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Abstract: Cost-effective corrosion mitigation of offshore steel structures can be achieved by thermal
spray coatings. These coatings, when comprised of Al, Zn and their alloys, provide a physical
barrier against the environment when intact, and cathodic protection to underlying steel when
damaged. Due to the complexity of marine environments, laboratory tests should be combined
with field work in order to understand the corrosion protection offered by these coatings. The
work presented here was carried out with thermal spray coatings of aluminum alloys (AA1050,
AA1100, Al-5Mg) and Zn-15Al prepared by Twin Wire Arc Spray onto low carbon steel substrates.
The resulting coatings were ~300 µm in thickness, and 5% of surface area defects were artificially
machined in order to expose the steel substrate, simulating mechanical damage or erosion of the
coating. Electrochemical data collected over a 90 days period showed a good correlation between
laboratory and real marine environment results. Aluminum alloys showed better corrosion protection
in fully immersed conditions, while zinc alloys performed better in atmospheric and splash zones.
Overall, these results aim to improve design of thermal spray coatings to protect carbon steel in
marine environments.

Keywords: thermal spray aluminum; marine corrosion; cathodic protection; sacrificial coatings

1. Introduction

Marine environments are highly corrosive to metals, resulting in premature failure
of offshore structures, ships, pipelines and bridges. Here, carbon steel is commonly used
due to its high yield strength and low cost, albeit its resistance to corrosion is less than
desirable. Thermal spray (TS) coatings have been used to mitigate marine corrosion for
decades [1–3]. Since their introduction into the market, only limited improvements have
been reported. Further optimization should be developed taking into account the effect
of the environment which will aid the design of safer, low-cost offshore structures with
low maintenance.

Coatings are used nowadays in many different forms and with a wide range of
applications, providing protection to the underlying material against physical or chemical
degradation. Focusing on thermal spray coatings, they are made by finely dispersed
deposition of molten or semi-molten particles onto a substrate. The general process consists
of a high temperature and high velocity gas stream directing the coating material towards
the substrate, where different types of heat source lead to different techniques: Flame spray,
electric (or wire) arc spray and plasma arc spray [4].

After TS coatings became popular for offshore structures during the late 1900s, zinc,
aluminum and their alloys were introduced as corrosion protection strategies for marine
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environments. Due to the simplicity, low operation cost and high efficiency of thermal spray
(wire arc), it was rapidly considered as one of the most appropriate methods by industry
to prevent corrosion failures [1]. Properties such as microstructure, adhesion strength or
surface roughness depend on the spraying method and parameters. For example, porosity
and oxide content differ significantly between air plasma sprayed, wire arc sprayed and
high velocity oxy-fuel coatings. In addition, Thermal Spray Aluminum (TSA) and Thermal
Spray Zinc (TSZ) are usually combined with other corrosion protection systems for offshore
service either by connection to additional sacrificial anodes or by developing more complex
coating systems by combination with epoxy paints [3]. Another common method to protect
steel from corrosion is hot dip galvanizing in Zn baths with various alloying additives
such as Mg, Pb or Sn [5]. However, due to the large dimensions of offshore structures this
technique is less frequently observed in marine environments.

The corrosion mitigation performance of these coatings depends on their electro-
chemical, physical and mechanical properties. A significant amount of literature has
been published over the last 50 years on the physical and mechanical properties of these
coatings [6–10]. However, electrochemical understanding of the corrosion mechanism,
especially in the presence of defects, is largely unknown. Laboratory tests have shown
how different types of Zn/Al coatings protected steel against corrosion by electrochemical
methods [1,11,12]. Open circuit potential (OCP) values are below −0.90 V (vs Ag/AgCl)
after a few days of exposure, and the corrosion rates reported suggest that TSA/TSZ
can offer protection for over two decades. For immersed conditions, comparing pure Al
(99.5 wt.%) with pure Zn coatings, as well as alloys containing different ratios of these
metals, the commercially pure Al coating was reported as the one with the best corrosion
performance [13]. The addition of other alloying elements such as Mg or In has also been
studied [14]. These additions enhance the corrosion performance by increasing the polariza-
tion effect of the coatings into the cathodic direction. For atmospheric conditions, however,
Zn coatings appear to be more suitable as a corrosion protection thermal spray coating
based on previous data reported from thermally sprayed coated structures in service in
marine environments [12,13].

Due to the early industrial implementation of these coatings, decommissioning of
offshore structures with TSA/TSZ has provided evidence about their service life and
performance. Offshore platforms coated by flame and arc spray with different compositions,
thicknesses and post-spraying treatments (epoxy sealants) have been exposed to marine
environments in the North Sea and Japan for over 18 years [2,15]. Characterization of the
materials after exposure showed good conditions in terms of appearance (no rust) and
coating thickness, although the aluminum coating had some damage in the splash zone.

As a result of the interaction with the environment, corrosion products precipitate on
top of the coating and the steel substrate (when exposed through defects on the coating).
For TSA/TSZ, the corrosion products block the pores favoring the corrosion resistance
properties of the coatings in immersed conditions. Therefore, understanding the formation,
nature and stability of the corrosion deposits plays a significant role on the performance
of the coatings. Oxides and hydroxides of Al and Zn can be found on top of the coatings
as a result of the corrosion protection mechanism. In addition, hydrotalcite, a type of
Layered Double Hydroxide (LDH), has also been identified on both coatings after exposure
to immersed conditions [12]. Hydrotalcite is formed from the substitution of Mg2+ ions in
brucite [Mg(OH)2] by Al3+ or Fe3+ ions. This results in a positively charged hydroxide layer
compensated by CO3

2− or SO4
2− ions in the interlayer. It presents the general formula

[M2+
1−xM3+

x(OH)2]Az+
x/z·yH2O with a wide range of combinations possible [16].

On top of steel, it is well established that under cathodic protection calcium and
magnesium compounds precipitate acting as a protective barrier against corrosion. The
hydroxide ions from cathodic reactions released near the metal surfaces modify the pH
and solubility products of Mg(OH)2 and CaCO3. Their nature, nucleation and growth
depend on potential, current density, time of exposure, pressure, temperature and seawater
chemistry [17]. The effect of the ions (present in seawater) on the performance of TSA
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revealed the formation of the calcareous deposits bilayer on artificial defects at ambient
temperature [18], as well as at 60 ◦C [19].

This paper aims to provide a better understanding of the long-term offshore corrosion
performance of TSA and TSZ (Zn-15Al) coatings. Artificial defects on the coatings are
machined post spraying in order to simulate erosion or damage of the coatings and study
the formation of the calcareous deposits on top of the steel. Due to the complexity of the
marine environment, samples exposed to controlled laboratory tests are compared to the
ones obtained through exposure to real marine environments by means of electrochemical
measurements and surface characterization of the deposits formed.

2. Materials and Methods
2.1. Thermal Spray Samples

Low carbon steel coupons with nominal composition shown in Table 1 were used
as substrates for the ~300 µm coatings. Dimensions of samples varied depending on the
exposure environment, specified in the following subsection.

Table 1. Nominal composition of steel substrates for thermal spray process (S355N, EN 10025-
3:2004 [20]).

Elements C Mn Si P S Cr Ni Cu Al Mo

wt.% 0.150 1.350 0.030 0.016 0.005 0.080 0.060 0.170 0.035 0.014

Prior to the thermal spray process, angular alumina (NK36 type, 0.250–0.297 mm) at
100 psi (690 KPa) pressure was used for the grit blasting of the steel substrates in order to
achieve a standard cleanliness of SA 2.5. These substrates were coated with four alloys in
wire form (2.3 mm Ø) and chemical compositions are shown in Table 2. For each thermally
sprayed sample, two identical wires were used during deposition. The use of four different
alloy wires resulted in four thermal spray coatings designated as AA1150, AA1100, ZnAl
and AlMg. These coatings were deposited by twin wire arc spray (TWAS) with an ARC140
gun (Metallisation Ltd., Dudley, UK) using parameters shown in Table 3. The process
consisted of creating an electric arc between two charged wires (one positive, one negative),
with a stream of compressed air directing the molten (or semi molten) particles towards
the substrate. The deposition efficiency of the coating production process was between
40–50%. Circular artificial defects were machined post-spray with a flat (slot) drill at the
center of each sample (~5% of sample surface area) in order to simulate coating failure.

Table 2. Chemical composition in weight % of alloys used for thermal spray coatings.

Alloy Al (wt.%) Zn (wt.%) Mg (wt.%) Cu (wt.%)

AA1050 99.5 min 0.05 0.05 0.02
AA1100 99.0 min 0.1 - 0.2 max

ZnAl 15.0 85.0 - -
AlMg 95.0 - 5.0 -

Table 3. Thermal spray process parameters.

Alloy
Wire

Diameter
(mm)

Wire Feed
Rate

(m min−1)

Spray
Distance

(mm)

Increment
Step
(mm)

Traverse
Speed

(m s−1)

Voltage
(V)

Current
(A)

AA1050
AA1100
AlMg

2.3 5.0 95.0 10.0 0.45 33.0 200

ZnAl 2.3 5.0 95.0 8.0 0.45 32.0 160
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The roughness of the prepared substrates and TS coatings was measured by 3D pro-
filometry (Alicona InfiniteFocusSL and Alicona Imaging GmbH Software, Bruker Alicona,
Graz, Austria). These measurements were repeated three times. The grit-blasted steel
surface showed a value of Ra = 3.5 ± 0.5 µm, while TS coatings showed values of Ra
between 15–25 µm.

2.2. Simulated Environment Tests

Thermal spray (TS) samples used for laboratory tests were 40 × 40 × 6 mm3, with
a 5% of surface area defect and threaded rods inserted on one side of the samples to be
used as the electrical connection with the potentiostat. All sides (except the TS-coated
one) were covered by type 45 stopping-off lacquer to expose only the TS-coated side of the
sample to artificial seawater. Figure 1 shows the appearance of the four types of TS-coated
samples prepared for laboratory tests. Electrochemical measurements were carried out
with an Autolab PGSTAT204 (Metrohm, Herisau, Switzerland) and analyzed with Nova 2.1
software provided by the same company. All electrochemical measurements were carried
out using a three-electrode cell configuration. TS samples were used as a static working
electrode, Ag/AgCl (KCl sat.) as a reference and a platinum/titanium wire as counter
electrode. Individual cells open to the air were kept at ambient temperature of 20 ± 5 ◦C,
using artificial seawater ASTM D1141 [21] as electrolyte. All potentials in this work are
referred to the Ag/AgCl (Sat. KCl) electrode (Eref = +0.199 V vs. SHE, i.e., −0.045 V vs.
SCE at 20 ◦C).
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Figure 1. Thermally sprayed coated samples with 5% of surface area defect before exposure.

Electrochemical characterization of the samples was carried out by polarization curves
in order to obtain corrosion potential (Ecorr), corrosion current density (jcorr) and Tafel
coefficients (βa and βc) according to the Butler–Volmer equation (Equation (1)). Samples
were immersed for 24 h to reach a stable state before recording the potential versus current
curves. Samples were polarized to ± 250 mV from the corrosion potential (Ecorr), at
10 mV min−1 scan rate.

I = Icorr

(
e

2.303(E−Ecorr)
βa − e

−2.303(E−Ecorr)
βc

)
(1)

Electrochemical monitoring of samples exposed for 50 days in the laboratory was
carried out by Open Circuit Potential (OCP) and Linear Polarization Resistance (LPR)
measurements every 24 h. LPR scans were performed in the range of ± 15 mV from
Ecorr, with a 10 mV·min−1 scan rate. Short-term tests such as polarization curves were
repeated twice for reproducibility, while long-term tests were carried out once due to
limited resources.

2.3. Field Trials

TS AA1050 samples (40 × 40 × 6 mm3) with 5% of surface area defects were immersed
at “Les Minimes”, La Rochelle (France). Sea temperature was 13 ± 3 ◦C. Samples were in
immersed conditions for 90 days (February 2019–April 2019), monitored every 10 days by
Open Circuit Potential (OCP) and Linear Polarization Resistance (LPR) measurements with
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a ±15 mV range from OCP at 10 mV·min−1. Electrochemical measurements were carried
out with a Gamry Interface1000 potentiostat/galvanostat and Gamry Analyst software
for analysis (Gamry Instruments, Warminster, PA, USA). A platinum mesh was used as a
counter electrode and an Ag/AgCl (sat. KCl) as a reference electrode, as shown in Figure 2.
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Figure 2. Experimental setup to carry out electrochemical measurements at Les Minimes
(La Rochelle, France).

In order to study the performance of TS coatings in different marine zones, four
different alloys were exposed at “El Bocal” (Santander, Spain). These samples were
150 × 100 × 6 mm3, TS-coated on all surfaces and with a 5% of surface area defect on
both top and bottom surfaces of the samples. TS samples were grouped in four to be
exposed to the different marine environments as shown in Figure 3. Exposure time for
these samples was 6 months (November 2018–May 2019) to atmospheric/splash, tidal and
immersed conditions. It should be noted that during very low tides (less than 10% of the
total exposure time), the water level goes below the samples exposed in the immersed zone
as shown in Figure 3. Monitoring of the samples was carried out by photographs taken
periodically. Seawater temperature was 14 ± 3 ◦C.
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2.4. Surface Characterization

Surface topography and chemical composition of the samples were evaluated after
exposure to different environments. Corrosion products formed on the surface of the
specimens were characterized by scanning electron microscopy and energy dispersive
X-ray spectroscopy (SEM/EDX), Raman spectroscopy and X-ray diffraction (XRD).

Topographical and chemical analyses were performed using an EVO LS15 SEM/EDX
(Zeiss, Obekochen, Germany) using 20 kV voltage, 4.5 µm spot size, 8.5 mm working
distance and backscattered electron detector. Micro-Raman spectra were recorded using a
Jobin–Yvon Raman spectrometer (LabRAM-HR, Horiba, Tokyo, Japan) equipped with an
Olympus-BX41 microscope (Olympus, Tokyo, Japan) and a Peltier-based cooled charge
coupled device (CCD) detector (Horiba, Tokyo, Japan). Spectra were recorded at room
temperature, with excitation provided by a He-Ne laser (632.8 nm) with reduced power
between 25% and 1% to prevent excessive heating. X-ray diffraction (XRD) analysis was
performed with an Inel EQUINOX 6000 diffractometer (Thermo Fisher Scientific, Waltham,
MA, USA) equipped with a CPS 590 curved detector. This detector is designed for the simul-
taneous detection of the diffracted photons on a 2θ range of 90◦. Acquisition was made with
a constant angle of incidence (5◦) for 45 min using Co-Kα radiation (λ = 0.17903 nm). The
various phases were identified via the ICDD-JCPDS (International Center for Diffraction
Data-Joint Committee on Powder Diffraction Standards) database [22].

For examination of cross sections, samples were cold mounted with Epofix resin
(Struers Inc., Cleveland, OH, USA) and cut through the middle with a vertical abrasive
cutting saw (Buehler Abrasmatic 300, Lake Bluff, IL, USA). The surface was then ground
with SiC abrasive papers going from P120 to P2500, and polished successively with 3, 1 and
0.25 µm diamond paste.

3. Results
3.1. Simulated Environments Tests
3.1.1. Electrochemical Characterization of Coatings

Initial characterization of the materials was carried out by potentiodynamic polar-
ization. Figure 4 shows the polarization curves of the four samples recorded in artificial
seawater after 24 h of immersion, and Table 4 shows the corrosion parameters obtained
from these. Here, Tafel slopes were converted to Tafel coefficients (ba,c = ln(10)/βa,c) for
comparison with the literature data. Corrosion potential (Ecorr) values of AA1050, AA1100
and AlMg are all within the range of −0.97 ± 0.01 V, whereas Ecorr of ZnAl alloy decreases
to −1.10 V due to the higher nobility of aluminum than that of zinc. These are all mixed
potential values due to the presence of defects on all coatings. When steel is exposed to
seawater, a cathodic reaction, Equation (2), happens mainly on its surface while an anodic
reaction happens on the coatings, Equations (3) and (4):

O2(g) + 2H2O(l) + 4e− 
 4OH−(aq) Eo = + 0.40 V (2)

Al(s) 
 Al3+(aq) + 3e− Eo = + 1.66 V (3)

Zn(s) 
 Zn2+(aq) + 2e− Eo = + 0.76 V (4)

Current density values obtained through Tafel analysis increase in two orders of
magnitude from the Al alloys to the ZnAl alloy (Table 4). This is due to the tendency of Al
alloys to passivate in seawater [8,23], whereas the Zn-based alloy shows an active behavior.
The current density values of aluminum alloys (AA 1050, AA 1100 and AlMg) tend to reach
a limiting current density as potential values shift towards less negative values. This is
due to the passivation of aluminum in seawater which reduces material degradation and
translates into lower corrosion current densities and corrosion rates. It should be noted that
the breakdown of the aluminum passive film is not observed due to the limited range of the
potentiodynamic sweep. When wider limits of potentiodynamic scans are applied for TSA
coatings in seawater (above −0.75 V and below −1.45 V vs. Ag/AgCl), the film breakdown
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is observed, as it has been reported in the previous literature [24,25]. For the ZnAl alloy
however, the correlation between potential and current density values corresponds to a
typical active material [8,26], since current density increases significantly as the potential
is swept towards less negative values. The formation of a protective layer of corrosion
products is less efficient for Zn alloys, as zinc chlorides dissolve in aqueous solution [27].
As a result, aluminum alloys are expected to give longer service life than zinc alloys in
immersed conditions.
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Table 4. Corrosion parameter from polarization curves of TS samples in artificial seawater. The error
for jcorr and ba,c is estimated at ±20%, while that on Ecorr is ±1 mV.

Coating Alloy Ecorr (V) jcorr (A cm−2) ba (mV/dec) bc (mV/dec)

AA1050 −0.98 5.50 × 10−6 570 180

AA1100 −0.97 6.20 × 10−6 510 140

ZnAl −1.10 1.50 × 10−4 90 130

AlMg −0.98 5.30 × 10−6 380 150

Looking at the cathodic branches of the polarization curves, the slopes of all curves
present similar values. As the cathodic reaction happens mainly on the steel surface, the
area of which is identical in all samples, this is expected.

3.1.2. Long-Term Tests

Long-term corrosion protection provided by thermal spray coatings in artificial seawa-
ter was evaluated by OCP and LPR monitoring over 50 days of exposure. Figure 5 shows
the data collected for the four different alloys used to obtain the thermal spray coatings. In
all cases, OCP values show a mixed potential, due to the presence of defects on the samples,
and significant changes over the initial 10 days of exposure. Fluctuations of potential
values in this initial stage correspond to changes on the surface of the coatings. Upon
immersion, the air-formed oxide layer dissolves and the new aqueous oxide layer begins to
form [18,19]. The formation of the aqueous oxide layer leads to passivation of the coatings,
which helps to reduce the self-corrosion. From Figure 5a, the cathodic polarization effect of
the four coatings can be observed as OCP values of all samples are below −0.90 V after
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20 days of exposure. After this time, all samples present small fluctuations in potential
values, which are mainly attributed to temperature changes and solution electrolyte top
up. By the end of the test, after 50 days of exposure, both aluminum alloys (AA1050 and
AA1100) present a similar potential value around −0.93 V, whereas ZnAl and AlMg alloys
present values of −0.97 and −1.00 V, respectively. The more negative potentials obtained
for the latter alloys are due to the more anodic (active) behavior of Zn and Mg elements
present [14].
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Circuit Potential) measurements and (b) LPR (Linear Polarization Resistance) measurements.

Polarization resistance values obtained through LPR measurements continuously
increase over the entire duration of the tests for the three alloys containing Al as the main
element (AA1050, AA1100 and AlMg). The AA1050 alloy shows the fastest and highest
increase of Rp, reaching values over 85 kΩ·cm2 after 35 days of exposure. AA1100 and
AlMg present an increasing tendency of Rp values as well, reaching a similar maximum
value of Rp to AA1050 after 50 days of exposure. For the ZnAl alloy however, Rp values
are significantly lower. For the alloy with Zn as the majority element, Rp values reach a
maximum of 14 kΩ·cm2 after 35 days of exposure, with slight changes occurring during the
rest of the exposure period. Therefore, as lower Rp values translate into higher corrosion
rates, the corrosion rates of the ZnAl alloy would be significantly higher than those of Al
alloys. Overall, from the data presented in Figure 5, the better performance of Al alloys
can be observed. Even though the four alloys tested are able to polarize and protect the
steel substrate in artificial seawater, the alloys containing Al in a higher proportion to Zn
perform better as they present higher Rp values. As a result, Al alloys are more suitable for
offshore structures in marine environments under immersed conditions.

3.1.3. Surface Characterization

Figure 6 shows photographs of TS-coated samples after exposure to controlled labo-
ratory tests with artificial seawater for 50 days. Here, it can be observed how the sample
sprayed with the ZnAl alloy presents the more prominent coating color change and largest
amount of white deposits on top of it. This is attributed to the formation of the Zn ox-
ides/hydroxides/chlorides [12,27].
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Figure 6. Images of TS samples after 50 days exposure to laboratory tests.

Samples were also examined by SEM/EDX, Raman and XRD analysis to identify
corrosion deposits formed on top of the coatings and on top of the steel on defect areas.
From the SEM/EDX analysis, all the Al alloys (AA1050, AA1100 and AlMg) revealed Al
oxides/hydroxides on the surface (Figure 7). The small amount of Mg identified from EDX
could be due to the presence of hydrotalcite.
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of exposure to artificial seawater in controlled laboratory conditions.

On the defect areas, white deposits can be observed on all samples in Figure 6. Based
on the literature, these are expected to be a bi-layer of calcareous deposits with brucite
[Mg(OH)2] in the inner layer and aragonite (CaCO3) in the outer layer. This was confirmed
by SEM/EDX of the cross sections of all samples. Figure 8 shows the defect area on the
cross section of Al sample 1100 as an example of the calcareous deposits formation.
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In addition, Raman and XRD analysis validated the presence of aragonite as shown in
Figure 9. On the Raman spectra, the peaks at 152, 254, 705 and 1085 cm−1 correspond to the
aragonite structure [28]. On the XRD pattern obtained, aragonite and halite were identified.
The presence of brucite however could not be confirmed by Raman or XRD analysis. This
is believed to be due to the small amounts present and the formation of aragonite on top
of it.
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controlled laboratory conditions.

3.2. Field Trials

In order to provide a better understanding of the performance of TS coatings to protect
carbon steel structures in marine environments, laboratory tests were complemented with
field tests by performing electrochemical tests on site on TS AA1050 samples with defects
at Les Minimes (La Rochelle, France) and exposing TS-coated samples with defects in
different zones of marine environments at El Bocal (Santander, Spain).

3.2.1. Electrochemical Tests In Situ

The influence of the environment on the long-term performance of TS coatings was
studied by electrochemical measurements recorded in situ in a real marine environment
(Les Minimes, France). As it was not feasible to perform the measurements under these
conditions for all coatings and all marine exposure zones due to material and time limita-
tions, the TS AA1050 was selected for these tests. These results were compared to the ones
obtained through controlled laboratory tests with artificial seawater.

OCP and LPR data were collected over 90 days of exposure with TS AA1050 (Figure 10).
Laboratory tests in artificial seawater start recording values of −0.70 V, reaching a min-
imum of −1.10 V and then increasing to stabilize around −0.95 V. This trend correlates
with data from the literature [18,19], as discussed on Section 3.1.2 of this article. Initial
values of samples exposed to a real marine environment could not be recorded due to
technical problems with reference and counter electrodes. Measurements performed after
10 days of exposure show more negative potentials than the ones recorded under controlled
environment in the laboratory. This could be explained due to the defect area covered by
deposits more rapidly in real marine environments. The combination of living organisms
and more O2 access can influence the kinetics of the calcareous deposit formation on top
of steel [29,30]. Therefore, the cathodic reaction on the steel surface decreases, and occurs
on the TS coating instead. As a result, the potential observed for samples exposed to real
marine environment become more negative. This is also reflected on polarization resistance
values recorded by LPR. For the samples exposed to a real marine environment, even
though Rp values increase over time as well, these are smaller than the values obtained
from samples exposed to controlled laboratory tests. Overall, from Figure 10 it can be
observed that the TSA coating is providing cathodic protection for the underlying steel
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substrate throughout the entire duration of the test and in both cases Rp values increase,
which translates into a decrease in corrosion rate over time.
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3.2.2. Long-Term Exposure of TS Coatings

Thermal spray-coated samples with four Al/Zn alloys were exposed to three different
zones of marine environments at the Marine Corrosion Test Site “El Bocal” in Santander
(Spain): Atmospheric/splash, tidal and immersed, as shown in Figure 3. The total exposure
period was 6 months and evolution of samples over time was carried out by periodic
photographs. Figure 11 shows the images of the four alloys tested in atmospheric, tidal and
immersed conditions at the end of the tests. Initial analysis of the corrosion performance of
the coatings was based on appearance, looking into TS coating deposits (oxides, hydroxides
of Zn or Al), biofouling, rusting and calcareous deposits. Overall blistering, additional
damage or rust was not observed on top of the TS coatings tested. The alloys with Al as
the main constituent do not present significant changes in terms of coating appearance
or deposits over the 6-month exposure period. For the ZnAl alloy however, the coating
appearance presents changes in color as exposure time increases and corrosion deposits on
top of the coatings are visible on samples in atmospheric and tidal conditions. In all cases,
biofouling on exposed samples increases from the atmospheric to the immersed zones,
with the ZnAl alloy showing the least amount.

Rust is visible in the defect areas of the Al alloys in atmospheric and tidal regions
(AA1050, AA1100 and AlMg). The ZnAl alloy does not present signs of rust on any of three
exposure zones. This suggests that Zn alloys are more efficient in atmospheric/splash zones
than Al alloys. White deposits observed in the defect areas are assumed to be calcareous in
nature based on the literature and prior studies by the authors. This was also confirmed by
SEM/EDX analysis. Overall, from visual inspection no major corrosion/degradation were
observed on this set of samples.

From cross sections of these samples, the microstructure of the coatings and their
thickness was evaluated. Figure 12 shows the cross section of a TS AA1050-coated steel
sample before corrosion tests. The microstructure of this coating presents low porosity and
a rough surface.
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Figure 12. Cross section SEM image of TSA 1050 coating on a steel substrate prior to corrosion testing.

SEM images of the cross sections of TS coatings after 6 months of exposure at El Bocal
revealed uniform microstructure of coatings, with no signs of cracking or delamination
on any sample. Figure 13 shows an example of TS AA1050 coating exposed to atmo-
spheric/splash, tidal and immersed conditions. Here, the amount of corrosion products
filling the pores in the TS coating increase from Figure 13a–c. Coating thickness measure-
ments performed by image analysis revealed a decreasing tendency from samples exposed
to atmospheric (320 ± 10 µm) conditions to the ones exposed to immersed conditions
(280 ± 10 µm). However, there were no major signs of corrosion at the steel–coating
interface. These observations were also found to be true for the remaining three coatings
tested (please find the link provided in Data Availability Statement).
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4. Conclusions

Offshore structures are expected to perform for at least 25 years with minimal main-
tenance in order to minimize risks and costs. However, the complexity of marine envi-
ronments makes offshore testing challenging for researchers. Recreating this environment
through laboratory experiments always implies making some assumptions, as conditions
vary from different geographical locations. These results provide an insight into the real
life performance of TSA and TSZ (Zn-15Al) coatings by combination of laboratory and
field tests including electrochemical measurements. The following conclusions could be
drawn from the work presented in this paper:

• The four coating types tested showed that they provided cathodic protection for steel
in marine environments based on laboratory and field tests.

• The laboratory tests performed with different Al alloys (AA1050, AA1100, Al-5Mg)
and Zn-15Al coatings confirmed that although TS Zn-15Al is able to polarize steel to
more negative potentials, it provides a shorter lifetime under immersed conditions
as evidenced from the Rp values. Therefore, for the design of offshore structures, the
exposure zone (atmospheric, tidal or immersed) should be considered in order to
choose the coating that provides the best protection.

• Surface characterization of samples revealed the formation of aluminum and zinc
oxides/hydroxides on top of the coatings and calcareous deposits on the steel surface
in the defect areas.

• The comparison of electrochemical data for TS AA1050 in controlled laboratory tests
and field tests substantiates a good correlation in terms of OCP and Rp.

• TSA and TSZ (Zn-15Al) samples with defects showed no significant signs of corrosion
after a 6-month exposure to the different zones of marine environments (atmospheric,
tidal and immersed).
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