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Abstract: An Ag2O(x)−PrO2(y)/γ-Al2O3 electrocatalyst series (X:Y is for Ag:Pr from 0 to 10) was
synthesized, to use synthesized samples in electrochemical applications, a step in fuel cells advance-
ments. Ag2O(x)−PrO2(y)/γ-Al2O3/Glassy-Carbon was investigated for electrochemical oxidation of
ammonia in alkaline medium and proved to be highly effective, having high potential utility, as com-
pared to commonly used Pt-based electrocatalysts. In this study, gamma alumina as catalytic support
was synthesized via precipitation method, and stoichiometric wt/wt.% compositions of Ag2O−PrO2

were loaded on γ-Al2O3 by co-impregnation method. The desired phase of γ-Al2O3 and supported
nanocatalysts was obtained after heat treatment at 800 and 600 ◦C, respectively. The successful
loadings of Ag2O−PrO2 nanocatalysts on surface of γ-Al2O3 was determined by X-rays diffraction
(XRD), Fourier-transform Infrared Spectroscopy (FTIR), and energy dispersive analysis (EDX). The
nano-sized domain of the sample powders sustained with particle sizes was calculated via XRD and
scanning electron microscopy (SEM). The surface morphology and elemental compositions were
examined by SEM, transmission electron microscopy (TEM) and EDX. The conductive and electron-
transferring nature was investigated by cyclic voltammetry and electrochemical impedance (EIS).
Cyclic voltammetric profiles were observed, and respective kinetic and thermodynamic parameters
were calculated, which showed that these synthesized materials are potential catalysts for ammonia
electro-oxidation. Ag2O(6)−PrO2(4)/γ-Al2O3 proved to be the most proficient catalyst among all the
members of the series, having greater diffusion coefficient, heterogeneous rate constant and lesser
Gibbs free energy for this system. The catalytic activity of these electrocatalysts is revealed from
electrochemical studies which reflected their potentiality as electrode material in direct ammonia fuel
cell technology for energy production.

Keywords: ammonia electro-oxidation; cyclic voltammetry; electrochemical surface area (ECSA);
electrocatalysts; nanocomposites

1. Introduction

Energy generation from hydrogen in a sustainable and continuous manner is the
foremost concern of scientists and engineers across the globe [1,2]. Fuel cells are considered
to be a great contributor of energy production which changes the chemical energy to
electrical energy through an electrochemical reaction in the cell [3–5]. Among several fuel
cells, the ammonia fuel cell is a better substitute of carbon-based conventional energy
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generating technologies [6,7]. Liquid ammonia is a promising hydrogen carrier, owing to
its favorable properties, like high storage capacity, hydrogen density (17.8 wt.%, 10.7 kg
H2/100 L at 1 MPa and 298 K), carbon free fuel, high boiling point and odor; thus, the
challenges associated with storage of hydrogen can be overcome [8]. Volumetric hydrogen
density of ammonia is 1.5 times higher than pure hydrogen, because ammonia is effortlessly
liquefiable at room temperature and 1 MPa [9]. Moreover, ammonia-derived electricity is
under constant research for running gas turbines, steam turbines and alkaline fuel cells,
which are being commercialized at lower-scale off-grid power plants [10,11]. However, the
larger-scale implementation of ammonia fuel cells is currently hindered due to less efficient
and much expensive electrodes [12]. A variety of electrode materials are being investigated
for ammonia electro-oxidation in basic conditions [13–15]. Although Pt and Pt based
materials are being employed as electrodes in ammonia fuel cells, due to sufficient catalytic
significance, their industrial-scale applications still encounter critical challenges due to non-
affordability [16,17]. Hence, development of novel Pt free cheaper electrodes is required
as an alternative to accelerate ammonia fuel cells in energy generating technology [17].
Moreover, multiple factors affect the catalytic performance of electrodes towards ammonia
electro-oxidation, including the nature of the support material and modifiers/promotor, as
well as the synthesis conditions [18,19].

Gamma alumina (γ-Al2O3) is a highly used catalyst support, owing to its worthy
mechanical properties, high thermal stability and ability to disperse the active oxide
precursors [20,21]. Moreover, the introduction of metal oxides into γ-Al2O3 support is
found to promote the catalyst’s efficiency towards electro-oxidation processes [22–24].
With this intent, Ag2O is used as a catalyst promotor in several oxidation processes [25,26].
Furthermore, lanthanide and lanthanide oxides seemed to be efficient promotors, exhibiting
enhanced catalytic activity in many electro-oxidation processes [20]. Therefore, catalytic
materials based on praseodymium oxide and praseodymium containing mixed metal
oxides of high-surface area also provide efficient energy production [27]. Moreover, mixed
metal oxides, including sieves supported metal oxides and bulk mixed metal oxides, have
experienced an intense paradigm in electrocatalysis over the past few years [28–30].

Herein, a series of novel mixed metal oxides Ag2O−PrO2/γ-Al2O3 electrocatalysts
were prepared by an incipient wet impregnation method. The aim of present research was
to observe the effect of variation in percentage composition of PrO2 and Ag2O supported
on γ-Al2O3 towards ammonia electro-oxidation. Physical and electrochemical proper-
ties of as-synthesized catalysts were investigated for NH3 electro-oxidation via different
techniques, i.e., XRD, FTIR, SEM, EDS, EIS and cyclic voltammetry. Figure 1 shows the
schematic diagram for experimental procedure of electro-oxidation of ammonia over as
synthesized electrocatalysts.

Figure 1. Graphical abstract elucidating the experimental, mechanistic and electrochemical insight.
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2. Catalyst Preparation
2.1. Materials

Chemicals used for synthesis were bought from Sigma Aldrich (St. Louis, MO, USA).
The chemicals used for the present work are aluminum nitrate (Al(NO3)3·9H2O), ammo-
nia solution (NH3), praseodymium nitrate hexahydrate (Pr(NO3)3·6H2O), silver nitrate
(AgNO3), potassium hydroxide (KOH), sulfur acid (H2SO4), potassium hexacyanoferrate
(III) (K4[Fe(CN)6]), alumina powder and Nafion.

2.2. Synthesis of γ-Al2O3

In total, a 1 M solution of aluminum nitrate nonahydrate and a 3 M ammonia solution
were prepared in deionized water. The ammonia solution was added dropwise into
precursor solution, under constant stirring until formation of homogeneous precipitates
of aluminum hydroxide. The temperature of solution was maintained at 60 ◦C. White
gelatinous Al(OH)3 precipitates were formed and were kept on heating, until semi-solid
material was formed. The precipitates were dried at 200 ◦C overnight. The Al(OH)3
precipitates were calcined at 800 ◦C, to form γ-alumina, for 2 h. The calcined sample was
grinded with acetone, to form powdered γ-alumina.

2.3. Synthesis of Ag2O–PrO2/γ-Al2O3

The metal oxides composites catalysts were prepared via co-impregnation method.
In this method, the solution of active element precursors was mixed before impregnating
on support. We used an adapted method to synthesize the wt/wt.% alumina supported
composites of silver and praseodymium oxides. Stoichiometric amounts of γ-alumina were
taken and wetted with requisite volume of praseodymium nitrate hexahydrate 0.5 M and
silver nitrate 0.5 M to load wt/wt.% Ag-Pr oxides. The mixtures were soaked overnight,
evaporated and dried at 100 ◦C. The dried samples were calcined at 600 ◦C, for 2 h, and
finely ground to Ag2O−PrO2/γ-Al2O3 catalysts.

3. Physical Characterization
3.1. X-Ray Diffraction Analysis

The size and phase of all synthesized materials (Ag2O(X)–PrO2(Y)/γ-Al2O3) were
examined by X-ray diffraction using (PANalytical X’PERT High Score’s diffractometer,
Malvern, UK), exhibiting Cu Kα radiation, works in the range of (10◦–80◦) Figure 2a,b.
The peaks observed at 2θ of 37.0◦, 40.20◦, 45.78◦, 61.30◦ and 66.99◦ were assigned to 311,
222, 400, 511 and 440 crystal planes. These are according to JCPDS (Joint Committee on
Powder Diffraction Standards) card no. (29-0063) [31,32]. The gamma phase of synthesized
alumina calcined at 800 ◦C is suggested by these peak positions. The XRD corroborate the
characteristic peaks of Ag2O (26.78◦, 32.14◦, 38.04◦ and 67.48◦), PrO2 (28.1◦, 46.7◦, 55.6◦

and 78.2◦) and γ-Al2O3, which are related to JCPDS card no. (76-1393), (24-1006) and
(29-0063), respectively [33,34]. The diffraction peaks at 67.48◦ are indexed to (222) planes of
face-centered cubic silver oxide [35]. These peaks correspond to the successful loadings of
promoting metal oxides on surface of support. Crystallinity of the catalysts increases with
increasing the contents of silver oxide precursor on the γ-Al2O3 support as sharper peaks
are observed with higher loadings of Ag2O. No phase segregation is observed as obvious
from XRD patterns.
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Figure 2. X-ray diffraction peaks of (a) γ-Al2O3 with Joint Committee on Powder Diffraction Standards (JCPDS) card
numbers. (b) Overlay of XRD peaks of γ-Al2O3 and Ag2O(X)–PrO2(Y)/γ-Al2O3, along with JCPDS card numbers.

The average crystallite sizes (Davg), which are enlisted in Table 1, were calculated by
the Scherrer equation [36]:

Davg (nm) = 57.2kλ/βcosθ (1)

where Davg is the average crystallite size, constant k is shape factor (0.9), λ is the wavelength
(0.154 nm), β corresponds to the peak width at half maximum intensity and θ is the peak
position. Davg for support (γ-Al2O3) is 18.3 nm, while for nanomaterials, it lies is in the
range of 25–42 nm.

Table 1. Calculated values for average crystallite size and average particle size.

Electrocatalysts Davg(XRD) (nm) Davg(SEM) (nm)

PrO2(10)/γ-Al2O3 41.3 26.02

Ag2O(2)–PrO2(8)/γ-Al2O3 25.4 20.76

Ag2O(4)–PrO2(6)/γ-Al2O3 28.9 29.41

Ag2O(6)–PrO2(4)/γ-Al2O3 32.3 31.01

Ag2O(8)–PrO2(2)/γ-Al2O3 20.3 23.02

Ag2O(10)/γ-Al2O3 25.0 31.04

3.2. FTIR Analysis

The Fourier-transform infrared spectroscopy (FTIR) spectra for γ-Al2O3 and all syn-
thesized nanocomposites inserted in KBr powder system were investigated in wavelength
range (400–4000) cm−1 by using Nicolet 5PC, Nicolet Analytical Instrument (Protea, Cam-
bridgeshire, UK, Figure 3). The vibration bands observed in the range of (3500–4000) cm−1

correspond to O–H stretching vibrations. These bands appeared because of moisture
absorbed by the samples [37]. C–O vibration bands due to adsorbed CO2 also appeared in
the range of (1500–2500) cm−1 [38]. The metal oxides vibration bands are seen between 300
and 700 cm−1 [39]. The bands in Figure 3b represent the stretching and bending vibration
modes of Ag2O [40] and stretching vibration bands of PrO2 [41].
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Figure 3. (a) FTIR spectra of γ-Al2O3 and Ag2O(X)–PrO2(Y)/γ-Al2O3 nanomaterials. (b) FTIR spectrum representing
vibration modes of Ag-O and Pr-O bonds.

3.3. SEM, TEM and EDX Analysis

Surface structure investigation of the nanomaterials was evaluated via scanning
electron microscopy (SEM), armed with energy dispersive analysis (EDX), by using MIRA3
TESCAN (Brno, Czech Republic) microscope and transmission electron microscopy (TEM,
Thermofisher, Manchester, UK). The SEM images for synthesized nanocomposites are
given in figures on different scales. In Figure 4A, the first SEM micrograph corresponds to
pure γ-Al2O3, which appeared to be like a plate-like interconnected network, which, upon
impregnation, converted to globular structures. From Figure 4B, it is clear that there is no
segregation of phase, which substantiates that metal oxide precursors are homogeneously
dispersed on surface of support. The average particle size from these SEM micrographs
was estimated by using the ImageJ software (Version: 1.52v) and is tabulated in Table 1.
Figure 4D represents the distributions of diameters of nanoparticles (Ag2O(6)–PrO2(4)/γ-
Al2O3) via histograms presenting the Davg. The estimated average particle sizes from SEM
are also in dimensions and slightly in accordance with that calculated by XRD. Figure 4C,D
represents the EDX spectra of Ag2O(4)–PrO2(6)/γ-Al2O3 composition which confirms the
presence of desired components in synthesized nanomaterial. These EDX analyses are in
accordance with XRD, as we have not seen any extra peak in XRD diffraction pattern. The
wt/wt.% elemental composition of all supported nanocomposites is given in Table 2.

The Transmission Electron Microscopy (TEM) analysis in Figure 4F showed that
nanocomposites are in good contact with the surface of support and have nanosized
morphology also shown by SEM micrographs. The TEM images supported the agreement
that particles are closed spheres with a smooth surface and are uniform in size. There is
a low contrast shell around them that is attributed to the layer of silver oxides [42]. The
histogram in inset (b) of Figure 4F describes the distribution of nanoparticles presenting
the synthesized materials that are nanosized, and inset (a) describes the area of TEM
micrograph where distributions of particles are taken.
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Figure 4. SEM micrographs for (A) Al2O3 and (B) Ag2O(10)/γ-Al2O3 nanocatalysts. (C) Particle size distribution of 
Ag2O(6)–PrO2(4)/γ-Al2O3. (D,E) EDX spectrum of Ag2O(4)–PrO2(6)/γ-Al2O3 composition. (F) TEM analysis of sample 
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Figure 4. SEM micrographs for (A) Al2O3 and (B) Ag2O(10)/γ-Al2O3 nanocatalysts. (C) Particle size distribution of
Ag2O(6)–PrO2(4)/γ-Al2O3. (D,E) EDX spectrum of Ag2O(4)–PrO2(6)/γ-Al2O3 composition. (F) TEM analysis of sample
Ag2O(2)–PrO2(8)/γ-Al2O3, the inset (a) describes the area where distribution of particles taken and inset (b) represents the
distributions of particles.
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Table 2. Elemental compositions (wt.%) from EDX analysis of samples.

Samples wt.% Al wt.% O wt.% Pr wt.% Ag

PrO2(10)/γ-Al2O3 26.90 69.90 9.20 −
Ag2O(2)–PrO2(8)/γ-Al2O3 42.40 48.86 8.19 1.56

Ag2O(4)–PrO2(6)/γ-Al2O3 42.57 51.88 5.87 3.45

Ag2O(6)–PrO2(4)/γ-Al2O3 38.70 57.76 3.54 6.30

Ag2O(8)–PrO2(2)/γ-Al2O3 35.24 61.00 1.54 7.39

Ag2O(10)/γ-Al2O3 32.95 64.36 − 8.95

4. Electrochemical Characterization

An electrochemical study of the as-prepared electrocatalysts was performed, using
Gamry potentiostat interface 1000 (Gamry, Warminster, PA, USA). A three-electrode system
was established by modifying glassy carbon (GC) as working electrode, platinum wire as
counter electrode and Ag/AgCl (3 M KCl) as reference electrode. The glassy carbon (GC)
electrode was first polished by using alumina slurry and then cleaned with ethanol, prior
to pouring the catalyst ink prepared in ethanol, and a solution of 5% Nafion (2.0 µL) was
added to catalyst, to bind the powder catalyst at the GC surface. We used 5% Nafion as
binders, as it has greater stability over others polymer. It also helps in the passivation of
surface from by-products formed during reactions, to protect the catalyst from chemical
attack [43].

4.1. Estimation of Electrochemical Surface Area (ECSA) of As-Synthesized Electrocatalysts

Electrochemical active surface area (ECSA) of Ag2O–PrO2/γ-Al2O3 samples was
estimated by cyclic voltammetric profile, using a redox couple having 5 mM potassium
ferrocyanide in 3 M KCl, as shown in Figure 5a. The peak current responses at various scan
rates are plotted against ν1/2, applying the Randles–Ševčík equation [44]:

Ip = 2.69 × 105·n3/2·A· (Do)1/2·ν1/2·C (2)

where, A is ECSA (cm2); Ip is peak current (µA); n represents the number of electrons
transferred (1 in this case); Do is the diffusion co-efficient, which is 0.76 × 10−5 cm2·s−1

at standard temperature and pressure (S.T.P); and C is the concentration of K4[Fe(CN)6].
Corresponding ECSA values are calculated from slope, and the comparative ECSA for the
whole series is presented in Figure 5b. The Ag2O(6)–PrO2(4)/γ-Al2O3 modified electrode
has a greater ECSA value, as compared to other modified electrodes, which means this
composition provides greater surface area to catalyze the respective reaction on its surface
and facilitates the reaction more efficiently.

4.2. Electrochemical Impedance Spectroscopy EIS

The electron transfer capacities of all modified electrodes were inspected via EIS with
Fe2+/Fe3+ system in 0.1 M KOH. The Nyquist plots observed for Ag2O(X)–PrO2(Y)/γ-Al2O3
modified electrodes are presented in Figure 6, and respective EIS parameters are tabulated
in Table 3. The electron transfer resistance systematically reduced from composition (Ag:Pr
0:10) to (Ag:Pr 6:4), and then it increased with increase of Ag content, which endorses
that 6:4 wt.% ratio of Ag2O and PrO2 on alumina surface is optimum for electrochemical
applications. The low value of Rct reflects the greater conductivity and electrocatalytic
activity of Ag2O(6)–PrO2(4)/γ-Al2O3, as compared to other compositions. The variation
in electrochemical behavior of all modified electrodes is due to relative ease in electron
transferring, which reveals that nanocatalysts are well dispersed on the alumina surface, in
the case of Ag2O(6)–PrO2(4)/γ-Al2O3, as compared to the other compositions.
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Figure 5. (a) Cyclic voltammograms for Ag2O(X)–PrO2(Y)/γ-Al2O3 in K4[Fe(CN)6] + 3 M KCl redox solution. (b) Bar graph
presenting the variation of electrochemical surface area (ECSA) with composition of catalysts.

Figure 6. Nyquist plots of Ag2O(x)–PrO2(y)/γ-Al2O3 modified electrodes recorded in 5 mM
K4[Fe(CN)6] + 3 M KCl. Inset represents the equivalent circuit.

Table 3. Parameters corresponding to electrochemical impedance (EIS) response of electrocatalysts.

Electrocatalysts Rs
(Ω)

Rct
(kΩ)

CPE
(µF) A Rw

(Ω)
kapp/10−9

(cm·s−1)

PrO2(10)/γ-Al2O3 390.0 50.0 3.70 0.90 24.0 1.10

Ag2O(2)–
PrO2(8)/γ-Al2O3

389.0 40.4 3.00 0.89 29.0 1.30

Ag2O(4)–
PrO2(6)/γ-Al2O3

388.0 27.0 1.40 0.90 24.4 1.97

Ag2O(6)–
PrO2(4)/γ-Al2O3

243.0 24.7 43.0 0.90 21.9 2.20

Ag2O(8)–
PrO2(2)/γ-Al2O3

388.2 29.7 2.00 0.85 25.6 1.80

Ag2O(10)/γ-
Al2O3

388.3 36.5 2.20 0.92 29.7 1.50
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The modification of electrodes has no effect on solution resistance (Rs) and Warburg
resistance (Rw), as these are characteristics of electrolyte solution and diffusion of elec-
troactive specie (which are the same in all measurements), while charge transfer resistance
(Rct) and constant phase element (CPE) are affected by modification of electrodes, because
these are related to conductive properties of the active material. CPE constitutes two
elements, and Q and α represent capacitance and surface roughness, respectively. The
value of α varies from 0 to 1 [45]. The modified electrode systems have α value ranging
from 0.85 to 0.92, revealing that catalysts show fair surface roughness, which agrees with
the SEM results. The electron transfer rate constant for all modified system was calculated
by Equation (3) [46].

kapp = RT/F2·Rct·C (3)

Where kapp is electron transfer rate constant, F is Faraday’s constant and R is universal
constant in SI units.

It can be seen from Table 2 that the value of electron transfer rate constant for Ag2O(6)–
PrO2(4)/γ-Al2O3 is higher than the other series materials, showing its higher capacity to
facilitate the reaction.

5. Results and Discussion
5.1. Ammonia Electro-Oxidation at Ag2O(x)–PrO2(y)/γ-Al2O3 Modified GC Electrodes

As-synthesized nanocomposites Ag2O(x)–PrO2(y)/γ-Al2O3 were investigated to check
their activities towards the oxidation of NH3 in alkaline medium. The potential window for
ammonia oxidation was from −0.3 to 0.6 mV, in forward and reverse scan. When ammonia
oxidation was carried out on modified electrodes at room temperature, two anodic peaks
were observed which are related to adsorption/oxidation of ammonia in positive going
scan (I and II) Figure 7a. A strong cathodic peak (III) is observed at around 0.05 volts, in the
absence (pink curve) and presence (green curve) of ammonia, which is the reduction peak
of silver oxide converted into metallic silver [47,48]. An anodic shoulder peak (I) appearing
at 0.23–0.27 V is due to the oxidation of pre-adsorbed hydrogen/nitrogen-containing
intermediates species at the surface of modified electrode, which shows the structural
sensitivity of nanocatalysts for these adsorbed species [49,50]. There is appearance of
cathodic shoulder peak (IV) in ammonia oxidation catalyzed on the surface of higher
members of synthesized series (Figure 8c,d), which is due to desorption of hydrogen on the
surface [50]. With higher scan rates, the anodic and cathodic shoulder peaks diminished.
The onset potential for ammonia oxidation is 0.03 V vs. Ag/AgCl (i.e., 0.023 V vs. NHE
approximately) on the surface of modified electrodes and the oxidation peak appear in
the range of 0.32–0.51 volts, which is a low input potential range, as compared to reported
systems illustrated in Table 4, in the same medium.

The cyclic voltammetric response of bare glassy carbon and γ-Al2O3/GC with (red
curve) and without (black curve) Ag2O–PrO2 loadings was studied in a 5 mM NH3 + 0.1 M
KOH system, as shown in Figure 7b,c. The electrochemical oxidation of ammonia in KOH is
not observed on bare glassy carbon and γ-Al2O3/GC, while the peak appeared on Ag2O(x)–
PrO2(y)/γ-Al2O3/GC, confirming the electrocatalytic response of Ag2O–PrO2/γ-Al2O3
towards the electrochemical oxidation of ammonia, as elucidated by Figure 7b,c.
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Table 4. Comparison of oxidation potentials for different systems.

Sr. No. Modified Electrode
Systems

Oxidation Potential
Range (V) Reference

1 Carbon-supported
Pt/HOPG electrode 0.55–0.75 [51]

2 Pt film electrode/Si
prism 0.45–0.85 [52]

3 Pt disk electrode and
Pt/PBI/MWNT 0.45–0.90 [53]

4 Ag−Pr/Al/GC
electrode 0.32–0.51 This work

GC, glassy carbon.

Figure 7. (a) Electrochemical responses and peak position in 0.1 M KOH and 5 mM NH3. (b) Cyclic voltammograms
towards ammonia oxidation over the surface of bare glassy carbon, γ-Al2O3 and PrO2(10)/γ-Al2O3 modified electrodes
0.1 M KOH and 5 mM NH3. (c) Comparative peak current response for bare GC, γ-Al2O3, and lowest and optimal
composition, respectively.
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Figure 8. (a) Ten cycles in 5m mM NH3 + 0.1M KOH at Ag2O(2)–PrO2(8)/γ-Al2O3/GC. Scan rate variation for (b) PrO2(10)/γ-
Al2O3, (c) Ag2O(6)–PrO2(4)/γ-Al2O3 at low scan rates and (d) Ag2O(6)–PrO2(4)/γ-Al2O3, at high scan rates.

For commercialization of electrocatalysts, it is essential to check the electrochemical
stability of catalysts; for this purpose, multiple scans have been observed at the surface
of modified electrode in 5 m mM NH3 + 0.1 M KOH. The current became constant, and
no further decrease was observed, which shows the stability of modified electrode in
the system (Figure 8a). The ammonia oxidation was observed at different scan rates on
modified GC electrode and is given in Figure 8b–d. Figure 8b tells about the redox behavior
of PrO2(10)/γ-Al2O3 response towards ammonia electro-oxidation. It is revealed from
the scan rate effect for all the electrochemical systems that the current increases with the
increase of scan rate, and the peak potential is shifted towards more a positive potential
region. A linear increase in peak current of ammonia oxidation is observed with sweep
rate that specifies facilitation of electron transfer process of ammonia electro-oxidation;
therefore, as-synthesized nanocatalysts behave like the adsorptive species on the surface of
glassy carbon [54]. Figure 8c,d represents the voltammetric behavior of Ag2O(6)–PrO2(4)/γ-
Al2O3 at lower and higher scan rates, from which it is seen that separation in positive and
negative peak potentials is smaller at low scan rate values, i.e., 20 to 100 mV−1; hence, it
is assumed that the facilitation of ammonia oxidation on surface of all catalysts is more
manifested at the lower scan rates. Figure 8c,d shows the peak current dependence upon
scan rate, which elaborates that the process of ammonia electro-oxidation over as-proposed
catalysts is a diffusion-controlled reaction. Moreover, Figure 9a,b expresses the comparative
peak current output of all compositions at lower and higher scan rates, which shows that
Ag2O(6)–PrO2(4)/γ-Al2O3 has a maximum current for NH3 oxidation, as compared to the
other members of the series.
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Figure 9. Comparative Ipa values at modified electrodes surface on (a) low and (b) high scan.

The shift in peak potential with increasing scan rate is further confirmed by linear
relationship of Epa and scan rate as shown in Figure 10b, which is one of the criteria to
judge irreversibility of system [55,56]. The diffusion character of ammonia oxidation is
substantiated by linear dependence of anodic peak current on scan rate, which is depicted
by plots of ln Ipa vs. ln ν [55,57], as shown in Figure 10c The slope values close to
0.5 represent diffusion-controlled electrode processes, whereas close to 1.0 will be for
adsorption-controlled processes [58–60]. The behavior of current function with scan rate
is also examined for oxidation of ammonia figures (Figure 10D). The current function
decreases exponentially with increasing sweep rate, which is suitable for electrode process.
The negative slopes from these exponential plots determine that electrochemical oxidation
of ammonia on the surface of all modified electrodes is expedited and the process is
electrocatalytic [61].

It is revealed from the scan rate effect for all the electrochemical systems that the
current increases with the increase of scan rate, and the peak potential is shifted towards a
more positive potential region.

5.2. Kinetics of Ammonia Electro-Oxidation

The diffusion character of ammonia oxidation is demonstrated by linear dependence
of anodic peak current on scan rate, which is depicted by plots of ln Ipa vs. ln v (Figure 10C).
For the determination of diffusion coefficient, the Randles–Ševčík equation is used [62]:

Ip = (2.99 × 105)·n·{(1−α)·nα}·A·D◦1/2·C·ν1/2 (4)

where Ip is the anodic peak current; n is the no. of electrons involved in reaction; α is the
transfer co-efficient whose value lies in the (0.3–0.7) range; nα is the number of electrons
in the rate-determining step, i.e., 3; A is area of the electrode, which is 0.07 cm2; D◦ is the
diffusion co-efficient in cm2·s−1; C is the bulk concentration in mol·cm−3; and ν is the scan
rate in mV·s−1 The parameter α is calculated by using the following:

Epa − Epa/2 = [0.048 /(αn)] (5)

where, Epa is anodic peak potential and Epa/2 is peak potential at Ipa/2.
It is deduced that the reaction is diffusion controlled at low sweep rates, while it is

kinetically controlled at higher scan rate (Figure 10C) [55,57].
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The mass transport coefficient (mT) is given by Equation (5) [63]:

mT = [D◦/(RT/(F·ν))]1/2 (6)

Figure 10. (A) Dependence of Ipa on ν1/2; insets (a) and (b) show linear fitting for lower and higher scan rates for Ag2O(6)–
PrO2(4)/γ-Al2O3/GC. (B) Characteristic shift in peak potential with ν1/2 for Ag2O(4)–PrO2(6)/γ-Al2O3/GC, insets (a) and
(b) show linear fitting for lower and higher scan rates. (C) Dependence of Ipa on potential scan rate in double logarithm
coordinates for ammonia oxidation on Ag2O(2)–PrO2(8)/γ-Al2O3/GC. (D) Variation of current function (Ipa ν−1/2) with ν

for Ag2O(4)–PrO2(6)/γ-Al2O3/GC.

The values of the ammonia diffusion and mass transport coefficients for the entire
series of the synthesized samples are given in Table 4. The diffusion coefficient and mass
transport coefficient are higher for Ag2O(6)–PrO2(4)/γ-Al2O3, revealing that it is a better
electro-active material for NH3 oxidation among all the samples. The value of diffusion
coefficients for ammonia oxidation in alkaline medium (10−9) is smaller than that of H2O
(10−5), due to presence of hydroxyl groups of the supporting electrolyte present in bulk [64].
These hydroxyl groups from the KOH electrolyte hinder the diffusion process of ammonia;
that could be the reason for the low diffusion coefficient. The diffusion coefficient value
estimated for ammonia over Ag2O(6)-PrO2(4)/γ-Al2O3 nanocomposite seems similar to
ammonia diffusion over the Pt-Ni composite [65]. Moreover, these diffusion coefficient
values are obtained for the current of major peak, i.e., around 0.4 V, which increases linearly
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with the scan rate, as seen from Figure 8. It suggests that oxidation of ammonia over
Ag2O(6)-PrO2(4)/γ-Al2O3 is governed by diffusion significantly.

The catalytic properties of synthesized materials can be determined by heteroge-
neous kinetics for ammonia oxidation. The value of heterogeneous rate constant was
determined by taking cyclic voltammograms and varying the concentration of ammonia
(Figure 11a). The Reinmuth equation is used to calculate heterogeneous rate constants, k◦,
for all supported mixed metal oxide electrocatalysts.

Ip = 0.227n·F·A·C·k◦ (7)

where ko is the heterogeneous rate constant, and F is Faraday’s constant. By plotting
the anodic peak current vs. concentration of NH3, the values of the rate constant, ko, for
oxidation are obtained from the slope, as illustrated in Table 5, which reveals the facilitated
electron transfer process, and it gives valuable information about the nature of system,
which is irreversible. The heterogeneous rate constant decreases in the following order:

k◦
(6Ag-4Pr/Al) > k◦

(4Ag-6Pr/Al) > k◦
(8Ag-2Pr/Al) > k◦

(10Ag/Al) > k◦
(2Ag-8Pr/Al) > k◦

(10Pr/Al)

Figure 11. (a) Cyclic voltammograms with Ag2O(8)–PrO2(2)/γ-Al2O3 electrode at different concentrations of NH3 and (b)
Reinmuth plots between Ipa and CNH3, showing variation of peak current with CNH3 for and for all modified electrodes.

Table 5. Kinetic parameters for NH3 electro-oxidation at the electrode surfaces.

Electrocatalysts α
(D◦)/10−9

cm2·s−1 (mT)/cm·s−1 k◦/10−3 cm·s−1

PrO2(10)/γ-Al2O3 0.5 0.063 0.0005 0.40

Ag2O(2)–PrO2(8)/γ-
Al2O3

0.5 0.140 0.0007 0.72

Ag2O(4)–PrO2(6)/γ-
Al2O3

0.7 11.00 0.0070 6.10

Ag2O(6)–PrO2(4)/γ-
Al2O3

0.6 36.50 0.0120 7.40

Ag2O(8)–PrO2(2)/γ-
Al2O3

0.4 4.040 0.0040 5.20

Ag2O(10)/γ-Al2O3 0.4 0.300 0.0011 1.60
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5.3. Thermodynamic Studies for Ammonia Electro-Oxidation

Cyclic voltammograms were observed by varying the temperature of the system
from 10 to 50 ◦C with the Ag2O(6)–PrO2(4)/γ-Al2O3 catalyst, as shown in Figure 12a.
The observed thermodynamic parameters tabulated below show that electro-oxidation of
ammonia in alkaline solution is exothermic and non-spontaneous reaction. The entropy
of ammonia electro-oxidation is negative because it is an adsorption-controlled process.
Before adsorption, the molecules are free to move in three dimensions; when these get
adsorbed on the surface of catalyst, their motion is restricted. As a result, disorderliness
decreases, and entropy of the system decreases. The free energy of activation is less for
Ag2O(6)–PrO2(4)/γ-Al2O3 modified electrode, which reveals that this composition exhibits
superior catalytic properties among this series because it lowers the activation energy of
system to a greater extent.

Figure 12. (a) Peak current output varied with increase in temperature and (b) Marcus plots between temperature and rate
constants.

All the compositions in the series exhibit a similar response towards the increase
in temperature of the system. Different thermodynamic parameters enlisted in Table 6
are deduced for the NH3 electro-oxidation, with the help of the Marcus equation. It is a
straight-line equation and gives the value of enthalpy of reaction (∆H) from the slope of
the Marcus plot, i.e., Figure 12b between ln [k◦/Zhet] vs. −1/T, while change in entropy
(∆S) can be estimated from the intercept.

k◦ = Zhet· exp
[
−∆G

RT

]
(8)

Equations (5) and (6) may be expressed in a simpler form:

ln
k◦

Z(het)
=

[
−∆G

RT

]
(9)

Here, ∆G is free energy of activation, k◦ heterogeneous rate constant and Zhet is
collision number whose values Zhet at different temperatures (T) can be calculated by
Equation (9) [66].

Zhet =
√ RT

2πM
(10)
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Table 6. Thermodynamic parameters calculated from the Marcus equation.

Electrocatalysts (∆H)/kJ·mol−1 (∆S)/kJ·mol−1K−1 (∆G)/kJ·mol−1

PrO2(10)/γ-Al2O3 −1.24 −0.119 32.0

Ag2O(2)–PrO2(8)/γ-
Al2O3

−1.30 −0.100 29.0

Ag2O(4)–PrO2(6)/γ-
Al2O3

−1.23 −0.080 23.6

Ag2O(6)–PrO2(4)/γ-
Al2O3

−1.22 −0.082 23.0

Ag2O(8)–PrO2(2)/γ-
Al2O3

−1.23 −0.085 24.0

Ag2O(10)/γ-Al2O3 −1.24 −0.094 27.0

M is the molar concentration of NH3, according to thermodynamic equation.

∆G = ∆H − T∆S (11)

ln
k◦

Z(het)
= −∆H

RT
+

∆S
R

(12)

5.4. Mechanism of Ammonia Oxidation

The independent behavior of cathodic and anodic reactions was further confirmed
by comparing the linear-sweep voltammograms (LSV) with cyclic voltammogram (CV)
observed for 5 mM NH3 in 0.1 M KOH at 100 mV·s−1, as represented in Figure 13. It reveals
that the anodic peak (black curve) is purely for ammonia oxidation, and the cathodic peak
(blue curve) is for the reduction of silver oxide into metal silver. The comparison of
LSV with CV will help to propose a mechanism for ammonia oxidation on surface of
electrocatalysts.

Figure 13. Linear-sweep voltammograms (LSV) vs. cyclic voltammogram (CV) for oxidation of
ammonia in 0.1 M KOH at 100 mV·s−1 on the surface of optimum composition/GC.

These responses correspond to the mechanism of ammonia oxidation. NH3 is firstly
adsorbed on electrode surface from bulk solution. After adsorption, it undergoes the 3e−

oxidation process, forming water and N2 as by-products [67].
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Overall reaction
NH3 + 3OH− → 1

2
N2 + 3H2O + 3e− (13)

Mechanism
NH3(aq)→ NH3(ad) (14)

NH3(ad) + OH− → NH2
−(ad) + H2O + e− (15)

NH2
−(ad) + OH− → NH−(ad) + H2O + e− (16)

NH−(ad) + OH− → N(ad) + H2O + e− (17)

2N(ad)→ N2 (18)

6. Conclusions

The γ-Al2O3 supported Ag2O(x)-PrO2(y) nanocatalysts were synthesized via sim-
ple synthetic routes. Moreover, γ-Al2O3 was synthesized by precipitation method, and
metal oxide promotors were loaded on γ-Al2O3 by co-impregnation method. All the
as-synthesized materials were subjected to characterization techniques, including FTIR,
XRD, EDX, SEM, CV and EIS. The sizes of the proposed nanocatalysts were calculated
by XRD and SEM, which confirms that synthesized materials are in nano-range and are
well dispersed on the support. The successful loading of xAg2O-yPrO2 nanocomposites on
support was confirmed by XRD, FTIR and EDX. The surface morphology of samples was
examined by SEM, which shows that metal oxide precursors are homogeneously dispersed
on the surface of the support. The active surface area and electron transfer constant were
calculated by CV and EIS. All the compositions gave appreciable current output in ammo-
nia electro-oxidation reaction, owing to their estimated ECSA values and electron transfer
properties. Among all the catalysts in the series, Ag2O(6)–PrO2(4)/γ-Al2O3 gave the higher
values for both, making it an optimum composition for electrochemical applications.

The cyclic voltammetric investigations were employed for analyzing the electro-
chemical properties of materials. The catalytic activity of all synthesized samples was
investigated towards oxidation of ammonia, considering scan rate, concentration and
temperature effects in focus. All modified electrodes showed adequate catalytic behavior
towards ammonia oxidation, whereby modified electrodes behaved as anodic material.
The calculated kinetic parameters revealed that ammonia oxidation on these catalysts was
of diffusion control nature and irreversible. The thermodynamic parameters declared that
the overall process of ammonia on catalysts surface was exothermic (negative enthalpy)
and non-spontaneous (positive Gibbs free energy). The entropy of the system was negative,
as disorderliness decreases in the system due to adsorption of intermediate species on
the catalyst surface before oxidation, which reveals that ammonia electro-oxidation is an
adsorption-controlled process. Among all modified electrodes, the Ag2O(6)−/PrO2(4)/γ-
Al2O3 modified electrode exhibited better catalytic response, owing to its higher diffusion
coefficient, mass transport coefficient, heterogeneous rate constant and lowest free energy
of activation.
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