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Abstract: Gallium phosphide (GaP) is an ideal candidate to implement a III-V nucleation layer
on a silicon substrate. The optimization of this nucleation has been pursued for decades, since it
can form a virtual substrate to grow monolithically III-V devices. In this work we present a GaP
nucleation approach using a standard MOVPE reactor with regular precursors. This design simplifies
the epitaxial growth in comparison to other routines reported, making the manufacturing process
converge to an industrial scale. In short, our approach intends to mimic what is done to grow
multijunction solar cells on Ge by MOVPE, namely, to develop a growth process that uses a single
reactor to manufacture the complete III-V structure, at common MOVPE process temperatures, using
conventional precursors. Here, we present the different steps in such GaP nucleation routine, which
include the substrate preparation, the nucleation itself and the creation of a p-n junction for a Si
bottom cell. The morphological and structural measurements have been made with AFM, SEM,
TEM and Raman spectroscopy. These results show a promising surface for subsequent III-V growth
with limited roughness and high crystallographic quality. For its part, the electrical characterization
reveals that the routine has also formed a p-n junction that can serve as bottom subcell for the
multijunction solar cell.

Keywords: GaP on Si; GaP nucleation; III-V on Si; multijunction solar cells

1. Introduction

Silicon technology dominates the terrestrial solar energy market [1], but it presents an
important issue–further device development is practically at a standstill since they have
virtually reached their theoretical efficiency limit (26.7% [2] versus 29.6% of the theoretical
maximum [3]). On the other hand, multijunction solar cells based on III-V semiconductors
are the most efficient solar cell technology—the world record is currently 47.1% [4]—
but they are too expensive for terrestrial applications due to the raw materials involved
and production costs. In view of this situation, in the search for photovoltaic progress,
alternative new generations of solar cells have awakened great interest. Such is the case of
the conjugation of III-V multijunction solar cells on silicon substrates. These architectures
can combine the high efficiency of multijunction solar cells with the low-cost advantages
of large area silicon substrates [5–7]. Despite its great promise, this integration is not
direct and must tackle key difficulties, such as the large difference in thermal expansion
coefficients and their significant lattice mismatch.

The nucleation of III-V semiconductors on silicon substrates for photovoltaic applica-
tions has been the goal of many research works since the 1980s [6]. Among the great palette
of III-V compounds, gallium phosphide (GaP), with a lattice parameter which differs only
in 0.37% [8,9] from that of silicon at room temperature (approximately 5.45 Å in GaP vs.
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5.43 Å in Si) stands out. Accordingly, this mismatch is the smallest that can be found be-
tween any III-V semiconductor and silicon, minimizing the chances for defect generation in
a monolithically-grown structure. For this reason, GaP is an ideal candidate for a III-V nu-
cleation layer on Si, because a defect-free growth at this stage is instrumental. For example,
the interface between the III-V semiconductor and the underlying Si determines the quality
of the subsequent layers, since many defects—most commonly threading dislocations or
antiphase domains—can propagate upwards, impacting the electronic quality of the layers
which will be used for devices [10]. As shown in Figure 1, in our target application (a
multijunction solar cell), a GaAsP top cell will be grown on the GaP/Si virtual substrate.
To this end, a transparent metamorphic GaAsyP1−y buffer on the GaP layer is needed to
accommodate the lattice mismatch between the Si bottom cell and the GaAsP top cell.
The GaP also acts as a window layer to passivate the n-type emitter of the Si bottom cell
due to its high bandgap (2.26 eV) and the favorable offsets of the valence and conduction
bands [11,12]. This tandem GaAsP/Si solar cell, shown in Figure 1, could reach theoretical
efficiencies of 41.9% [13].
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The epitaxial growth by MOVPE of the structure in Figure 1 entails a number of
challenges, being the nucleation of a defect-free GaP layer on the silicon wafer a crucial
stepping stone. In this sense, the seminal work by Volz and co-workers [10] describes
a consolidated and reproducible MOVPE growth routine for the achievement of high-
quality, planar and smooth GaP layers grown on Si, that has been successfully replicated
by some other groups around the world [14] and has been used in the most successful
implementations of the solar cell in Figure 1 [15]. This routine starts with a high temperature
annealing of the Si wafer—above 900 ◦C—under H2 to pyrolyze the native SiO2 layer. Then
the double-stepped pristine silicon surface, necessary to avoid antiphase domains [16], is
achieved through a Si homoepitaxial growth, which entails the use of a specific reactor
with two chambers in order to avoid cross-contamination. Initially, the GaP/Si nucleation
—including the Si homoepitaxy—takes place in one chamber and then the sample needs
to be transferred to a different chamber (or even to another reactor) to proceed with the
subsequent growth of the III-V active layers of the device, which, in the case of multijunction
cells, typically include a variety of III-As and III-P compounds, as schematically shown in
Figure 1. On the one hand, this transfer guarantees that the active layers do not suffer from
Si background contamination and, on the other hand, the nucleation chamber remains
free of any arsenic [17]. Furthermore, the GaP is grown using pulsed growth at low
temperatures [10], which demands the use of specific group-V precursors (i.e., TBP) in
addition to PH3, used in the rest of the III-V structure, and thus impacts on process costs.

In this study we present a simpler routine for the growth of GaP layers on Si, that
could be implemented in any standard MOVPE reactor, used to grow III-As and III-P
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compounds, without the need of multiple chambers, Si homoepitaxial growth or extra
precursors. Therefore, the novelty of this work is to develop a routine that could be
implemented in any industrial reactor currently used to grow commercial multijunction
solar cells on germanium. In our case, the nucleation routine is carried out in a single-run
–both nucleation and device layers– and in a single MOVPE reactor. This process mimics
what is done for GaInP/Ga(In)As/Ge triple-junction solar cells grown on a Ge wafer, where
the nucleation and active layers are grown in a single run, using standard precursors, while
also creating the Ge bottom cell in the wafer during the first steps of the growth.

With this target in mind, in this work we present such a GaP on Si MOVPE nucleation
routine, which consists of: (1) a thermal annealing step for deoxidation and contaminant
removal; (2) an AsH3 pre-exposure, which serves as a cleaning aide and to improve the
superficial wetting; and (3) the growth of the GaP layer proper. The GaP layers grown are
characterized from the structural and morphological points of view and the diffusion of
n-dopants into the silicon substrate for the formation of the Si bottom subcell is assessed too.

2. Materials and Methods
2.1. Experimental

The wafers used for these experiments were Si (100) misoriented 4◦ towards [111]
with a resistivity of 5–10 Ω·cm. Prior to their loading into the reactor, the wafers were
chemically cleaned by an HF-dip with HF–H2O (1:6) for 3 min and rinsed in deionized
water and blown dry with N2, afterwards. All the samples reported in this research have
been grown in a commercial AIX200/4 MOVPE reactor (Aixtron, Herzogenrath, Germany)
using PH3 and TMGa as precursors for the GaP growth, AsH3 for the pre-exposures and,
in some processes, DETe for n-type doping the GaP layer. The reactor chamber has been
kept “coated” in all the epitaxies –i.e., all reactor quartzware and the vacuum system have
not been cleaned between runs–, and thus with the usual background of As, Ga and P
from previous runs. In-situ reflectance anisotropy spectroscopy (RAS) measurements have
been carried out during the routines with a EpiRAS tool (LayTec, Berlin, Germany). The
process temperature has been measured using a pyrometer, namely, a Laytec EpiTT. It
should be noted that all temperature values given in the following sections correspond to
actual pyrometer readings and not to heater set points.

The morphology and roughness assessment has been carried out using atomic force
microscopy (AFM), being the tool employed a multimode Nanoscope III A (Bruker, Biller-
ica, MA, USA) in tapping mode. Raman spectra and cross-section transmission electron
microscopy (TEM) images have been taken to evaluate the quality of the layers and to
detect if impurities or other compounds are present in the crystal. Raman microprobe mea-
surements were made using a HR800-UV spectrometer (Horiba-Jobin Yvon, Longjumeau,
France) coupled with a metallographic microscope (Olympus, Tokyo, Japan). The spectra
measured were obtained using as excitation the red line of an He–Ne laser (λ = 632.8 nm).
High resolution TEM (HRTEM) images were acquired with a Tecnai F20 system (Philips,
Eindhoven, Netherlands) operated at 200 keV. Electrochemical CV profiling, using a CPV21
tool (WEP, Furtwangen, Germany) was used to measure free carrier concentration to quan-
tify the diffusion of n-type dopant elements into the Si substrate in order to verify the
creation of a p-n junction and thus a silicon bottom cell.

2.2. Process Rationale

In order to implement the routine proposed in any standard MOVPE reactor used for
arsenide/phosphide devices, the process should avoid the need of two chambers, ultra-
high temperatures and specific precursors. Thus, in our routine the Si homoepitaxy step is
omitted, the thermal annealing is carried out at ordinary MOVPE process temperatures for
III-As/P semiconductors and the GaP nucleation is conducted using standard precursors
with continuous growth mode. Obviously, if compared directly to the optimum routines
reported, the proposed routine would come at the price of a lower quality since these
procedures do not allow a surface preparation as efficient; the cleaning can be imperfect, and
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subsequently the GaP nucleation would be carried out on a non-ideal surface. Therefore,
we have resorted to an AsH3 pre-exposure prior to the GaP growth, which minimizes the
deficiencies of the aforementioned conditions. With this strategy, the nucleation routine
rationale (sketched in Figure 2) can be described as follows:

1. Our starting wafer is covered in a native SiO2 layer and may also contain traces of
superficial carbonates (Figure 2a);

2. Initially, most of the native oxide on the wafers is removed with an HF-dip and wafers
are immediately loaded into the MOVPE reactor (Figure 2b);

3. Then, the wafers are subjected to a thermal annealing in the MOVPE reactor under
H2 ambient at 770 ◦C, a temperature reachable in most As/P MOVPE tools. This
step intends to favor the desorption of traces of the native oxide and superficial
carbonates that might have survived the HF dip. It also aims at reaching the ideal
surface configuration, consisting of double-stepped terraces (Figure 2c);

4. Afterwards, the wafers are exposed to a short flux of AsH3 (Figure 2d). This so-called
pre-exposure step aids in the deoxidation and the elimination of other contaminants
as carbon [18–20]. In principle, such group-V pre-exposure could be also interesting
in order to form a p-n junction for the bottom subcell by the in-diffusion of As into
the wafer. However, if the variables of this pre-exposure are not well optimized it can
be also detrimental as AsH3 can etch (i.e., roughen) the surface [20,21]. The reason for
using AsH3, instead of PH3 that will be used afterwards to grow the GaP, is because
As-precursors have shown to be effective removing oxide traces, whilst much less
aggressive than PH3 in promoting the silicon surface roughening [19–22]. Possibly,
this is because As-Si bonds are more stable than P-Si or Ga-Si bonds and therefore
less Si is exposed to atomic hydrogen [21];

5. As some roughening will inevitably occur after AsH3 exposure, a second annealing
under H2 ambient without precursor supply can reconstruct the Si surface [23] and
mitigate the roughening created by the pre-exposure step (Figure 2e).

6. The last stage in the routine is the GaP nucleation proper, whose purpose is to create
the virtual substrate for subsequent III-V growth. The nucleation conditions must be
adapted to optimize the result in the presence of small imperfections on the surface,
defects or a non-perfect double-stepped single domain silicon surface.
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Figure 2. Different steps of the routine designed in this research: (a) Si wafer as received with native
oxide and contaminants; (b) Chemical cleaning with a HF-dip; (c) Annealing in the reactor chamber
under H2; (d) AsH3 pre-exposure; (e) Second annealing under H2; (f) GaP nucleation.

The different process steps just described and represented in Figure 2a–f involve a
considerable number of parameters, including temperature, duration, flow, reactor pressure,
V/III ratios, growth rates, ... The systematic analysis of such an immense parameter space is
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simply undoable. In this respect we reduced the complexity by only exploring parameters
in limited ranges. A detailed description of the optimization process is out of the scope of
this paper and can be accessed elsewhere [24]. Just as a brief indication, we used in situ
measurements using reflectance anisotropy spectroscopy (RAS) and ex situ measurements
using AFM to benchmark process conditions. For example, Figure 3 plots RAS signals
obtained during our work in an optimization process for the AsH3 pre-exposure. As
reported in several works [19,22] on AsH3-exposed Si surfaces, a Si wafer uniformly
covered with As dimers consistently oriented forming a single domain, should present a
RAS signal with two strong peaks with energies at 2.9–3.4 eV and 3.6–3.9 eV [19,22], and
intensities ∆R/R between 1 and 2, depending on wafer miscut and temperature. Hence,
any feature that breaks such ideal surface arrangement, namely, contaminants, or surface
roughness revealing high index planes should decrease the intensity of such RAS signal.
Therefore, to optimize the AsH3 pre-exposure step, we swept temperatures, duration and
AsH3 flows in the search for RAS signatures with maximum intensity in both these peaks
and then checked ex situ the morphological quality of the surfaces with subsequent AFM
analyses. In this line, Figure 3 shows three different RAS signatures corresponding to three
different experimental conditions for the pre-exposure where a clear trend towards higher
levels of dimerization in a single domain. Experiment #3 (red curve) shows two clear,
intense peaks attributed to a strong dimerization oriented in a single domain; whereas
Experiment #1 (blue curve) shows only a weak peak at high energies evidencing a much
higher degree of surface disorder. The RAS signature of [22] has been added as an example
for comparison. It shows the aforementioned peaks but with different intensities and
energies, that can be attributed to the different wafer miscut and measurement temperature.
Following similar strategies, each step in the process was optimized to conclude with the
routine summarized in Table 1 and sketched in Figure 4. It is important to highlight that the
reactor pressure has been observed to be a variable of vital importance. It determines the
precursor partial pressures and thus the intensity of the surface cleaning/etching during
hydride pre-exposures and also dictates the GaP growth mode (i.e., 2D vs. 3D), since it
affects the surface mobility of the adatoms nucleating in a more homogeneous way and
not gathering in sites more energetically favorable provided by defects.
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We would like to finish this section with a final word of caution. The rationale exposed
is based on our educated intuition and understanding on how the nucleation process
works, which seems to be backed by the experimental results presented in the next section.
However, we have a very limited knowledge on what is really happening on the surface
in MOVPE during epitaxial growth. Unlike in MBE, where RHEED is an invaluable tool
to see the process evolution almost in real time, in MOVPE RAS measurements provide
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only a partial, indirect and phenomenological vision of the process, so this section should
be read as a hypothesis, consistent with the empirical evidence heretofore but not as an
unequivocal and empirical proof of how the MOVPE GaP/Si process takes place.

Table 1. Summary of the process variables of our GaP/Si nucleation routine. All times are indicated
with format mm:ss (minutes:seconds); slpm stands for standard litters per minute; sccm stands for
standard cubic centimeters per minute.

Substrate Si (100)

Miscut 4◦→ [111]

Chemical clean HF dip, 3:00

Process pressure 250 mbar

Carrier gas and flow H2, 15 slpm

First anneal (T, t) 770 ◦C, 30:00

AsH3 pre-exposure (T, t, flow) 720 ◦C, 2:45, AsH3 = 30 sccm

Second anneal (T, t) 720 ◦C, 2:00

GaP growth (T, t, V/III, flows)
720 ◦C, 0:30, 1500

PH3 = 500 sccm; TMGa = 5 sccm;
DETe = 33 sccm
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Figure 4. Diagram summarizing the routine developed for the GaP nucleation on Si.

3. Results and Discussion

Samples were grown following the process described in Table 1 and Figure 4 to
produce GaP/Si templates. In this section we summarize the morphological, structural
and electrical characterization of such samples.

3.1. Surface Morphology: Atomic Force Microscopy (AFM) and Scanning Electron
Microscopy (SEM)

Figure 5a,b present typical AFM scans of 10 µm × 10 µm and 1 µm × 1 µm of the
surface of our GaP/Si samples. Such figures reveal that the GaP coverage is continuous,
without any evidence of voids, hillocks or other 3D features. The root mean square (RMS)
roughness measured in our samples ranges from 0.50 to 0.85 nm (depending on scanned
area and magnification), which is a reasonably low value for subsequent III-V growth. This
value is not record low as in [18], but we have avoided the use of low temperatures for the
nucleation, which involves the use of costly precursors (TBAs and TBP). The 1 µm × 1 µm
shows some longitudinal faceted features following the wafer steps, as also reported
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in [25]. Other authors have observed longitudinal features [14]. However, as stated above,
our routine is simpler and does not include a Si homoepitaxy step, avoiding the need of
two reactors.
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Profiles of both AFM scans are represented at the bottom panel in Figure 5 and show
relatively smooth variations on the surface. This smooth GaP surface extends across the
wafer. Figure 6a includes a SEM image which shows a wider area of the surface. Again
a smooth surface is observed, with no trace of defects or undesired features. EDX was
employed to assess the homogeneity of the GaP layer. Figure 6b shows one of the EDX
spectra from the area boxed in Figure 6a as an example, where P and Ga are detected.
Figure 6c,d present the color maps generated from the Ga and P detection, respectively,
obtained from the spectra of the selected area. It can be observed that both elements are
uniformly spread along the area and thus voids or discontinuities are not present in the
GaP film.

3.2. Cross Section: Transmission Electron Microscopy (TEM)

Figures 6b and 7a show the cross-sectional TEM and HRTEM images of the sample
along the [011] direction. The sample presented in this experiment followed the same
routine as the one in Figure 5 and Table 1. At first sight it is possible to see that the GaP
layer is continuous and homogeneous with a thickness of around 7.4 nm. Some degree of
surface roughness is also noticeable in Figure 7a. In the HRTEM image (Figure 7b) there
are neither defects observable in the layer—as stacking faults, microtwins or antiphase
domains—nor at the GaP/Si interface. Furthermore, no oxides or other contaminants have
been detected. Further analysis are needed but, in short, the microstructure revealed in
Figure 7b is in agreement with what was observed in other reports on GaP/Si samples [26].

3.3. Layer Quality, Defects and Contaminants: Raman Spectroscopy

Classic XRD analysis is challenging in these samples with only a few nm of GaP.
Instead, Raman spectroscopy was measured to confirm the lack of crystallographic defects
and impurities by the analysis of the features in the Raman spectra. In this respect, the
Raman spectra of our samples have been compared with measurements of state-of-the-art
GaP/Si templates using the standard growth [10] and also with bulk GaP wafers. Figure 8
shows such measurements, where the black line represents bulk GaP from [27], the blue line
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represents the GaP wafer, the red line a GaP/Si sample following the standard routine [10]
and the green line the GaP/Si sample from this study.In the GaP wafer (in blue) two peaks
are clearly visible that represent the longitudinal and transverse optical vibrations of the
GaP in the first order spectrum (labelled TO and LO in the figure, respectively) [28], as
in [27], which have been added to confirm such optical vibrations. In the case of both
GaP/Si samples, the silicon first-order LO Raman vibration mode is clearly visible at
517–520 cm−1 [29].
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Figure 8. Raman spectroscopy of GaP samples. In black: GaP from [27]. In blue: bulk GaP. In red:
GaP/Si template from [5]. In purple: GaP nucleated on Si under study.

In these samples another peak at around 300 cm−1 stands out. The origin of this peak
has been associated with Si-P vibrations on low dimensional SiP systems [30]. These bonds
have been probably formed during the initial stages of the GaP nucleation. If we compare
both samples, the FWHM of this peak is very similar (11.05 cm−1 for the standard sample
versus 11.04 cm−1 for the one from this study).

In the GaP/Si sample with standard growth, the LO mode of the GaP is clearly visible
with a high quality since the peak is very sharp. On the other hand, none of the two GaP
vibration modes are visible in the GaP/Si sample under study. The lack of these peaks
could be due to the limited thickness of the layer grown, of around 7.4 nm as observed by
TEM [31].

Our goal with this analysis was to detect extra features in the Raman signals in
our GaP/Si samples that could be related to defects breaking the crystal symmetry (for
example, signature of oxygen bonds, carbon bonds or As bonds) and thus leading to
disorder-induced Raman scattering. We have not observed the such, therefore, Raman
measurements and the TEM analysis have shown that this GaP layer has nucleated mostly
free of defects and contaminants. However, it is important to note that TEM images only
cover a very local area in the sample and from them it cannot be concluded that the full
wafer has this quality at the GaP/Si interface and GaP layer. On the other hand, Raman
measurements have a light beam with a diameter from microns up to millimeters, and the
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exploration of different zones of the sample can be achieved in shorter times, assessing a
wider area of the sample. This fact in conjunction with the very limited surface roughness
measured makes this GaP/Si sample –in our opinion– comparable to the state-of-the-art [5].

3.4. Group-V Diffusion during the Nucleation Process: p-n Junction Formation

The relatively high temperatures in our process should trigger the diffusion of atoms
into the Si wafer [32]. The arsine pre-exposure, the second thermal annealing and GaP
nucleation take place at 720 ◦C, which could be enough for the diffusion of As and P
(n-type dopants) and Ga (p-type dopant) into the substrate. Two types of GaP/Si samples
were evaluated in these experiments: (1) samples following the process in Table 1; and
(2) samples in which the GaP was grown without Te, i.e., nominally undoped. In order
to assess the diffusion, the carrier concentration vs. depth in the samples was measured
by electro-chemical capacitance voltage (ECV). Figure 9 shows the ECV profiles of both
samples, which only include the carrier concentration in the silicon substrate, since the
GaP layer was etched off with aqua regia (HNO3:HCl–1:3).
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Figure 9. Electro-chemical capacitance voltage (ECV) of silicon substrates as a function of the depth,
on which a GaP (a) or GaP:Te (b) were grown on top after the substrate preparation. These layers
were etched for measuring the n-dopants diffusion into the silicon substrate.

In the nominally undoped GaP samples, where Te was not employed, the ECV mea-
surement (green circles-a) yields a flat line corresponding to the p-type doping of the
Si wafer. Therefore, in this case no significant diffusion takes place or, more accurately,
diffusion is not intense enough to alter or compensate the boron concentration of the silicon
substrate. On the other hand, the samples in which GaP:Te is grown do show a p/n junction
with a superficial n-type region extending for around 300 nm. In these samples, the surface
electron concentration compensates the p-type background doping and produces a net
n-type emitter.
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The interpretation of why we only get diffusion when n++ GaP:Te is grown on Silicon
is not straightforward. The in-diffusion of Te into the Si wafer is discarded given the low
temperatures used and the very low diffusion coefficient of Te in Silicon as compared with
the other elements [33]. However, it has been reported that n++ layers are very effective
introducing point defects that boost diffusion processes in the structure [34,35], so our
interpretation of the process is that vacancies in the GaP:Te layer act as a sink for Si atoms,
which in turn create vacancies in the Si wafer that boost the in-diffusion of Ga and P into
the wafer. In this respect the intensity of the diffusion process and thus the depth of the
emitter could be modulated by adjusting the n-type doping in the GaP [35].

In light of this explanation the particular shape of the emitter profile in Figure 9 can be
explained. The carrier concentration presents a first region (<100 nm) where it grows with
an initial ramp and then stabilizes in a plateau of ND~5 × 1014 cm−3. This can be explained
considering that the net carrier concentration is the result of the balance between the wafer
background doping and two diffusion processes: the shallow diffusion of Ga [36], which
is a p-type dopant in Si, and the more intense and deeper diffusion of P [37], which is an
n-type dopant in Si. Arsenic has lower diffusion coefficient than the others and we consider
that its diffusion has a lower effect [37,38]. The net free carrier concentration at each depth
will be the result of the competition between these terms. Deep in the sample, the diffusions
are negligible and the background p-type doping dominates; between 100 and 300 nm
from the surface the diffusion of Ga is negligible, whilst the diffusion of P is strong enough
to compensate the wafer doping and produce a net free electron concentration; between 0
and 100 nm diffusion of P is still dominant but several diffusion processes coexist giving
rise to the observed initial ramp. An analogous explanation has been proposed to explain
similar profiles obtained in Ge solar cells also grown in a MOVPE ambient [39].

In brief, the ECV measurements show that with our reference GaP/Si nucleation
routine a p-n junction can be created into the silicon, forming the grounds of a Si bottom
cell in a possible GaAsP/Si tandem. In this Si bottom cell, the GaP acts as window layer
for the front passivation. Another aspect to be tackled is the rear passivation in these solar
cells. It is known that MOVPE growth environments can degrade the lifetime of silicon
wafers as a result of metallic impurities diffusing into the wafer from the heated graphite
susceptor [40]. This effect can be minimized if the rear side of the wafer is protected with
Si3N4 during the MOVPE growth [41]. Further analysis and experiments are being carried
out to optimize this solar cell, together with the rest of the III-V growth.

4. Conclusions

A GaP on Si nucleation routine has been developed to combine the high efficiency of
III-V semiconductors with the low cost of silicon substrates. This routine intends to be as
simple as possible to integrate III-V multijunction solar cells on Si using and scalable process.
For this purpose, this nucleation routine combines the nucleation of a GaP layer with the
creation of a Si bottom cell in a single-run, using a conventional MOVPE reactor equipping
standard precursors. The process includes a previous ex situ substrate preparation by
means of an HF dip, and in situ steps in the MOVPE reactor involving thermal anneals, an
AsH3 pre-exposure, and the nucleation itself. The characterization has shown a GaP layer
with a smooth surface, state-of-the-art crystal quality and free of defects, contaminants and
oxide. Moreover, it has been observed that the use of n-type doping in the GaP layer is the
trigger for the formation of a p-n junction for the Si bottom cell.

The manufacturing of the Si bottom cell to assess its photovoltaic behavior is currently
being carried out. The next steps in the research encompass the calibration of the emitter
creation by in-diffusion by tuning the n-dopant flows and the thermal load. The rear
passivation of the silicon also needs to be studied. The remaining III-V layers will be
grown, which includes the GaAsxP1−x graded buffer, and the GaAsP top cell, to form the
dual-junction III-V/Si solar cell.
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