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Abstract: In cold rolling, a textured roll can be used to imprint a desired surface topography onto
the sheet during rolling. This work proposes the use of diamond-like carbon (DLC) coatings to
protect the surface topography of the rolls in replacement of the carcinogenic hard chrome. For
that, hydrogenated amorphous carbon (a-C:H) was deposited on plasma nitrided tool steel, both
for ground and textured specimens. Changes in surface topography due to DLC coating were
assessed using a confocal microscope. Coating adhesion was evaluated using the method VDI 3198.
The specimens were characterized using X-ray diffraction (XRD), microhardness test and scanning
electron microscopy (SEM). The coating was characterized using Raman spectroscopy (RS) and X-ray
photoelectron spectroscopy (XPS). The results showed a soft multilayer coating consisting of a plasma
nitrided layer for load support, a Si-rich interlayer to improve adhesion and an a-C:H top layer. DLC
deposition reduced the roughness of the textured specimens. The coating resulted in relatively stable
friction and good durability, with small damage and negligible wear even under dry sliding.

Keywords: DLC; surface texturing; plasma nitriding; cold rolling

1. Introduction

Metalforming applications involve very high contact pressures, posing tribological
challenges to the quality of the final product and the tool life. Advanced approaches
for surface engineering can greatly improve tribological properties during metalforming.
Among those, surface textures [1–5], plasma nitriding [6–8] and coatings [5,8–11] are
promising avenues being explored to improve friction and wear of metalforming tools.

In cold rolling, surface texturing of the roll is a current practice. The roll texture
is transferred to the sheet during rolling, improving the aesthetic characteristics of the
rolled sheet [12,13]. Moreover, texturing of the roll can improve tribological performance
during rolling, either by removing wear debris from the contact [2], by acting as lubricant
reservoirs [4] or by generating plastohydrostatic and plastohydrodynamic lubrication
mechanisms [14]. Surface textures in cold rolling are commonly random, produced by
sandblasting or electric discharge texturing (EDT) [13].

However, the high contact pressures involved in metal forming lead to fast removal of
the surface textures by wear. This can be mitigated by the use of hard coatings after surface
texturing [15]. Hard chrome coatings have been widely used for this purpose [5], but health
issues related to the deposition of hard chrome plating have been restricting its use in
industry [16], despite industrial efforts to reduce these problems [17]. Alternative coatings
for the replacement of hard chrome have been proposed, such as chromium nitride [18] and
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Co-Ni-P coating [19]. Recently, our groups have compared the tribological performance
of hard chrome with plasma nitriding and electroless NiP coatings on both textured and
untextured tool steel specimens. The tribological behavior of plasma nitriding in terms
of the friction, wear and life of the textures was comparable (and sometimes slightly
inferior) to that of hard chrome, and substantially worse than that of NiP. The superior
performance of NiP in relation to both hard chrome and plasma nitriding was attributed to
the formation of a protective tribolayer rich in Ni, P and O on both the specimens and the
counterbodies [8].

Another important family of potential coatings for use in cold rolling is diamond-like
carbon (DLC), a metastable form of amorphous carbon with a high ratio of tetrahedral sp3

(diamond) to sp2 (graphite) bonds, therefore combining characteristics of both diamond
and graphite [20,21]. The literature has shown that by changing the sp3/sp2 ratios of
carbonous materials, diamond, ordered graphite or amorphous graphite can be obtained,
tuning their properties accordingly [22]. This unusual combination of properties includes
high hardness, low friction coefficient, high corrosion resistance, biocompatibility and
hemocompatibility [23], small surface roughness and optical transparency [24], and semi-
conductivity [21]. Furthermore, thermal and electrical conductivity can be tuned depending
on the amount of sp3 and sp2 bonds. Some of those properties (high hardness, elastic
modulus and chemical inertness) are similar to those of diamond, due to the significant
fraction of (sp3) hybridization, and also due to the fact that a disordered thin film does
not present grain boundaries, but DLC films are much cheaper to produce than diamond
films [25]. The high stiffness and hardness often result in low friction and wear, due to the
reduced contact area.

DLC films can be doped or bonded with nitrogen, silicon and sulfur, among others,
leading to superior mechanical, thermal and tribological properties [26]. The incorporation
of silicon, for example, promotes friction reduction, increases durability, improves stability
in humid environments and temperature, and promotes better surface finish and increased
adhesion of the film to the substrate [27].

However, when deposited onto softer substrates, the resulting stress distribution can
lead to spalling of the DLC coating. The combination of multilayers (such as CrN + DLC)
increases the loading capacity of the substrate, improving adhesion and leading to a more
favorable stress distribution [28]. Plasma nitriding of the substrate is another approach to
improve load-bearing capacity before DLC deposition [29]. It allows progressively increase
surface hardness, creating mechanical support for the DLC coating [30]. The adhesion
between the DLC coating and the softer substrate is particularly relevant for a textured
surface, since the surface topography affects this adhesion [31]. Moreover, the surface
roughness of the substrate has a strong effect on the friction and wear of DLCs [29,31].
The microstructure of the nitrided zone consists of a compound layer (surface layer) and a
diffusion zone underneath the compound layer. Depending on the nitrogen concentration
in the gas mixture used during plasma nitriding, the compound layer may be constituted
by ε-Fe2–3N (hcp arrangement of Fe atoms with ordered occupation of the N atoms at
the octahedral interstitial sites) or γ′-Fe4N (fcc arrangement of Fe atoms with ordered
occupation of the N atoms at the octahedral interstitial sites) phases, or a mixture of
both [32]. In the diffusion zone, nitrogen is either dissolved interstitially in the octahedral
interstitial sites of a bcc ferrite matrix, or precipitated as γ′-Fe4N and α”-Fe16N2 (bct
arrangement of iron atoms with ordered occupation of N at the octahedral interstitial
sites) nitrides [33]. Significant changes have been observed in surface topography due
to nitriding for compound layers predominantly of γ’ phase [27,34]. This occurs because
the nitride layer is obtained by accelerating N+ ions against the substrate, responsible for
cleaning, heating and providing active N to diffuse into the material, but at the same time
modifying the surface topography of the substrate [30].

Despite the large potential of DLC coatings to control friction and reduce wear, increas-
ing the life of textured tools, the use of DLC on textured tools is particularly challenging.
EDT leads to a rough surface, and therefore contact pressures at the asperity level are very
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high [15], which can lead to spallation of the DLC coating. Probably for this reason, in
a very recent review about the combined use of surface texturing and solid lubricants,
where 269 articles were reviewed, no reference was found for the use of DLC to protect
textured metal forming tools [35]. With that in mind, the rationale of this work involved
using an alternative route for DLC synthesis that could result in soft DLC. Despite the
expected lower hardness, a soft DLC could potentially result in reduced spallation, thus
withstanding the high contact pressures with adequate tribological performance.

Therefore, this work investigates the combination of plasma nitriding with DLC de-
position of a relatively soft amorphous hydrogenated carbon (aC:H) film using a Si-rich
DLC interlayer on textured tool steel surface, which is compared with a ground sur-
face. Microhardness measurements, nanoindentation, Raman spectroscopy (RS), confocal
microscopy and X-ray photoelectron spectroscopy (XPS) analysis evaluate the coatings
produced, and preliminary pin-on-disk tests evaluate their performance under dry and
lubricated conditions.

2. Materials and Methods
2.1. Specimen Preparation

Specimens measuring 35 × 35 × 5 mm3 were used in this work, which were cut from
a fragment of an industrial roll used in rolling mills. The material of the roll was a propri-
etary Gerdau VC10 tool steel, with nominal chemical composition (wt.%) of 0.76–1.05 C,
4.3–4.7 Cr, 0.5–0.8 Mn, 0.1–0.45 Si, 0.11–0.39 Mo. The chemical composition of the spec-
imens, obtained via optical emission spectrometry, is shown in Table 1. According to
the manufacturer of the roll, quenching and tempering is used to achieve suitable hard-
ness. The Vickers hardness of the specimens was measured as HV10 = 611 ± 30, and the
microstructure apparently consisted of martensite (Figure 1). After cutting, they were
ground on both faces to ensure their parallelism. They then underwent the following
sequence of surface treatment: texturing by EDT, followed by plasma nitriding and finally
DLC deposition.

Table 1. Chemical composition of the tool steel specimens.

C Cr Mo Mn Si Ni P S W V Fe

Amount (wt.%) 0.86 4.50 0.22 0.60 0.27 0.13 0.012 0.009 0.0007 0.0705 Balance

Figure 1. Scanning electron microscopy (SEM) of the specimens before the surface treatments.

Samples were textured using an EDT process, using an equipment model Engemaq
440 MC, electrolytic copper electrodes and a hydrocarbon-based dielectric fluid (Arclean
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Eletron). The area textured was 20 × 20 mm2, the discharge current (pulsed) was 9A, the
pulse time was 20 ms and the duty cycle was 16%, given by the pulse time (ton) divided by
total time (ton + toff).

2.2. Plasma Nitriding and DLC Deposition

A PECVD duplex treatment using an industrial scale reactor was performed consisting
of a nitriding step (550 ◦C, 90 min) followed by a silicon-rich interlayer deposition using
hexamethyldisiloxane (HMDS) as precursor (260 ◦C, 30 min) and an a-C:H layer as the
uppermost low friction film (250 ◦C, 20 min), all steps in the same reactor. The parameters
used for the nitriding treatment and film deposition are listed in Table 2, which were
selected aiming to produce a soft DLC.

Table 2. Plasma nitriding and diamond-like carbon (DLC) deposition conditions.

Scheme Temperature
(◦C)

Time
(min) Bias (V) Pressure

(Torr)
Power

(W)
Duty Cycle

(%) Atmosphere

Plasma nitriding 550 90 350 3.0 400 80 9% H2, 90% N2 and 1% CH4

DLC layer 1 260 30 400–500 1.5 90 15 (2–5%) HMDS + (65–68%)
CH4 + 10% Ar + 20% H2

DLC layer 2 250 25 400–500 1.5 90 10 20% H2 and 80% CH4

2.3. Characterization of the Treated Surfaces

The surface roughness of the specimens before texturing, after texturing by EDT and
after plasma nitriding + DLC deposition was measured using a confocal microscope model
Leica DCM3D. Three areas of 1 mm× 1 mm were measured for each surface condition. The
analysis used the software Mountainsmap®. The parameters chosen to quantify the surface
topography were: Sq (root mean square roughness of the surface, in µm); Ssk (skewness,
to assess the asymmetry of the height distribution curve); Sku (kurtosis, to assess the
flattening factor of the height distribution curve); Sdq (hybrid parameter representing the
mean slope of the irregularities); Spk (parameter associated with the Abbott-Firestone curve,
representing the height of the peaks that would be removed first during running-in); Svk
(parameter associated with the Abbott-Firestone curve, representing the valley depths that
can be related to oil retention capacity for lubrication); and Sbi (representing the mechanical
support capacity of the surface). Before calculation of the parameters, a levelling tool was
used, but no further filtering to remove waviness was applied.

After deposition, cross-sections were carefully prepared to identify the nitrided layer
(diffusion and compound layers) and DLC coating. Before cutting the cross-sections, the
specimens were coated by electrodeposition with a thin Ni layer to protect the coating,
avoiding spallation during cutting. The polished cross sections were etched with Nital.
Vickers microhardness of the specimens was measured using 100 g (HV0,1) for 10 s on
the cross-sections both on the substrate and the compound layer, as an average value of
five indentations.

To evaluate the mechanical properties of the DLC film, instrumented nanoindentation
tests were performed according to Oliver and Pharr methodology [12]. The normal load
used was 10 mN and the results of nanohardness and elastic modulus represent an average
of 14 measurements. The nanoindentation measurements were only performed for the
DLC coating deposited onto the ground specimen, since the very rough textured specimen
should result in measurement deviation [13].

The coating adhesion to the surface was evaluated according to the method VDI
3198 [14], where the damage caused by the indentation is compared to a map used to
classify the failure modes. For that, the vicinity of the Rockwell C indentation, produced
using a universal hardness tester model VEB Werkstorfpruffmaschinen, was assessed by
scanning electron microscopy (SEM) using a field emission gun equipment model FEG-
JEOL-JSM 6107F.
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The crystalline phases present in each specimen were identified by X-ray diffraction
(XRD) with Cu-Kα and 2θ radiation ranging from 20–90◦. XRD measurements were carried
out in a ground specimen after plasma nitriding and DLC deposition. Since the amorphous
DLC film does not present crystalline phases, the Bragg–Brentano θ-2θ configuration
was used to assess the phases present in the substrate in the steel substrate and nitrided
layer. The penetration depth of the X-ray measurements was estimated as 4.51 of 4.66
µm (see Section 3.2). The nature of the DLC chemical bondings was characterized by RS
(equipment model Renishaw 2000) with an argon laser and wavelength (λ) of 514.5 nm. The
Raman shift was evaluated from 1000 to 1800 cm−1. This range includes DLC characteristic
bands corresponding according to the literature to bands D and G, respectively related to
disorder and graphite [21]. Two analyses were performed for each surface condition. The
hydrogen percentage in the films was obtained from the Raman measurements following
the method proposed by Casiraghi et al. [36], and the amount of H was computed according
to Equation (1), where m is the slope of the baseline used to obtain the intensities of the
bands D and G and I(G) is the intensity of peak G.

H[%at] = 21.7 + 16.6log
(

m
I(G)

)
(1)

XPS analysis of the coated specimens was performed in a bench equipment model
Thermo Scientific K-Alpha, with base pressure of 10−8 mbar and Al-Kα (hv = 1486. 6 eV)
X-ray source, in order to quantify the DLC film chemical composition. Peak deconvolution
was performed using CASAXPS software.

2.4. Tribological Tests

Tribological tests under a limited range of conditions were used for an initial assess-
ment of the friction and wear of the different surface conditions. The aim was not to fully
evaluate their tribological performance, but to provide a general view of how the combina-
tion of EDT, plasma nitriding and DLC deposition performs under high contact pressure
conditions. For that, room temperature ball-on-flat unidirectional tests were carried out
under dry and limited lubricant supply conditions (starved lubrication). The conditions
for the tribological tests are summarized in Table 3. The lubricant in the lubricated tests
was a polyalphaolefin base oil without additives, specification PAO 8, density of 834 kg.m3,
kinematic viscosity at 40 ◦C of 46.4·10−6 m2·s−1, and viscosity index of 138.

Table 3. Conditions of the tribological tests.

Sliding speed 0.3 m·s−1

Track radius 6 mm
Normal load 10 N

Sliding distance 1000 m
Counterbody AISI 52,100 steel ball, φ = 6 mm

Lubrication regimes Dry and starved lubrication
Lubricant volume 0.7 mL

The calculation of the initial Hertzian pressure at the beginning of the tests (Pmax,
Equation (2)) used the normal load (W) of 10N, Esteel = 210 GPa, νsteel = 0.3, radius (R) of the
ball = 3 mm. The values of E and ν for the DLC film were measured by nanoindentation
(see Results section) as 59.9 GPa and 0.25, respectively.

Pmax =
1
π

3

√(
6E∗2W

R′2

)
(2)

where E* is the combined Young´s modulus of the two contacting materials given by
1/E* = (1 − ν1

2)/E1 + (1 − ν2
2)/E2, R′ is the combined radius given 1/R′ = (1)/R1 + (1)/R2,

R2 = ∞ (plane). The values of Poisson ratios of the steel ball (ν1) and of the DLC (ν2) [37]
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were obtained from the literature as 0.33 and 0.3, respectively. This resulted in values of
Pmax = 1.42 GPa for the uncoated surfaces and 0.81 GPa for the DLC-coated surfaces.

3. Results
3.1. Surface Morphology

The surface morphology of the different specimens is depicted by secondary electron
(SE) SEM images in Figure 2. The grinding marks were still visible after DLC deposition
in Figure 2b, but the morphology appeared slightly smoothed when compared with the
ground condition (Figure 2a). The morphology of the specimen textured by EDT (Figure 2c)
shows recessed throughs corresponding to the ablated regions during EDT, as well as
protruding features, corresponding to recast material, which is the typical morphology for
surfaces textured by EDT [5,13]. For DLC deposition after EDT (Figure 2d), the morphology
resembled that for EDT, but the surfaces appeared substantially smoother. In particular,
the recessed throughs became less visible, apparently coated with DLC.

Figure 2. Secondary electron (SE) SEM images of the different surface conditions: (a) ground;
(b) ground + DLC; (c) electric discharge texturing (EDT); and (d) EDT + DLC.

A cross-section of the coated specimens is exemplified in Figure 3 for the ground
condition. The average thickness of the DLC coating was 2.44 ± 0.33 µm (average of
14 measurements). The compound layer (also called white layer) had a thickness of
9.62 ± 0.67 µm, and the diffusion zone measured approximately 80 µm.

Figure 3. Cross-section of the ground specimen after plasma nitriding and DLC deposition.



Coatings 2021, 11, 201 7 of 20

In order to quantify how DLC deposition affected the surface topography of the
specimens, the height parameters (Sq, Spk, Svk) and the hybrid parameter Sdq are presented
in Figure 4. Since the values measured for the textured specimens were around one order
of magnitude higher, the ground specimens are shown in Figure 4a, and the textured
specimens in Figure 4b. For the ground specimens, the height parameters Sq, Spk and
Svk reduced 20%, 26% and 25%, respectively, after plasma nitriding + DLC deposition.
Reduction in a similar range (27%) was observed for the average slope of the asperities (Sdq).
Although the error bars were large, Anova tests (α = 0.05) showed that the differences were
statistically significant. As expected, the textured specimens were substantially rougher
than the ground specimens. It is worth mentioning the large values of Svk before DLC
deposition, evidencing large valley depths. When the EDT specimens were plasma nitrided
and then coated with DLC, the reduction of the roughness parameters was much higher
than for the ground specimens, 54% for Sq, 72% for Spk, 73% for Svk and 86% for Sdq.

Figure 4. Sq, Spk, Svk and Sdq values: (a) ground condition; (b) EDT condition.

Regarding the parameters Ssk and Sku, the literature suggests that their simultaneous
analysis by plotting Sku as a function of Ssk provides an interesting morphological analysis
of the surface [38]. The morphological space Sku versus Ssk (Figure 5) enables to identify
groups with similar behaviors, as well as morphological changes due to surface treatment.
The ground specimens, both uncoated and coated presented Sku values close to 3 and Ssk
values close to 0, were typical of a Gaussian height distribution. This region is encapsulated
in red in Figure 5. The textured specimen showed very large Sku values and negative
values of Ssk, appearing in a very distinct region of the morphological space, encapsulated
in green. Sku is associated with the kurtosis of the curve of height distribution, where
Sku values larger than 3 indicate a peaked height distribution. Ssk is associated with the
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symmetry of the height distribution curve, where negative Ssk values correspond to a
plateau-valley distribution. Since the error bars both for Sku and Ssk values were very
large, the surfaces were highly non-uniform, ranging from predominantly plateau-valley
morphologies to a few areas with plateau-peak morphology. When the textured specimen
was plasma nitrided and DLC-coated, the Sku value approached 3, which was typical of a
Gaussian distribution, but with much smaller error bars than the EDT specimen. The curve
remained negatively asymmetric (Ssk < 0), still indicating preponderance of valleys, but to
a smaller extent than the EDT specimen, as well as less scattering (blue capsule).

Figure 5. Morphological space Ssk versus Sku.

Sbi values for all the surface conditions are presented in Figure 6. For the ground
specimen, plasma nitriding + DLC did not affect the load-bearing capacity of the surface.
The textured specimens showed lower bearing capacity than the ground specimens. After
plasma nitriding + DLC, Sbi increased; Anova tests showed that statistically, the load-
bearing capacity for EDT DLC was not different from either ground or ground DLC.

Figure 6. Sbi values for the different surface conditions.
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3.2. Structure and Mechanical Properties of the Modified Surfaces

XRD diffractograms of the specimens before and after plasma nitriding + DLC de-
position are presented in Figure 7. Peak 1 could correspond to ferrite or martensite, but
considering the hardness and microstructure of the specimens, it was assigned to marten-
site. For the specimen with plasma nitriding + DLC, peak 1 was no longer present, while
peaks for the Fe2–3N (ε) and Fe4N (γ´) phases were found, as reported in previous works
using similar nitriding conditions [30]. For the nitrided + DLC specimen, the penetration
depth of the X-ray was estimated using the Beer-Lambert equation (I/Io = e−µx) [39], where
I/Io is the ratio between absorbed and transmitted beam; x is the penetration depth; µ is
the linear absorption coefficient that can be calculated by µm = µ/ρ, ρ is the density; and
µm is the mass absorption coefficient. For Cu-Kα radiation, λ = 1,5406 Å, the values of µm
and ρ were obtained from Nist [40]. Assuming an absorption of 64% of the X-ray in the
nitride layer, the approximate penetration depth of the X-ray (x) was estimated between
4.51 of 4.66 µm. Therefore, the X-ray was not probing the substrate, justifying the absence
of peak 1.

Figure 7. X-ray diffraction (XRD) diffractograms before and after plasma nitriding + DLC: (a) ground
specimen; (b) nitrided specimen + DLC.

The hardness of the different regions (substrate, nitrided layer and DLC coating)
were obtained using different methods. The hardness of the substrate and compound
layer was measured by Vickers microhardness in polished cross-sections, while the DLC
hardness was measured by nanoindentation. Table 4 presents the DLC nanoindentation
measurements and calculations for the 14 loading cycles tested; all calculations followed
the method proposed by Oliver and Pharr [12], to obtain the Young´s modulus (E) and
hardness (H) of the DLC coating. Table 5 summarizes the hardness values for all the regions.
Plasma nitriding increased the substrate hardness, with the hardness of the compound
layer approximately 65% higher than the substrate. Regarding the hardness of the DLC
film, according to the classification given by Hainsworth and Uhure [41], the film can be
classified as a-C:H (soft).
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Table 4. Results of the nanoindentation tests; Ered = Reduced modulus, E = Young´s modulus,
H = hardness.

Cycle Ered (GPa) E (GPa) H (GPa)

1 43.99 42.42 4.52
2 48.62 47.07 6.71
3 64.07 62.91 7.00
4 37.52 35.96 3.79
5 71.82 71.03 9.58
6 55.06 53.62 5.38
7 63.37 62.19 6.05
8 69.49 68.58 5.47
9 71.67 70.88 6.85
10 52.03 50.53 3.61
11 63.16 61.97 4.85
12 48.31 46.76 4.04
13 72.62 71.88 8.65
14 92.15 92.89 10.08

Average 60.99 59.91 6.18
Standard Deviation 14.41 14.97 2.09

Table 5. Comparison of hardness values for substrate, compound nitrided layer (HV0.1) and DLC
(nanoindentation).

Region Hardness (GPa)

Substrate 5.84 ± 0.14
Compound layer 9.61 ± 0.48

DLC 6.18 ± 2.09

Figure 8 presents SEM images of Rockwell C indentations on the ground DLC
(Figure 8a,b) and EDT DLC specimens (Figure 8c,d). Radial cracks are observed for both
conditions. According to VDI 3198, discussed by Vidakis et al. [42], the presence of radial
cracks with little delamination is an indicative of a fragile film with good adhesion. It is
also observed the presence of circumferential cracks, evidenced for the ground DLC speci-
men near the indentation region (Figure 7b). The failures found for both the ground and
EDT substrates can be classified as HF3 (acceptable failure), due to the presence of little
delamination near the indentation.

Raman spectra for the ground DLC and EDT DLC specimens are presented in Figure 9.
As shown in the image, the positions regarding bands D and G are similar for both
conditions analyzed. Table 6 summarizes results regarding the position of the peaks D and
G, as well as the ratio between the intensity of the peaks D and G (ID/IG) and the amount
of hydrogen. Data statistical analysis shows that the results are the same for ground DLC
and EDT DLC conditions, indicating that texturing had no influence on the nature of the
chemical bonds of the film.

Table 6. Raman analysis results.

Condition D Peak Position
(cm−1)

G Peak Position
(cm−1) ID/IG %H

VC10 DLC 1394.5 ± 3.5 1588.0 ± 2.0 0.7 ± 0.1 39.0 ± 1.0
EDT DLC 1391.0 ± 1.5 1589.0 ± 1.0 0.7 ± 0.1 39.0 ± 0.0
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Figure 8. SEM micrographs of the indentations produced by the adhesion test: (a,b) for the ground DLC specimen; (c,d) for
the EDT DLC specimen. (a,c) are the indentations and (b,d) show selected magnified areas in the vicinity of the indentations.

Figure 9. Raman spectra for ground DLC and EDT DLC specimens, two measurements per condition.

XPS analysis was performed for the ground specimen coated with DLC. The atomic
composition obtained on the sample surface was 92.9% C and 7.0% O (peaks: C1s 284.0 eV
and O1s 531.8 eV). Peak deconvolution for the XPS analysis for C1s was performed using
CasaXPS software, shown in Figure 10. Table 7 shows the binding energies of the present
species and the corresponding relative percentage. For the equipment used, the error in
terms of binding energy was 0.2 eV, in terms of the chemical composition of 5% of the
amount of each element.
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Figure 10. C1s X-ray photoelectron spectroscopy (XPS) spectrum with peak deconvolution for ground
DLC specimen.

Table 7. Binding energies of the species and corresponding relative percentages, FWHM = full width
at half maximum.

Species Binding Energy (eV) FWHM Relative Percentage (%)

sp2 284.8 1.2 56.7
sp3 285.2 1.2 33.2
C-O 286.6 1.6 8.1

O-C=O 288.2 2.0 2.1

3.3. Tribological Performance

Friction coefficient values for the textured specimen and coated specimen under dry
and lubricated sliding are presented in Figure 11. For comparative purposes, friction for
the ground (non-textured, non-coated) specimen is also presented. Under dry conditions,
the EDT specimen presented the highest friction values. In the beginning of the test, friction
increased rapidly, achieving almost 0.7, and then reduced to a plateau of around 0.5. Initial
friction for the textured specimen coated with DLC was around 0.15, suggesting some
lubricity. Friction increased with sliding distance, reaching an approximate plateau of
around 0.3. As the sliding distance increased further, friction increased to around 0.38
and then stabilized, but presenting very large scattering. Under lubricated conditions,
friction was much more stable and substantially lower. Friction values started at around
0.12, slowly increasing until a value around 0.13 was reached after 100 m of sliding, then
remaining fairly constant for the rest of the total sliding distance of 1000 m. When compared
with the ground specimen, lubricated friction for the ground specimen was slightly lower,
quickly reaching a steady-state value of around 0.10.

Images of the worn tracks are exemplified in Figure 12. Under dry conditions, some
damage was observed for the textured specimen coated with DLC after 1000 m of sliding
(Figure 12a). The surface damage was confirmed by the 3D topographic maps of the worn
tracks (Figure 13a). However, no measurable wear could be accounted for, as confirmed
by the selected 2D profile. On the other hand, a large wear scar was formed on the
spherical counterbody, which slid against the EDT DLC specimen, as shown in Figure 14a.
Under lubricated conditions, the damage was almost imperceptible after 1000 m of sliding
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(Figures 12d and 13d), but increased when the sliding distance increased to 1500 m of
sliding (Figures 12c and 13c). The ground specimen showed a more distinguishable wear
track under lubricated sliding (Figures 12d and 13d); vertical blue lines were used in
Figure 12d to emphasize the wear track. The 2D profile showed significant smoothening in
the wear track, delimited by the two red vertical lines in Figure 12d. On the other hand,
the scar produced on the ball (Figure 14d) was smaller than for the EDT DLC specimen.

Figure 11. Comparison of the evolution of the coefficient of friction (CoF) with sliding distance.

Figure 12. Examples of optical images of the worn tracks under dry and lubricated conditions.
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Figure 13. Optical interferometry of the worn tracks (3D maps and selected 2 D profiles: (a) EDT DLC dry, 1000 m sliding;
(b) EDT DLC lubricated, 1000 m sliding; (c) EDT DLC lubricated, 1500 m sliding; and (d) ground lubricated, 1000 m sliding.

SEM of the worn tracks under higher magnification elucidated better the wear mech-
anisms for the different specimens. For the textured specimens coated with DLC, the
localized damage observed under dry (Figure 15a) and lubricated (Figure 15c) sliding
did not seem to result in the complete removal of the DLC film. This was suggested by
composition profiles measured by EDX, as exemplified in the EDX composition profile
shown in Figure 15e. The clearer regions where damage seemed to occur showed similar
chemical composition in relation to the darker regions. For the ground specimen, the
worn surface suggested the occurrence of very mild wear, which resulted in substantial
smoothening of the surface (Figure 15d).
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Figure 14. Optical microscopy of the wear scars produced on the balls that slid against the different specimens: (a) EDT
DLC dry sliding, 1000 m; (b) EDT DLC lubricated sliding, 1000 m; (c) EDT DLC lubricated sliding, 1500 m; and (d) ground-
lubricated sliding, 1000 m.

Figure 15. Wear mechanisms observed under SEM: (a,b) EDT DLC dry, 1000 m sliding, SE image left, BSE image right;
(c) EDT DLC lubricated, 1500 m sliding; (d) ground lubricated, 1000 m sliding; (e) EDX composition profile along the line
selected in (b).
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4. Discussion

This work investigated the possibility of using DLC to increase the durability of
forming tools previously textured by electrical discharge machining. For that, a multi-layer
DLC coating, consisting of a plasma nitrided layer, a Si-rich DLC layer and a top a-C:H
layer, was deposited onto tool steel specimens cut from a fragment of a rolling mill roll and
then textured by EDT.

Due to high stresses involved in metalforming and the rough nature of the textured
specimens, a relatively soft DLC was chosen for this application. It was shown that plasma
nitriding before DLC deposition increased the hardness of the substrate to 65%. This in-
crease in hardness improves the film adhesion and/or prevent delamination when applying
a transversal load on the sample, as observed in previous works in the literature [43].

Since the roughness of the tool should be transferred to the rolled sheet during the
final step of cold rolling, it is very important that the original topography after surface
texturing is preserved when DLC is deposited. The results showed that DLC reduced the
height and slope of the asperities, and that this reduction was between 2.5 and 4 times
higher for the textured specimens than for the ground specimens. Moreover, the Sku versus
Ssk morphological space showed very significant changes when DLC was deposited for the
textured tools, but not for the ground tools. The EDT tools lied in the upper left quadrant,
and presented very large scattering. This probably occurred as a result of the nature of the
EDT process, achieved using the principles of electrical discharge machining. The ablation
mechanism in electrical discharge machining leads to the formation of craters, but rapid
cooling due to the contact with the cold dielectric fluid leads to resolidification, producing
some protruding features [44]. The machining parameters were chosen to mainly produce
large craters, therefore Ssk of surfaces textured by EDT should be mostly very negative
due to the presence of the craters, yet measurements in the few regions with protruding
resolidified material should account for the large scattering observed in the Ssk values.
Similar explanation is valid for the large values of Sku and the large scattering of the results.
Some measured regions probably presented irregularities with very similar heights, giving
very high Sku values, whereas other regions presented both craters and resolidified features,
giving a more Gaussian height distribution and then lower Sku values. When the textured
tool was coated with DLC, the smoothening effect conferred by the coating drastically
reduced the scattering of the Ssk and Sku values. Moreover, the height distribution became
much more Gaussian and then Sku approached 3. The average value of Ssk value increased
with DLC coating, yet it remained negative, evidencing a preponderance of valleys.

The change in surface topography parameters is a limitation for the use of DLC in
textured tools, and needs to be taken into account when designing the texturing step of the
tools. For instance, EDT could be set up to produce rougher surfaces, so that after DLC
deposition, the final roughness lied within the desired range for the tool. One important
positive aspect is that DLC increased the load bearing capacity of the textured tools (see Sbi
values in Figure 6).

In terms of the adhesion of the DLC film, both the ground and the textured substrates
resulted in coatings that were classified as HF3 (acceptable failure). Moreover, circum-
ferential cracks were observed for the ground substrate (Figure 8b) near the indentation
region due to the action of tensile stresses in the region caused by the pile-up of the sub-
strate (deformation), as discussed by Souza et al. [45], and more recently confirmed by
Gilewicz et al. [46].

The Raman results allowed to characterize the structure of the DLC. The ID/IG ratio
is a way of monitoring the carbon bonds present in the film; in amorphous carbon ID/IG
represents a measure of the size of the sp2 phase organized in rings [36]. According to
Al Mahmud et al. [47], the higher the ID/IG ratio the greater the number of sp2 bonds
in the ring structure of the film, indicating a reduction in the amount of sp3 bonds. So-
prano et al. obtained ID/IG variations from 0.64 to 0.72 with different samples’ texturing
conditions produced via sanding processes, and indicated that these variations were not
significant [29]. The bands’ positions (D and G), ID/IG ratio and the percentage of hy-
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drogen in the present work were similar to the values in Soprano´s work. XPS analysis
complemented the characterization of the DLC films. To perform the deconvolution of C1s
peak, peaks similar to those found in the work of Al Mahmud et al. [47] were observed.
The contamination represented by the C-O and O-C + O bonds is observed because the
analysis was carried out on the sample surface, indicating that there was a reaction of the
film with atmospheric oxygen. Considering the deconvolution of C1s peak, the alterna-
tive would be the adjustment with four sub-peaks: 284.4 eV, 285.1 eV, 286.5 eV, 288.4 eV,
related to groups CC sp2, CC sp3, CO and OC=O, respectively, with the proportion of
CC sp2/CC sp3 sub-peaks equal to 56.68/33.17. However, this determination of the pro-
portion between C-C sp2 and C-C sp3 is questioned in the literature, as the separation in
binding energy between the components is very small, which leaves much freedom in the
mathematical adjustment, with Gaussians, for example (experimental analysis). Therefore,
a possibility published by Turgeon and Paynter is to use the Auger carbon spectra (as a
function of kinetic energy) to determine the separation (D) between the maximum and the
minimum [48]. The result indicates a proportion of 40% C-C sp3. The combination of the
Raman analysis, XPS analysis and nanoindentation measurements confirmed that the DLC
film was relatively soft and consisted of a -C:H.

Under dry sliding, the textured specimen showed very high initial friction values,
reaching almost 0.7, and then stabilized at 0.5. These values are in the same range of
friction values measured in [8] for EDT specimens of similar material, although the test
configuration was very different (dry reciprocating sliding, line contact). In that same
work [8], the friction values for specimens textured by EDT and for EDT + plasma nitriding
were similar. In the present work, when the EDT specimens were plasma-nitrided and then
coated with DLC, an initial coefficient of friction of around 0.15 was measured, consistent
with the solid lubricating nature of the film. However, as the sliding distance increased,
friction increased first to an initial plateau of 0.3, and then a second plateau of around 0.4.
This should be related to the very rough nature of the substrate, which should increase
the deformation component of friction. However, the values were substantially lower
than those measured for similar textured specimens coated with hard chrome under dry
reciprocating sliding and high-contact pressure conditions [5,8]. Moreover, even in the
final plateau region of the friction curve, there should be some contribution of the solid
lubricant nature of the DLC film, since the worn surfaces after 1000 m of sliding showed
that the damaged regions in the wear tracks were rich in C and Si. It is plausible that the
top DLC layer was removed, but the intermediate Si-rich DLC layer remained even after
long sliding distances under dry conditions. Under lubricated conditions, friction was
substantially lower and much more stable, with values typical of boundary lubrication.
The Dowson and Hamrock equation for an EHL elliptical contact [49] (Equation (3)) was
used to estimate the film thickness in the central region of the contact (hc) during the tests

hmin
R′x

= 2.69U′0.67G0.53W′−0.067
(1− 0.61e

−0.73(
R′y
R′x

)
0.73

) (3)

U′ =
Uη

ER′x
(4)

1
E∗ =

1− υ2
1

E1
+

1− υ2
2

E2
(5)

G = αE* (6)

W′ =
W

ER′x2 (7)

where Rx = Ry = ball radius (3 mm); E* is the combined Young´s modulus of the two
contacting materials given by 1/E* = (1 − ν1

2)/E1 + (1 − ν2
2)/E2, U is the sliding speed

(0.3 m·s−1), W is the normal load (10 N), η is the lubricant dynamic viscosity (38.55 mPa.s)
and α is the lubricant piezoviscous coefficient, estimated as 21.3 GPa−1 using the empirical
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equation α ≈ (0.6 + 0.965 log(η) 10−8). This gave values of hmin = 252 nm and hmin = 229 nm
for the coated and uncoated specimens, respectively. These values are lower than the
roughness of the specimens (including for the ground specimen), confirming that the tests
run under boundary lubrication conditions. The higher friction values for the EDT DLC
specimen, when compared with the uncoated ground specimen, should be related to its
larger roughness, increasing the deformation component of friction.

Wear of the textured specimen when coated with DLC under dry sliding was not
measurable, although some surface damage was visible after 1000 m of sliding. Since the
coating should protect the topography of the textured roll against wear, the change in
surface topography after the sliding tests is very relevant to assess the adequacy of the
coating. Comparing surface topography measurements inside the worn tracks with the
original parameters for the textured specimen coated with DLC, after the sliding tests
Sq, Spk and Svk reduced to 4.7%, 3.0% and 12.8%, respectively, whereas Sdq increased to
17.5%. Such variations can be considered small for dry tests under high contact pressures.
Under real rolling conditions, the changes of topographic parameters for a textured roll
coated with hard chrome between the new condition and after a rolling campaign were
around a 50% reduction of Sq, 50% reduction of Sdq and 60% reduction of Spk [50]. Under
lubricated conditions, the changes in topographic parameters (not presented) were not
statistically significant.

Despite the relatively low hardness, the soft DLC resulted in small spallation on a
rough surface, and could withstand high contact pressures with adequate tribological
performance, paving a possible way for its future use in textured metalforming tools.
The results showed that the occurrence of spallation was very small, and the tribological
performance was at least comparable (or superior) to results in the literature regarding
friction and wear of textured tool materials coated with hard chrome using ball-on-flat
tests [8,50].

Another important contribution of this work relates to the quantification of changes
caused by DLC deposition on surface topography. Although plasma nitriding is known
to increase surface roughness [27,34], the combined used of plasma nitriding and DLC
coatings produced smoother surfaces. This should be true not only for EDT surfaces, but for
very rough substrates in general. From the point of view of a textured roll, this is a negative
aspect, as the roughness of the roll needs to be imprinted onto the rolled sheet. On the
other hand, for other applications, the combined use of plasma nitriding and DLC coating
on a very rough substrate could result in surfaces with a superior load bearing capacity.

5. Conclusions

This work investigated the deposition of a multilayer DLC coating onto textured tool
steel specimens, aiming to assess its suitability to increase the durability of textured rolls in
cold rolling operations. The results showed that:

1. The coating was classified as a soft multilayer coating consisting of a plasma nitride
layer for load support, a Si-rich interlayer to improve adhesion and an a-C:H top layer.

2. The deposition of DLC significantly reduced the roughness of the textured specimens.
This needs to be accounted for when designing the textures of the rolls.

3. DLC protected the textured surfaces under dry sliding, providing stable and relatively
low friction and negligible wear even after 1000 m of sliding.

4. The changes in surface topography due to dry sliding of the textured and coated
surfaces were considered small. Changes in surface topography under lubricated
sliding were not statistically significant for any of the specimens.
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