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Abstract: Total Shoulder Arthroplasty (TSA) is the process of replacing the damaged ball and socket
joint in the shoulder with a prosthesis made with polyethylene and metal components. After this
procedure, intervention may be required as a result of damage to the prosthesis, except for the need for
an examination regarding the prosthesis at certain periods. If the patient does not have information
about the model and manufacturer of the prosthesis, the treatment process is delayed. Artificial
intelligence-assisted systems can speed up the treatment process by classifying the manufacturer and
model of the prosthesis. In this study, artificial intelligence methods were applied to classify shoulder
implants using X-ray images. The model and manufacturer of the prosthesis is detected by using
the proposed deep learning method. Besides, the most commonly used machine learning classifiers
were applied for the same problem to compare the results and show the effectiveness of the proposed
method. In addition, the accuracy and precision analysis and measurements of the processing times
for the applied methods were performed to reveal the performance, accuracy, and efficiency of the
study. In order to measure the performance of the proposed method, it was compared with studies
on the same problem in the literature. As a result of the comparison, it was found that the proposed
method, with an accuracy rate of 97.2%, performed better than the other studies. In the study, the
implant manufacturer and model are classified in order to carry out the implant surgery process in
the best way with the proposed deep learning model. With the success of the proposed system, the
applicability of this model in similar prosthesis classifications has been shown. Differently from the
studies in the literature, the channel selection formula is presented in the proposed deep learning
method recommended for selecting the most distinctive feature filters.

Keywords: shoulder implant; detection; deep learning; machine learning; proposed model

1. Introduction

Total Shoulder Arthroplasty is a type of surgery performed on a damaged joint [1,2]. In
particular, calcification and rheumatoid arthritis can cause shoulder damage. As a result of
the trauma caused by the damage, surgical procedure may be required on the patient. With
the total shoulder prosthesis procedure, the joint that has lost its function due to damage
and is not fully functional is removed and a prosthetic joint is placed in its place [3,4]. In
addition, total shoulder prosthesis is also performed due to damage to the cartilage tissue
and the surrounding bones. The shoulder joint is one of the largest joints in the body [5].
In addition, it forms a complex structure with the surrounding muscle, fiber, nerve and
ligament groups. It is also one of the most commonly used joints because it combines
the body and the arms. For this reason, the shoulder joints are one of the most valuable
structures for human life. X-ray images are used to decide the fit of the prosthesis before
total shoulder prosthesis surgery. It also benefits from the X-ray images for evaluating
the correct placement of the prosthesis after surgery. There are many manufacturers that
produce prostheses for TSA. These manufacturers develop different prosthesis models
compatible with cases and patients. After the prosthesis is applied to the patient by surgical
procedure, it may be necessary to repair the prosthesis for certain periods. In addition, the
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prosthesis may be damaged as a result of some situations, such as an accident, and may
need to be replaced. If the prosthesis needs to be maintained or replaced, the manufacturer
and the model information of the prosthesis should be known by the patient or the doctor.
Otherwise, the process will not progress, and treatment will be delayed without this
information. In such a case, the X-ray images of the implant are examined in detail and
compared with the implant images which are available. This study aims to determine the
shoulder implant manufacturer and model from X-ray images by using the deep learning
method. A computer-aided shoulder implant determining system is used to help to the
scientist to identify the implant′s manufacturer and the model information. In this way,
even if there is no information about implant′s manufacturer and its model, there will be no
loss of time and effort in the treatment and surgical process. Urban et al. [6] have classified
shoulder implants according to manufacturer using the CNN-based deep learning method.
The study aimed to classify implants by manufacturers only. In addition, the pretrained
models were also used for modelling. The classic CNN architecture was applied in the
model. The Shoulder Implant X-ray dataset [7], which is available in the UCI open access
repository, was utilized in their study. In this study, the dataset which was used by Urban
et al. [6] has been applied. It has been considered that a better classification result would be
obtained by proposing a novel deep learning architecture. In addition, it has been studied
to classify shoulder implants by manufacturer and model in the study. In our study, the
shoulder implants were classified by both manufacturer and model for extend to extend
Urban et al. [6]’s study.

In this study, a deep learning model will be proposed for shoulder implant classifica-
tion. Apart from that, the most commonly used convolutional neural network methods
and traditional machine learning methods will be applied to the same problem for to com-
pare the performances of the methods. A computer-aided shoulder implant determining
system is used to help to the scientist to identify the implant’s manufacturer and the model
information.

A new layer is implemented that uses a channel selection formula to generate the
filter features in the proposed deep learning method. The proposed method is based
on the Convolutional Neural Network (CNN) architecture. The first contribution of the
study is to propose a new channel selection method that can be applied in deep learning
methods. The second contribution is to detect implant manufacturer and model by using
deep learning architectures and machine learning algorithms. The last contribution is to
show the applicability of the proposed model based on its high performance.

The paper consists of four chapters. In the first chapter, the literature survey is
presented. In the second part, information about the dataset and the proposed CNN
architecture and other applied methods are presented. The third section consists of the
experimental study, and the last sections contain the discussion and conclusions.

Related Works

Urban et al. [6], in 2020, classified the shoulder implants’ manufacturers from the
X-ray images. In the study, machine learning algorithms were applied to the problem along
with deep learning architectures such as NasNet, DenseNet, VGG, ResNet and Custom
CNN. Their study presents the results obtained for different classifiers via 10-fold cross-
validation. Among the methods applied, the highest accuracy rate was obtained by using
the NASNet deep learning architecture with pretraining on ImageNet, at 80.4%, with no
data augmentation. The DenseNet-201 architecture achieved the highest accuracy rate, at
78.9%, when the data augmentation was used.

Stark [8], in 2018, provided automatic detection and segmentation of TSA implants
in X-ray images. The Hough transform method was applied to the images for circles to
locate the implant. After this process a simple seeded region growing method was used for
segmentation. The best accuracy rate was obtained from the applied algorithms is 94%.
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Lindsey et al. [9], in 2018, developed a deep neural network to detect and localize
fractures on radiographs. While the sensitivity of the clinician was 80.8% without system
support, this increased to 91.5% with the help of the developed system.

Bredow et al. [10], in 2014, matched X-ray images with 3D knee prostheses. In the
study, the methodology is separated into three parts. These are template image generation,
X-ray image segmentation and template matching. As a result, an accuracy rate of 70% for
lateral views and 90% for frontal views was obtained.

Nachimuthu et al. [11], in 2012, developed a multiple classification system for fracture
detection in human bone X-ray images. In the study, Back Propagation Neural Network,
K-Nearest Neighbor, and Support Vector Machine classification algorithms were applied
on texture and shape features.

Takahashi et al. [12], in 2020, detected dental implants with deep learning methods.
In the study, an object detection algorithm (Yolov3) was applied with deep learning. As a
result, an accuracy rate of 72% was obtained.

Kim et al. [13], in 2020, used the deep learning methods for implant fixture system
classification with periapical radiographs. Among the deep learning methods applied in
the study, MobileNet-v2 achieved the highest accuracy with 97%.

Sukegawa et al. [14], in 2020, used the deep neural networks method for dental implant
classification. Five CNN models were applied for implant classification. Among the five
models, the finely tuned VGG16 model had the highest accuracy rate (90.7%).

Sharma et al. [15], in 2019, developed a convolutional neural network model to
control a human arm prosthesis with sEMG signals. A classification accuracy of 96.2% was
achieved in the CNN model.

Yi et al. [16], in 2020, used deep learning for the automatic detection and classification
of shoulder arthroplasty models. In the study, ResNet DCNN-based binary classifiers were
used for detection and the accuracy rate was 97%.

Gowd et al. [17], in 2019, predicted the rate of short-term postoperative complications
following total shoulder arthroplasty using machine learning algorithms. In the study, the
highest accuracy rate was found to be 77%.

Borjali et al. [18], in 2020, used deep convolutional neural networks to determine the
design of a total hip prosthesis. The performance of the CNN model was compared with
the responses of orthopedic surgeons. While the CNN model gets faster results, its accuracy
rate is on par with the orthopedic surgeons.

2. Materials and Methods
2.1. Dataset

The dataset used in the study is the Shoulder Implant X-ray Manufacturer Classifica-
tion dataset available in the UCI open access repository [7]. The dataset includes 597 X-ray
images. These images consist of 4 different implant manufacturers (Tornier, Cofield, Zim-
mer, Depuy) and 16 different models. The dataset includes 71 X-ray images from Tornier
(Bloomington, IN, USA), 83 X-ray images from Cofield (Aarau, Switzerland), 149 X-ray
images from Zimmer (Warsaw, IN, USA), and 294 X-ray images from Depuy (Warsaw, IN,
USA), (Figure 1). In the study, manufacturer and model information of implants were
obtained from the UniX-rayversity of Washington Shoulder website [19]. Commonly, shoul-
der implants are classified into different generations. First-generation implants like Cofield
are monoblock and nonmodular. Depuy is classified in the second-generation implant class
with its modular form. Third-generation implants like Tornier and Zimmer are inclined
and modular with adaptable variables. Three implant models by manufactured Depuy
were used in the study. There is no space between the head and body of the HRP model
implant, which is monoblock in design with a dorsal three holed fin. The Global model
is modular. In this implant model a space between upper and rim of stem and head is
designed. The Global Advantage implant model is also modular. The difference of the
global model from Global Advantage implant model is that it has a more pronounced
front edge with three holes. The Tornier manufacturer’s implants are distinguished by
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two holes and a distinctive triangular dorsal fin with a medialized eccentric head. Cofield
implants have a pointed distal stem and more space under the head. It differs from other
manufacturers with these features. The Zimmer implant model is designed as monoblock
with dorsal and ventral fins. The Zimmer implant’s stem tip is rounded. Furthermore, it
lacks a ridge under the head [19]. The number of data are sufficient for modelling deep
learning architectures owing to model label support and data augmentation applied.
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Some of the X-ray images have low resolution or low contrast. Apart from that, the
aspect ratios of the images are different. X-ray images have been preprocessed due to the
low resolution and low contrast found in some of the images (Figure 2).

Coatings 2021, 11, 346 4 of 12 
 

 

is designed. The Global Advantage implant model is also modular. The difference of the 
global model from Global Advantage implant model is that it has a more pronounced 
front edge with three holes. The Tornier manufacturer′s implants are distinguished by 
two holes and a distinctive triangular dorsal fin with a medialized eccentric head. Cofield 
implants have a pointed distal stem and more space under the head. It differs from other 
manufacturers with these features. The Zimmer implant model is designed as monoblock 
with dorsal and ventral fins. The Zimmer implant’s stem tip is rounded. Furthermore, it 
lacks a ridge under the head [19]. The number of data are sufficient for modelling deep 
learning architectures owing to model label support and data augmentation applied. 

 
Figure 1. Shoulder implant manufacturer count graph. 

Some of the X-ray images have low resolution or low contrast. Apart from that, the 
aspect ratios of the images are different. X-ray images have been preprocessed due to the 
low resolution and low contrast found in some of the images (Figure 2). 

 
Figure 2. Sample shoulder implant X-ray images. Figure 2. Sample shoulder implant X-ray images.

Besides, data augmentation was used to increase the number of X-ray images used in
the study. For this, minor changes have been made to the images in the current dataset,
such as flips or translations or rotations. In this way, the model perceived these images
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differently during learning. The training of the model was strengthened with the synthetic
data created in this way.

2.2. Deep Learning

The artificial neural networks method is an artificial intelligence method that simulates
the neuron structure in the brain [20]. With this modeling, the learning and adaptation
ability is gained. Deep learning includes the artificial neural network architecture on
each layer [21–23]. Unlike machine learning algorithms, the deep learning method makes
feature selections by itself. For feature extraction, the most insignificant features are
filtered in the first layers, while the most important feature is extracted in the last layer. In
addition, the strength of the deep learning method compared to other artificial intelligence
methods is that it can produce fast solutions for complex problems due to the large number
of processing units it contains. Due to the high hardware power requirement of these
processes, this support is provided through the computer′s GPU (Graphics Processing Unit).
With the GPU’s support, the training process of the model is completed in a shorter time
even for complex problems [24–26]. In the study, the proposed CNN-based deep learning
model and the most frequently used ResNet-50, DarkNet-53, AlexNet, VGG-19, Inseption-
ResNet deep learning networks were applied to the shoulder implant detection problem.

2.3. Proposed Channel Selection Formula

In this section, the channel selection formula is introduced in the proposed model
for selecting the most discriminatory feature filters. Yılmaz [27], diagnosed COVID-19
from lung X-ray images using a different deep learning network architecture with a feature
selection layer which was successfully applied. In addition to implementing the 3-channel
architecture and using different activation functions, the scores on all feature maps were
summed to calculate the probability of each class, as distinct from this study. The feature
selection formula was used with a different deep learning architecture to classify shoulder
implant manufacturer and model in this study. Firstly, the probability of each class is
calculated using the convolution operator in the proposed method. In Equation (1), the
final score(FS) is summed over all channels of the feature maps.

FSk =
p

∑
i=1,j=1

xi,j ∗ wi,j (1)

In Equation (1), x is the output feature of network, w represents the convolution’s
kernel and P is the set of pixel positions. The standard deviation value gives the distribution
of all available scores. The main thing is to calculate how many times below or above
the standard deviation from the average score by using the standard deviation value and
scores. As a result of this thought, the relative position of each score to all scores can be
expressed mathematically. Following, these scores can be compared with each other. The
absolute grade of the final score is a function of the absolute grade average of all final
scores and a standard deviation. The function gives the success of this final score (Equation
(2)). In these equations, K is the number of channels and FS is the success of final score.

Avg =
∑N

k=1 FSk

N
, Std =

√√√√ 1
N

N

∑
k=1

(
FSk − Avg

)2, SFSk
=

FSk − Avg
Std

(2)

A specific example of prediction probability calculation with the FS formulas is shown
in Figure 3.
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2.4. Experimental Studies

The computer which was used in the study has an i7-3.50GHz processor and 16 GB of
memory. All methods have been applied on Jupyter Notebook application with Python
programming language for the detection of the shoulder implant manufacturer and model
(Figure 4).

The proposed multichannel CNN model has a three-channel convolution layer. After
the images are preprocessed, the model starts with the global convolution layer. It is
designed as three channels in total, with this layer feeding two different convolution
layers. There are three convolution layers, two pooling layers, an ReLU linear unit and
fully connected layer in these layers. While it has a 64 × 64 × 3 convolution core in
the first convolution layer in the global channel; it has 32 × 32 convolution cores in the
second convolution layer and 16 × 16 convolution cores in the last convolution layer. In
the second convolution channel in the architecture, 16 × 16 convolution cores are in the
first convolution layer, 8 × 8 convolution cores are in the second convolution layer, and
4 × 4 convolution core is in the last convolution layer. There are 32 × 32 and 16 × 16
convolution cores in the first two convolution layers of the third convolution channel, and
8 × 8 convolution cores in the last convolution layer. The fully connected layer of the
global convolution channel produces 500 size output, while the full connected layer of
the other two convolution channels produces 100 size output. Outputs from all channels
are calculated over the channel selection layer in order to produce the best result of the
proposed multichannel CNN architecture with the formulas given in Section 2.3. After
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these feature maps were linked to fully connected layers, Softmax and Bounding Box
activation was performed to determine the classification possibilities. The proposed model
is shown in Figure 5.
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The total number of parameters in the model is 12,447,924. Of these, 8,228,220 are
in the global convolution channel and 4,219,704 are in other convolution channels. The
training of the models took approximately 45,000 s and 500 iterations. In the training set,
while the error value decreased until the 500th iteration, no decrease was observed in the
training process after the 500th iteration.

Data augmentation was applied to the existing X-ray images before the training set was
presented to the model. In the study, the size of dataset was increased by a factor of 2 with
rotating the X-ray images 180 degrees. Because of this, the size of the images was preserved.
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Then, the images in the dataset were brought to equal size (128 × 128) by preprocessing.
In the study, K-Folds Cross Validation was used to determine the training and test set. In
K-Folds Cross Validation, the data is divided into k different subsets. While the k-1 subset
is used for training, the last subset is used for testing. The average error value obtained as
a result of k experiments stated the validity of the model. Firstly, the K value was tested
as 10 and 15. With these values, the accuracy rate did not increase significantly. However,
the training period increased considerably. Therefore, the K value was determined as 5 in
the study. After the learning processes of the models were completed, the models were
validated with the test set (Figure 6).
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The most commonly used deep learning methods were applied to the problem along
with the proposed model for shoulder implant detection. In addition, the logistic regres-
sion, support vector machine, naive bayes, random forest and XGBoost machine learning
methods were also used on the same problem for comparison.

3. Results

In this study, the proposed model with a novel channel selection layer is presented
which was used for shoulder implant manufacturer and model detection. Besides, the deep
learning model with a novel channel selection layer was proposed and the formulas are
presented. In the study, the “Shoulder Implant X-ray Manufacturer Classification” dataset
was used which is in the UCI open access repository. We took 597 images from the dataset
in order to detect shoulder implant brand and modal. Since the quantity of available data
was insufficient for training, the number of X-ray images was increased by using data
augmentation to train the model better. After the images were rotated 180 degrees, a total
of 1194 X-ray images were obtained. Fivefold cross validation was used to determine the
training and test set.

In addition to the proposed model, ResNet-50, DarkNet-53, AlexNet, VGG-19, Inseption-
ResNet deep learning networks and machine learning algorithms have been applied to the
same problem to compare their performance and evaluated. Besides, it was compared with
previous studies in the literature that made shoulder implant classifications using the same
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dataset. Statistical information about the deep learning methods which were applied for
shoulder implant detection is given in Tables 1 and 2; the accuracy performance chart is
shown in Figure 7. The logistic regression (LR), support vector machine (SVM), naive bayes
(NB), random forest (RF) and XGBoost algorithms were also applied for supporting the
applicability of the proposed model. Statistical accuracy analysis of these machine learning
methods is shown in Table 3. The values which were shown in Tables 1–3 are the averages
of five-fold cross validation.

Table 1. Comparison of applied deep learning models’ performances with no data augmentation.

Criteria Proposed Model ResNet-50 Dark-Net-53 AlexNet VGG-19 Inseption-ResNet

Accuracy 97.20 92.73 93.85 94.41 91.06 95.53
Sensitivity 0.98 0.95 0.965 0.959 0.95 0.965
Specificity 0.019 0.05 0.034 0.041 0.048 0.034
Precision 0.986 0.956 0.958 0.972 0.937 0.979

RMSE 1.32 3.93 3.09 2.44 4.87 1.93
F1 0.983 0.953 0.962 0.965 0.944 0.972

Training Time (s) 46,723 45,752 45,250 44,213 45,182 45,923
Testing Time (s) 17,412 16,823 16,532 15,883 16,351 16,938

Table 2. Comparison of applied deep learning models’ performances with data augmentation.

Criteria Proposed Model ResNet-50 Dark-Net-53 AlexNet VGG-19 Inseption-ResNet

Accuracy 96.31 88.69 90.95 93.88 86.51 93.13
Sensitivity 0.97 0.92 0.95 0.96 0.93 0.95
Specificity 0.021 0.07 0.047 0.036 0.066 0.044
Precision 0.974 0.923 0.927 0.955 0.891 0.957

RMSE 1.46 6.12 5.07 3.02 8.47 3.46
F1 0.976 0.926 0.939 0.959 0.91 0.956

Training Time (s) 81,792 80,103 79,275 77,432 79,112 80,392
Testing Time (s) 26,215 25,291 24,821 23,947 24,672 25,493
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Table 2. Comparison of applied deep learning models’ performances with data augmentation. 
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Proposed 

Model ResNet-50 Dark-Net-53 AlexNet VGG-19 
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ResNet 
Accuracy 96.31 88.69 90.95 93.88 86.51 93.13 

Sensitivity 0.97 0.92 0.95 0.96 0.93 0.95 
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Training 
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Table 3. Comparison of applied machine learning algorithms′ performances with data augmentation.

Criteria LR SVM NB RF XGBoost

Accuracy 70.43 77.38 74.62 81.74 83.91
Sensitivity 0.79 0.87 0.85 0.91 0.92
Specificity 0.191 0.114 0.128 0.08 0.07
Precision 0.75 0.804 0.75 0.823 0.876

F1 0.772 0.838 0.798 0.865 0.898

The accuracies of the models are, respectively: 97.2−96.31% for proposed model,
92.73−88.69% for ResNet-50, 93.85−90.95% for Dark-Net-53, 94.41−93.88% for AlexNet,
91.06−86.51% for VGG-19 and 95.53−93.13% for Inseption-ResNet (Tables 1 and 2).

These statistical results show that the proposed model is more successful than the
other applied modals. The reason that the results of the proposed model are better than the
other models applied is that the channel selection layer determines the most prominent
feature vector. The performance of the proposed method for two situations in the study was
compared with the studies on similar problems in the literature. It is shown in Table 4 that
the performance of the proposed model is higher than the other studies in the literature.

Table 4. Comparison of results.

Reference Study Classifier Problem Accuracy (Best%)

Urban et al. [6] NasNET-CNN Shoulder Implants 80.4
Stark [8] Hough Transform Shoulder Implants 94

Lindsey et al. [9] CNN Fractures 90.1
Bredow et al. [10] CNN Knee Prosthesis 90

Takahashi et al. [12] Yolov3-CNN Dental Implants 72
Kim et al. [13] CNN Implant Fixture 97

Sukegawa et al. [14] CNN Dental Implants 90.7
Yi et al. [16] ResNET-CNN Shoulder Arthroplasty 97

Proposed Model CNN Shoulder Implants 97.20
Proposed Model (with

data augmentation) CNN Shoulder Implants 96.31

4. Discussion

For each applied situation, the proposed model achieved more successful results
in terms of all performance evaluation criteria compared to both the commonly used
deep learning models and the machine learning algorithms. The success of a machine
learning algorithm depends on the choice of appropriate features. Various preprocesses,
size reduction, feature selection etc. are performed to reveal these features. It is necessary
to get rid of the dependence on features to increase the accuracy and reduce the transaction
cost of these processes. In this study, the deep learning architectures have a higher accuracy
rate and a more efficient system owing to their more successful, easier and lower cost
extraction of the valuable features from the data. The results of the performance criteria
and the processing times of the applied models, which were shown in Tables 1–4, show
that the proposed model performs much better than the other studies in the literature.

In addition, it should be considered that classification may be desired for a manu-
facturer or model X-ray image not included in the training set. To solve this situation,
the dataset should be increased for more manufacturers or another manufacturer/model
implant may be recommended to a patient by providing the closest similarity.

5. Conclusions

In this study, a proposed model is presented with the novel channel selection formula
which selects the most prominent feature filters, unlike in the literature. The average
score and standard deviation value of the channels are important for the channel selection
formula. The current score for each feature is evaluated again with these values. In this
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way, it is possible to calculate which feature will be the most prominent and dominant
among the features. This is the reason why the accuracy rate increases with a multichannel
network model. The accuracy rate was increased significantly by using the most effective
feature selection, which was applied among the channels for each image. The process
of determining an appropriate weight for each feature extracted in the different stages
of the proposed model is shown by this formula. The proposed model was applied for
shoulder implant classification. Then, other deep learning and machine learning methods
were applied to the same problem. Thus, the performance comparison of the applied
methods was made. When the results are examined, it is shown that the proposed method
is applicable in terms of both performance criteria and time efficiency. In addition, the
predictability of the shoulder implant manufacturer and model with the deep learning
method is presented in the study when there is an urgent need for surgical operation.
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