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Abstract: This paper presents a novel thermopile chip in which the resonant cavity structure was
fully utilized as an absorber by an optical design. The resonant cavity absorber structure was
designed using Al as anthe bottom reflective metal layer, air as the intermediate dielectric layer,
and SiO2/TiN/Si3N4 sandwich layers as the top absorption layer, while the bottom reflective metal
(Al) was deposited on the cold junctions of the thermopile. The simulation and calculation results
show that the thermopile chip with resonant cavity absorber structure not only has great infrared
absorption in the wide infrared absorption range but also can effectively prevent the cold junctions
from absorbing infrared radiation and inhibit the rise of temperature. As a result, the temperature
difference between the hot junctions and the cold junctions is increased, and the responsivity of
the thermopile chip is further improved. Moreover, the duty cycle of the thermopile chip is greatly
improved due to the double-layer suspension structure. Compared with the traditional thermopile
chip structure, the sizes of the thermopile chip with the resonant cavity absorber structure can be
further reduced while maintaining responsivity and specific detectivity.

Keywords: infrared detector; resonant cavity; energy applications; absorptance

1. Introduction

The thermopile IR detector is applied in many fields, because it has the advantages of
no need for cooling and chopping, broad spectral response, low cost and simple output
circuit [1–4]. The thermopile chip is the core component of thermopile IR detector and has
been greatly optimized and has opened the door to mass production, with the help of con-
ventional complementary metal oxide semiconductor (CMOS) and micro electromechanical
system (MEMS) technologies. The thermopile chip is generally a central suspended struc-
ture with a supporting layer, thermopile, absorber, and other layers deposited on a silicon
substrate. The hot junctions and the cold junctions of the thermopile are respectively
distributed on the edge and center of the silicon substrate hollowed out in the center, and
the hot junctions are covered by the absorber, as shown in Figure 1. The thermopile infrared
detector contains two energy conversion processes of light-heat and heat-electricity, and its
performance also depends on the superposition of the two conversions efficiency. Thus, the
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absorber can play a crucial role on the thermopile chip. The absorber is required for great
absorption at both 3–5 µm and 8–14 µm, while a thermopile chip is used as the sensing
element of an infrared thermometer [5,6], nondispersive infrared (NDIR) gas detector [7,8]
or infrared imager [9–11]. The porous materials with dendritic and soft structure, like
gold-black, can have great absorption at ultra-wide wavelength range and are typically
used as the absorber of thermopile chip [12–17]. However, these porous materials are
generally too fragile and not compatible with CMOS [18,19]. Owing to the interference of
light, the resonant cavity absorber structures can also have great absorption at a specific
band and are also often used as the absorber of thermopile chips. However, the resonant
absorption structure is a stack of multilayer films, so its absorption characteristics largely
depend on the matching relationship between the refractive index and thickness of the
multilayer film, and often only absorb specific wavelength bands. In addition, the resonant
cavity absorption structure is often sensitive to thickness errors, and the thickness of each
layer of the film needs to be accurately controlled during the preparation process. In fact,
an Si3N4 layer or SiO2/Si3N4/SiO2 sandwich structure is also usually used as the absorber
of thermopile chips. However, the Si3N4 layer or SiO2/Si3N4/SiO2 sandwich structure has
higher absorption only at 8.5–13.5 µm and lower absorption at 2.5–8 µm [20,21].
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Figure 1. Typical thermopile chip structures: (a) close membrane structure, (b) cantilever beam
structure (c) suspension bridge structure, and (d) the designed thermopile chip structure with
resonant cavity.

The structures of thermopile chips are mainly divided into three types: close membrane
structure, cantilever beam structure, and suspension bridge structure (Figure 1a–c) [22–25].
Compared to the cantilever beam and suspension bridge structures, the close membrane
structure is the current mainstream structure of thermopile chip, which is provided with
smaller thermal resistance, shorter response time, and a simpler manufacturing process.
However, the above chip structures all have the problem of mutual restriction between the
absorption zone and the thermocouple zone, and further reduction in thermopile chip size
cannot maintain relatively higher responsivity and detectivity.

In this paper, we designed a novel thermopile chip in which the resonant cavity
structure was fully utilized as an infrared absorber by an optical design (Figure 1d). In the
resonant cavity absorber structure, the Al, air, and SiO2/TiN/Si3N4 sandwich layers were
used as the bottom reflective metal layer, intermediate dielectric layer and top absorption
layer, respectively. The designed thermopile chip was proven to be provided with a high
duty cycle, great infrared absorption, and a wide infrared absorption range.

2. Design of Resonant Cavity Absorber Structure

As shown in Figure 2a, the resonant cavity absorber structure generally consists of
three parts: the top absorption metal layer, the middle dielectric layer, and the bottom
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reflective metal layer [26,27]. The absorption characteristics of the resonant cavity absorber
structure are based on the theory of optical interference absorption. The incident light
and reflected light will produce light interference effects at the top absorption metal layer
when the optical thickness of middle dielectric layer is of a quarter-wavelength thickness,
thereby achieving higher infrared absorption at specific band. Thus, it is difficult for the
resonant cavity absorber structure to achieve ultra-wide spectral absorption like the porous
materials and to realize a detector in various fields such as gas detection and non-contact
human temperature measurement. Moreover, the matching of each thin film, especially
the thickness, has a great influence on the absorption characteristics of the resonant cavity
absorber structure. Thus, the resonant cavity absorber structure generally requires a precise
design of the absorption structure and control of the manufacturing process.
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The Essential Macleod is a simulation software for the transmission, reflection and
absorption characteristics of optical multilayer films. In order to design a resonant cavity
absorber structure with broad spectrum absorption and low film thickness error sensitivity,
we first used the Essential Macleod to simulate and calculate the reflection and absorption
characteristics of different materials based on the theory of optical interference absorption
and then chose reasonable materials for each layer of the resonant cavity absorber structure,
as shown in Figure 3. The simulation results show that the average reflectance of the Al
layer could reach more than 97% at 2–14 µm. Thus, an Al layer was used as the bottom
reflective metal layer of the resonant cavity absorber structure. According to the theory of
optical interference absorption, It is easier to obtain a resonant cavity absorber structure
with broad spectrum absorption with an intermediate dielectric layer with low refractive
index [28]. The refractive index of air is 1, which is very suitable as the intermediate
dielectric layer of the resonant cavity absorber structure. As seen in Figure 3, the Si3N4,
SiO2, and TiN have higher absorption at 3–14 µm, 8–10 µm, and 10–14 µm, respectively,
which is why we chose the SiO2/TiN/Si3N4 sandwich layers as the top absorption layer of
the resonant cavity absorber structure. Moreover, the Si3N4 and SiO2 layers are designed
to be deposited on the upper and lower sides of TiN layer, respectively, where the Si3N4
layer can act as a passivation layer and have a certain protective effect on the TiN layer,
and the SiO2 layer can act as a supporting layer and play a positive role in supporting the
overall structure. The SiO2/TiN/Si3N4 sandwich layers as the top absorption layer can
well reduce the difficulty of preparation and the sensitivity of the resonant cavity absorber
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structure to the film thickness error and improve the mechanical strength, stability and
yield of the resonant cavity absorber structure.
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Based on the theory of optical interference absorption, we used the Essential Macleod
to simulate and calculate the optical thicknesses of the intermediate dielectric layer and top
absorption metal layer, thereby adjusting the absorption wavelength range of the structure,
as shown in Figure 4. The simulation and calculation results show that the resonant cavity
absorber structure has great absorption at 3–5 µm and 8–14 µm when the thicknesses of
the air cavity, TiN layer and Si3N4 layer are 2700, 20, and 250 nm, respectively, as shown
in Figure 2b. As shown in the red spectral curve in Figure 4a, the average absorptances
of the designed resonant cavity absorber structure are ~89.56% and ~93.51% at 3–5 µm
and 8–14 µm, respectively, which is comparable to those of porous materials [12–17].
However, as shown in the black spectral curve in Figure 4a, the conventional standard
cavity absorption structure designed with Al as the bottom reflective metal layer, SiO2 as
the intermediate dielectric layer, and Ti as the top absorption layer only has an absorptance
close to 91% in 3–5 µm [18]. Therefore, the thermopile chip with the designed resonant
cavity absorber structure can not only be used as the detector elements of the non-contact
infrared thermometer and thermal imager, but also as the NDIR gas detector element for
detection of CO2, CO, NO2, and CH4 gases. Generally, the absorption of the resonant
cavity absorber structure is highly sensitive to the thickness error of each layer, and the
thickness of each layer needs to be accurately controlled during the preparation process to
achieve the ideal absorption effect. In fact, the deposition processes of MEMS and CMOS
both have a certain thickness error, so the Essential Macleod software was used to simulate
the absorption spectra of the designed resonant cavity absorber structure, under mean
thickness error of 5%. As shown in Figure 4b, the absorption spectra of the designed
resonant cavity absorber structure have no obvious deviation in absorptance compared
with that of the theoretical design (Figure 4b). Thus, under the mean thickness error (5%) of
the general MEMS and CMOS deposition processes, the designed resonant cavity absorber
structure still has high absorption and stability. The structure design using air as the
middle dielectric layer and SiO2/TiN/Si3N4 sandwich layers as the top absorption layer
can effectively broaden the absorption wavelength range and reduce the sensitivity to
thickness error.
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3. Design of Thermopile Chip

Based on the designed resonant cavity absorber structure, we propose a new type of
thermopile chip structure, as shown in Figure 5. In this paper, we adopted monocrystalline
silicon as the substrate and N-/P-Poly-Si as the thermocouple. The SiO2 layers were used
as the support, insulating and passivation layers of the thermopile. The hot junctions of the
thermopile were laid on the floating membrane, and the cold junctions were distributed on
the center of substrate. Moreover, the N-Poly-Si and P-Poly-Si were connected using Al as
interlayer at the hot junctions and the cold junctions of the thermopile, respectively.
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The responsivity (R), noise equivalent power (NEP), specific detectivity (D *), and time
constant (T) are the main three performance parameters for evaluating the thermopile chip,
and R is the most obvious and direct way to characterize the thermopile chip by the ratio of
∆U to incident infrared radiation power (P0) and can be calculated from Equation (1) [3]:

R =
∆U
P0

When infrared radiation is applied to the thermopile chip, there will be a temperature
difference (Tdiff) between the hot junctions and the cold junctions of the thermopile, and
Tdiff is converted into a measurable output voltage (∆U) based on the Seebeck effect. The
∆U for a thermopile is then calculated from Equation (2) [3]:

∆U = NTdi f f |αA − αB| = NTdi f f αAB

Therefore, increasing the Tdiff between the hot junctions and the cold junctions of
the thermopile is the most direct and effective way to improve the performance of the
thermopile chip.

In order to better understand and design the structure of the thermopile chip and make
the designed resonant cavity absorber structure be perfectly combined with the thermopile
chip, we used the finite element analysis software to simulate the thermopile chip’s thermal
field. As shown in Figure 6, compared with other double-layer suspension thermopile
chips, the thermopile chip we designed has a higher Tdiff between the hot junctions and
the cold junctions [29–31]. Since both the doped polysilicon and SiO2 layers have certain
absorption characteristic of infrared radiation, the cold junctions of the thermopile also
have infrared absorption characteristic [20,21]. When the infrared radiation is irradiated on
the surface of the thermopile chip, the cold junctions will also perform infrared absorption
and light-to-heat conversion except the hot junctions and the infrared absorber. As shown
in Figure 6a, the absorption of infrared radiation by the cold junctions will increase the
temperature of the cold junction and thus weaken the responsivity of the thermopile chip.
To solve this problem, we designed the cold junctions of the thermopile specifically, that
is, the bottom reflective metal layer (Al) of the resonant cavity absorber structure was
deposited on the cold junctions of the thermopile. Figure 3 shows that the Al layer has very
low absorptance and very high reflectance (~97%) at 2–14 µm so that the Al layer can well
reflect the infrared radiation irradiated on the cold junctions, prevent the cold junctions
from absorbing infrared radiation, and inhibit the rise of temperature, resulting in further
improvement of responsivity and specific detectivity (as shown in Figure 6b). Furthermore,
the Al layer can also serve as the reflective metal layer of the resonant cavity absorber
structure, forming the interference of light and strengthening the infrared absorption
characteristic of the top absorption metal layer. The top absorption layer of the resonant
cavity absorber structure can be connected to the hot junctions through the support column,
which facilitates the transfer of the heat of the top absorption layer to the hot junctions as
shown in Figure 6b. This can further increase the temperature difference between the hot
junctions and the cold junctions, and reduce the response time of the thermopile chip. In
particular, the intermediate dielectric layer (air) is located between the absorption layer
and the thermopile, and as a result, the heat loss is reduced, and furthermore, the mutual
restriction of area between the absorption zone and the thermocouple zone is also solved,
leading to a very high duty cycle. Thus, the sizes of the designed thermopile chip can be
further reduced while maintaining responsivity and specific detectivity compared with the
three types of traditional thermopile chips.
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4. Preparation Process of Thermopile Chip

On the basis of the designed structure of the thermopile chip, the preparation process
was proposed, combining CMOS and MEMS processes. Firstly, an SiO2 layer of ~200 nm
thick was deposited on the surface of the silicon substrate as a masking layer using a
thermal oxidation process, and then the photolithography and reactive ion etching (RIE)
processes ware used to pattern and etch the SiO2 layer (Figure 7a). Secondly, the isolation
trench with depth of 6000 nm was obtained by the RIE process for the bare silicon substrate
(Figure 7b). Thirdly, a thermal oxidation process was used again to generate an SiO2 layer
of ~200 nm thick on the etched silicon substrate as a release barrier (Figure 7c). Then, a
polysilicon layer of ~3000 nm thick was grown by low pressure chemical vapor deposition
(LPCVD) and then planarized, which served as a sacrificial release layer (Figure 7d). An
SiO2 layer of ~500 nm thick was deposited by LPCVD on the polysilicon layer, which
served as a thermopile support layer (Figure 7e). A polysilicon layer of ~500 nm thick was
deposited by LPCVD on the support layer as one layer of the thermocouple and doped with
boron (B) by ion implantation to form P-type polysilicon, and then the P-type polysilicon
was patterned by the RIE process (Figure 7f). Next, an SiO2 layer of ~100 nm thick was
deposited again by LPCVD as the insulating layer of the P-type polysilicon layer (Figure 7g).
A polysilicon layer of ~500 nm thick was deposited by LPCVD on the insulating layer as
another layer of the thermocouple and doped with phosphorus (P) by ion implantation to
form N-type polysilicon, and then the N-type polysilicon was patterned by the RIE process
(Figure 7h). An SiO2 layer of ~100 nm thick was deposited by LPCVD as the insulating
layer of the N-type polysilicon layer (Figure 7i). Subsequently, the two insulating layers
were etched to form the connection holes at the hot junctions and the cold junctions by the
RIE process (Figure 7j). Then, an Al layer of ~500 nm thick was deposited by magnetron
sputtering technology (MST) and patterned and etched by the photolithography and RIE
processes, which served as the electrical connection between the thermocouples and the
electrode (Figure 7k). The withstanding temperature of the substrate was greater than
700 ◦C while employing LPCVD to deposit the SiO2 or Si3N4 layer, which brought about
serious damage to the deposited Al layer. Finally, the SiO2 layer of ~100 nm thick, as the
passivation layer of the thermopile, was deposited by plasma enhanced chemical vapor
deposition (PECVD) (Figure 7l).

For the preparation of the resonant cavity absorber structure, an Al layer of ~100 nm
thick was first deposited by MST as the bottom reflective metal layer, and then the pho-
tolithography and RIE processes were used to pattern and etch the Al layer (Figure 8a).
The un-etched Al layer covered the cold junctions of the thermopile, which not only served
as the reflective metal layer but also could reflect the infrared radiation irradiated at the
cold junctions. Then, an amorphous silicon layer of ~2700 nm thick was deposited by
PECVD as the sacrificial layer (Figure 8b). Subsequently, an SiO2 layer of ~100 nm thick
was deposited by PECVD as the support layer of the top absorption metal layer; next, a
TiN layer of ~20 nm thick was deposited by MST as the top absorption metal layer, and
then an Si3N4 layer of ~250 nm thick was deposited by PECVD as the passivation layer
of the top absorption metal layer, thereby forming a complete SiO2/TiN/Si3N4 resonant
cavity absorber structure (Figure 8c). Finally, the sacrificial layer composed of amorphous



Coatings 2021, 11, 302 8 of 10

silicon was dry-etched and released by the release hole etching and XeF2 gas phase re-
lease processes to form the thermopile chip with the resonant cavity absorber structure
(Figure 8d).
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5. Conclusions

A novel thermopile chip with resonant cavity absorber structure was designed by an
optical simulation in this work. In the resonant cavity absorber structure, the Al, air, and
SiO2/TiN/Si3N4 sandwich layers were innovatively used as the bottom reflective metal
layer, intermediate dielectric layer, and top absorption layer, respectively. The designed
resonant cavity absorber structure exhibited ~89.56% and ~93.51% average absorptances at
3–5 µm and 8–14 µm, respectively. In particular, the bottom reflective metal layer (Al) was
deposited on the cold junctions of the thermopile, which made the Al layer not only act as
the reflective metal layer to reflect the infrared radiation and to form the resonant cavity
absorber structure, but also prevented the cold junctions from absorbing infrared radiation
and inhibiting the rise of temperature. As a result, the temperature difference between the
hot junctions and the cold junctions was increased, and the responsivity of the thermopile
chip was improved. Moreover, the duty cycle of the thermopile chip was greatly improved
due to the double-layer suspension structure. Compared with the traditional thermopile
chips, the sizes of the designed thermopile chip can be further reduced while maintaining
responsivity and specific detectivity.
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