter and then decreased to a lower value. The
phenomenon was similar to the decrease with log|Z| and the phase value of high frequency
at a 5 h immersion time, which can be ascribed to the wetting and activation processes
of zinc particles. Thereafter, same for CPTES/CGC, observation of the low frequency
semicircles presents an increasing trend with immersion time and showed a second time
constant, which was responsible for the poor barrier characteristics and the electrolyte
solution can easily reach the coating/substrate interface due to the wettability of CPTES.
According to [14,51], two semicircles were obtained for solvent-based zinc rich coatings; the
first one is accounted to the impedance and capacitance of coating influenced by dielectric
properties, the second one is related with impedance of the reaction of zinc dissolution and
the capacitance of the double layer, attributed to the contact impedances that exist between
the different zinc particles. Therefore, the diameter of the semicircles in the low frequency
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domain increased, indicating a decrease in the amount of the activated zinc particles, which
slowed the consumption of zinc particles.
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for coatings.

However, the corrosion protection properties of CGC were worse than CPTES/CGC,
the results can be understood by the following reasons: (1) An interpenetrating network
layer was formed within the coating by the acrylic resin polymer and CPTES, which
contains silane monomer to form a siloxane network (Si–O–Si) and a crosslinking network
was formed through dehydration condensation between hydroxyl at the resin end and
silane. According to Liu [29], coatings with a higher polymer crosslinking density are
expected to exhibit decreased water uptake and slower water diffusion. Compared to CGC,
the surface of CPTES/CGC shows greater hydrophilicity as illustrated in Figure 1, but less
pores and compacted coating make the inner-electrical connection between particles more
sufficient. The amount of zinc particles that can provide more cathodic protection and less
self-corrosion than CGC. (2) According to Chico [28,30], the Si–OH groups present in excess
on the metallic surface condensed to form a siloxane network (Si–O–Si) of an appreciable
thickness. Therefore, the adhesion mechanism of interpenetrating network seems to be
the most important contributing factor to the adhesion and interfacial strength, which also
strengthened the electrical connection between the zinc particles and the steel substrate. The
detailed information of surface appearance and cross-section of the samples after immersion
also provided evidence for our deduction. As shown in Figure 9, observation of Figure 9a,b
both show the existence of two layers of corrosion products at the coating/solution and
coating/substrate interfaces and the corrosion product was found at the inner part of
CGC and CPTES/CGC. The observation of the surface topography from Figure 9e,f, which
demonstrated that there are more zinc particles and less corrosion products on the surface
of CPTES/CGC. Further observation from Figure 9c showed partial delamination between
a coating and substrate in CGC, the galvanized layer completely consumed to provide
cathodic protection to a steel substrate and zinc particles of CGC was almost consumed by
self-corrosion. This can also explain why the OCP of CGC reached quickly to −0.78 V/SCE
for 840 h. The CPTES/CGC micrograph in Figure 9d have shown that there were less
corrosion products than in CGC at coating/substrate interfaces, the zinc particles were well
connected to the HDG substrate, while zinc and galvanized layers frequently sacrificed
themselves to protect the steel substrate. It can be predicted that the barrier effects in the
later stage of the CPTES/CGC will be stronger than CGC, which was proved by the value
of ZLF at the time of 1000–2000 h that is shown in Figure 7.
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different times. (a,c,e): CGC and (b,d,f): CPTES/CGC.

3.4.3. Equivalent Circuits Fitting and Fitting Parameters

The equivalent circuits corresponding to the progress above were depicted in Figure 10.
The phase diagram for CGC and CPTES/CGC were characterized by three peaks at the
initial time (Figure 10a). As time elapsed, one peak that belong to the galvanized layer
disappeared as shown by the equivalent circuit in Figure 10b, which was caused by the
electrolyte solution that arrived at the coating/substrate interface through the pores of
the coating, and zinc particles of the coating and galvanized layer had been activated
completely. The cathodic protection effect provided by the coating and galvanized layer,
confirmed by our observations in the cross-section picture (Figure 9). After that time, as
the zinc particles were consumed, Warburg element appeared and the corrosion product
gradually increased to hinder the transmission process by sealing the pores and flakes
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(Figure 10c). As the coating deteriorated severely, a third time constant appeared, which
accounted for the corrosion of steel (Figure 10d). The elements include the resistances of
the solution (Rs), coating (Rc), galvanized layer (Rgl), charge transfer (Rt), and Warburg
diffusion (W). It also contains the constant phase elements representing the coating (Cc),
galvanized layer (Cgl), and steel substrate (CFe). For CGC, after 840 h, Warburg diffusion
behavior appeared with the products of cracks and delamination between coating/HDG
substrate, and zinc particles had been consumed by self-corrosion quickly. As immersion
time increases, the coating and galvanized layer became severely deteriorated and steel
begins to corrode. For CPTES/CGC, the equivalent circuit was the same with that of CGC
before 840 h, and afterwards, the coating system is at the stage of cathodic protection
provided by zinc particles, and the equivalent was shown in Figure 10b.
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CPTES/CGC; (c): 504–840 h for CGC, after 2736 h for CPTES/CGC; and (d): after 840 h for CGC.

In corrosive environments, the electrolyte solution gradually permeates into the coating
accompanied by decreasing coating resistance (Rc) and the increasing coating capacitance
(Cc) [3]. The changes in Cc and Rc were attributed to the resistivity and dielectric constant of
the electrolyte solution in the coating. The coating capacitance (Cc), in turn, relates closely to
the electrolyte diffusion behavior in the coating, and Rc corresponds to the antipenetrating
ability of coating. The logarithms of the coating capacitance and resistance with immersion
time generated by fitting of the equivalent circuits were plotted in Figure 11.

It could be clearly observed from Figure 11a,b that all CGC and CPTES/CGC sys-
tems’ coatings capacitance Cc gradually increased and coatings resistance Rc gradually
decreased at prolonged immersion time. The initial increases in coating resistance and
decreases in coating capacitance were caused by water uptake into the coating. However,
for CPTES/CGC, the coating capacitance Cc had a higher value than CGC at the initial
stage due to poor hydrophobicity, and then rose to a platform lower than that of CGC.
This behavior may be attributed to the low porosity caused by the cross-linking network,
which showed that the water uptake of coatings decreased in a short amount of time after
incorporation with silane monomer. Finally, the coating of 1.5% increased greatly and
then maintained a relatively stable value, indicating that the homogeneity of the coatings
decreased with the water uptake process.

Adhesion between the coating and the substrate can be reflected by the value of
double layer capacitance Cdl [52]. According to Naderi [53], Cdl represents the amount
of debonded area between the coating and substrate. According to Figure 11c, it can be
seen that silane acted as an adhesion promoter when compared to that of CGC. In zinc-rich
coatings, the charge transfer resistance (Rct) indicated the electrochemical activities of zinc
particles rather than corrosion activities of the interface between the metal substrate and
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the coating [12]. Obviously, the Rct values (Figure 11d) of CPTES/CGC were higher than
that of CGC because the contact area of zinc particles with the electrolyte was sufficiently
large, which attributed to the delamination and cracks in CGC.
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4. Conclusions

In this work, CPTES was innovatively incorporated into the coating to improve the
adhesion and corrosion resistance of cold galvanizing coatings.

(1) Water contact angle experimental results showed that wettability of the CPTES/CGC
increase, compared with that of the CGC, which benefited to coating/substrate inter-
face adhesion.

(2) The FTIR and XPS results proved crosslinking networks occurred in the CPTES/CGC
and its interface due to Si–O–Si, Si–O–C and Si–O–Zn bond formation.

(3) The pull-off adhesion experimental results revealed that dry adhesion and wet adhe-
sion of CPTES/CGC increase by 50% and 200%, respectively compared with CGC,
attributed to wettability improvement and crosslinking network formation.

(4) Electrochemical results indicated that the cathodic protection and barrier effects of
CGC were improved by CPTES, especially the cathodic protection effect time increased
threefold due to adhesion enhancement and three-dimensional network construction.
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