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Abstract: MoS2 has been regarded as a promising addition for the preparation of epoxy-based coat-
ings with high anticorrosion ability. However, its dispersion and compatibility remain significant
challenges. In the present work, an organic thin layer was well coated on lamellar molybdenum disul-
fide (MoS2) via a simple modification of 3-aminopropyltriethoxysilane (APTES). The modification of
hydrolyzing APTES on lamellar MoS2 effectively improved the dispersity of MoS2 in water-borne
epoxy (WEP) and successfully enhanced the compatibility and crosslinking density of MoS2 with
WEP. The influence of introducing MoS2-APTES into WEP coating on anticorrosion property for N80
steel was tested by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and
salt spray test. The results exhibited that the |Z|0.01Hz value of MoS2-APTES/WEP still reached
3.647 × 107 Ω·cm2 even after the immersion time of 50 days in 3.5 wt.% NaCl solution, showing
an extraordinary performance of corrosion resistance. The enhanced anticorrosion performance of
composite coating could be resulted from the apparently increased dispersibility and compatibility
of MoS2 in WEP.

Keywords: molybdenum disulfide (MoS2); 3-aminopropyltriethoxysilane; waterborne epoxy; anti-
corrosion

1. Introduction

Metal corrosion has become a worldwide problem causing enormous economic losses
and many casualties [1,2]. Among the conventional anticorrosive strategies, organic coat-
ings have generated tremendous attention from researchers and have been extensively used
in industrial fields, mainly due to their superior physical barrier abilities and relatively low
costs [3–5]. However, solvent-based coatings containing many volatile organic compounds
(VOCs) will heavily damage the eco-environment and human health [6,7]. Waterborne
epoxy coating (WEP), one of the environment-friendly coatings, has drawn an increasing
amount of attention owing to its many virtues like low noxiousness and excellent chemical
resistance [8–10]. Unfortunately, WEP coatings could not attain satisfactory results of
protecting metal from corrosion due to the formation of micro-pores or micro-cracks during
coating curing caused by solvent evaporation [11]. To solve this problem, some methods
have been developed to reinforce the anticorrosive capability of the WEP coatings. Among
these diverse methods, various fillers such as graphene and its derivates, C3N4, and h–BN,
etc., have been introduced into the waterborne epoxy, which is an effective way to reduce
coating defects and promote the anticorrosion performance of WEP coatings [12].
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To date, graphene, one of the two-dimensional (2D) materials, has already generated
an increasing amount of interest among researchers in the area of anticorrosion, because
of its superior impermeability to molecules, excellent chemical inertness, hydrophobic-
ity, outstanding thermal and mechanical properties, etc. [13]. However, it is also well
known that graphene cannot function as a long-term anticorrosion material, and it even
accelerates metal corrosion once the coating is scratched [14]. This is a tremendous limit
to graphene applied to anticorrosion. Even though previously relevant “self-healing”
strategies can extend the life of graphene-based coatings, they cannot basically hinder
the “corrosion-promotion activity”. Consequently, it is particularly crucial to hinder the
corrosion-promotion activity of graphene-based anticorrosion coatings or find low conduc-
tivity/insulation materials [9,15].

MoS2, as a member of the transition metal dichalcogenides, has attracted a significant
interest due to its 2D ultrathin atomic layer structure similar to that of graphene [16,17]. It
is made up of one plane of hexagonally packed metal atoms sandwiched by two planes
of chalcogenide atoms. The sandwich layers stack vertically and are loosely bonded via
weak van der Waals forces [18,19]. The special lamellar structure of MoS2 endows it with
excellent anticorrosion performance-like graphene [20]. Meanwhile, MoS2 possesses a high
band gap in contrast to graphene, which has no influence on the electrical conductivity
of the coatings when added with the MoS2 [21,22]. As a result, MoS2-based anticorrosion
coatings will not cause “micro-galvanic corrosion” if the defects occur on the surface of the
compounded coatings [23]. However, MoS2 has a tendency to agglomerate in the polymer
matrix, because it possesses a large surface area and is short of functional groups. To
improve its dispersibility and compatibility with the polymer matrix, the most effective
methods to prepare high-performance composites is the surface modification of MoS2
including the non-covalent and covalent types [24]. For example, Wang et al. [25] found
a non-covalently functionalized method to modify MoS2 with chitosan (CS), and the CS–
MoS2 could be homogeneously dispersed in tetrahydrofuran, which could greatly decrease
hazards connected with EP nanocomposites. Zhou et al. [26] devised an approach of cova-
lent functionalization to graft MoS2 nanosheets with 3-mercaptopropyl trimethoxysilane
and the functionalized MoS2 could be well dispersed in PVA without obvious aggregation.

Moreover, it is generally acknowledged that organic silane coupling agents could
be used to modify materials. In this regard, Sepideh et al. [27] used (3-aminopropyl)
triethoxysilane (APTES)-modified graphene oxide (GO) as a nanofiller to add into the
epoxy coating, and the results showed that corrosion protection performance greatly
improved because of the excellent interfacial interaction of GO in coating through silane
modification. Sepideh et al. [28] reported 3-aminopropyl triethoxysilane (APTES) and 3-
glysidyloxypropyl trimethoxysilane (GPTMS) as silane agents to modify GO sheets, which
were introduced to epoxy coatings. The results exposed the incorporation of APTES-GO
including amine end-groups, which better increased the corrosion resistance of epoxy
coating. As we all know, APTES, a kind of typical silane coupling agent, could hydrolyze
and graft to the surface of fillers, and its amine-end groups could improve the crosslinking
density of epoxy resins.

In this study, MoS2 was functionalized with APTES in order to develop its disper-
sion and interfacial interactions with waterborne epoxy. Then, the hybrids MoS2-APTES
were introduced into waterborne epoxy resin coatings to strengthen the anticorrosion
performance. To the best of our knowledge, there is no study reporting the anticorrosion
performance of APTES-modified MoS2 in waterborne epoxy. Finally, the corrosion resis-
tance of the composite coatings was investigated by electrochemical impedance spectra
(EIS), potentiodynamic polarization and salt spray test.

2. Experiment
2.1. Materials

Molybdenum disulfide (MoS2, 99.9%) was obtained from McLean Biotech (Shang-
hai, China), and 3-aminopropyltriethoxysilane (APTES, 99%) and ethanol (≥99.7%) were
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purchased from Kelong Chemical Reagent Factory (Chengdu, China). Waterborne epoxy
(BC2060H) and curing agent (BC916) provided by LianGu New Material Technology
Co., Ltd. (Guangdong, China) were used to prepare the coatings. Distilled water was pro-
duced by the Milli-Q system (Millipore, NY, USA). All the reagents used in the experiment
were directly utilized without other purification steps.

2.2. Preparation of MoS2-APTES

APTES was employed to modify MoS2 as follows: 0.3 g MoS2 was dispersed in 150 mL
ethanol including 3 g APTES by sonification for 40 min, and then 5 mL of distilled water was
dropped in the prepared suspension under sonification. The suspension was magnetically
stirred at 500 rpm for 24 h at 80 ◦C. Then, modified MoS2 was centrifuged, washed several
times with pure water and ethanol to insure the complete removal of unreacted APTES. In
the end, the acquired products were dried by freeze-drying. The schematic of the synthesis
procedure of MoS2-APTES was displayed in Figure 1.
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Figure 1. Schematic of the synthesis procedure of MoS2-3-aminopropyltriethoxysilane (APTES) via APTES hydrolysis.

2.3. Fabrication of MoS2-APTES Composite Coating

Firstly, a certain amount of MoS2 (0.3 wt.%) was dispersed in pure water, stirred
and ultrasonicated for 5 min to obtain a homogeneous solution. Subsequently, the MoS2-
APTES suspension was added into waterborne epoxy resin containing curing agent and
mechanically stirring for 10 min to produce a homogeneous mixture. Finally, the mixture
was sprayed on the prepared N80 steel substrates degreased by ethanol and acetone. The
composite coating was placed at 25 ◦C for 7 days to promote curing. The average thickness
of the coating was measured by the coating thickness gauge (QNIX 4500, Qnix, Bonn,
Germany), which was about 40.0 ± 5 µm. Similarly, The WEP and MoS2/WEP were also
prepared via the same method.

2.4. Characterization

Fourier transform infrared (FT-IR, WQF-520, Rui Li, Beijing, China) was used to ini-
tially characterize the chemical structure of the composite in the range of 500–4000 cm−1. To
investigate the crystal structure of materials, X-ray diffraction (XRD, Bruker D8 ADVANCE
A25X, Beijing, China) was carried out using copper Ka radiation source at a scan rate of
1◦·s−1 from 5◦ to 80◦ and X-ray diffraction measurement was in Bragg–Brentano geometry.
The morphology of MoS2-APTES was characterized by transmission electron microscopy
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(TEM, JEM-2100F, Japan Electron Optics Laboratory Co, Tokyo, Japan). X-ray photoelec-
tron spectrometry (XPS, XSAM800, Al Kα ray, KRATOS, Manchester, UK) was employed
to explore the surface chemistry. Thermogravimetric analysis (TGA) was conducted by
TGA (SDTA851, METTLER, Zurich, Switzerland) on the condition that N2 atmosphere
flowed over the open crucibles and a heating temperature increased from 40–800 ◦C with a
rate of 10 ◦C/min. In order to study the dispersion ability of additions in WEP coatings,
scanning electron microscopy (SEM, JSM-6700, JEOL, Tokyo, Japan) was utilized to survey
the fracture surface of coatings after breaking the coatings in liquid nitrogen.

2.5. Corrosion Measurements
2.5.1. Electrochemical Test

The corrosion protection ability of the neat WEP, MoS2/WEP, MoS2-APTES/WEP
was investigated by electrochemical impedance spectra (EIS) measurements which were
from the CorrTest CS350 in 3.5 wt.% NaCl solution. Three traditional electrode systems
including a working electrode (specimen coatings), reference electrode (saturated calomel
electrode) and counter electrode (foil electrode) were applied in the measurement process.
During the EIS test, the parameter of the frequency range was 10−2~105 Hz and the open
circuit potential (OCP) always remains stable. In addition, the test data were fitted and
evaluated by the ZsimpWin software. Additionally, the potentiodynamic polarization test
was employed to further study the anticorrosive performance of the composite coating,
which was conducted with a scan rate of 1 mV·s−1 from −200 mV (the cathodic direction)
to +200 mV the anodic (direction).

2.5.2. Salt Spray Test

The long-term anticorrosion performance was estimated by conducting salt spray
testing. According to the ASTM B117 standard, samples with a 4 cm scratch were exposed
to 5 wt.% NaCl salt spray.

3. Results and Discussion
3.1. Characterization

To confirm the successful modification of APTES on MoS2, FTIR spectroscopy of MoS2,
MoS2-APTES was displayed in Figure 2a. From the figure, there is no obvious absorption
peak in the spectrum of original MoS2, because of the lack of functional groups on the
surface of MoS2 [29]. In the case of MoS2-APTES, some peaks at 2917 and 2850 cm−1

are associated with the symmetric and asymmetric stretching of C–H [27]. Moreover, the
broad absorbance between 3436 and 3308 cm−1 could be related to O–H stretching of
water and N–H stretching vibrations. These prove the resultful modification of MoS2 with
APTES. Furthermore, new bands at 1624, 1117, 1042, 912, 755, cm−1 are connected with
the deformation (scissoring) of N–H, perpendicular Si–O stretching vibrations, in-plane
Si–O stretching, O–H deformation of hydroxyl groups and perpendicular Si–O stretching
vibrations, respectively [30]. All the above indicate that APTES has been successfully
modified to the surface of MoS2.

XRD spectra were employed to investigate the crystalline structure of MoS2 and MoS2-
APTES. As shown in Figure 2b, the crystalline diffraction peaks of MoS2 appear at 14.36◦,
32.88◦ and 58.02◦, which correspond to (0:0:2), (1:0:0) and (1:1:0) planes, respectively [31].
After modification with APTES, the hybrids exhibit no peak shift in contrast to MoS2,
which manifests that there is no influence on the crystalline phrase of MoS2 via surface
modification. Moreover, it is clear that the intensity of the (0:0:2) diffraction peaks of the
MoS2-APTES hybrids obviously decreased compared to that of MoS2, which can probably
be attributed to the thin layer of APTES hindering the aggregation of MoS2. Overall, these
results demonstrate that APTES is successfully grown on the surface of MoS2.
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In order to explore the morphology of MoS2 and MoS2-APTES, TEM was carried out,
and the images are displayed in Figure 3. From Figure 3a, it could be clearly spotted that
the average lateral size of MoS2 is close to 500 nm. According to the high magnification
TEM image of MoS2-APTES (Figure 3b), a thin film of approximately 5 nm enveloping
the surface of the particle can be seen, which proves that APTES successfully coats on the
surface of MoS2 via hydrolysis reaction.
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Figure 3. TEM images of (a) MoS2-APTES and (b) high-resolution TEM morphology of MoS2-APTES.

To investigate the chemical element composition of MoS2 modified with APTES, the
XPS spectra analysis was performed. The wide-scan spectra of MoS2 and MoS2-APTES
are exhibited in Figure 4a. The existences of Mo, S, C and O elements are spotted in both
MoS2 and MoS2-APTE samples, and Si and N elements are detected from MoS2-APTES,
revealing the successful incorporation of APTES on the surface of MoS2. The peak at
395.6 eV may be overlap between N1s and Mo 3p. The C and O elements of pristine
MoS2 may be from the ambient atmosphere. Additionally, the apparent raised C1s and
O1s intensity compared with the MoS2 mainly derives from the APTES, which indicates
that APTES was also successfully introduced to MoS2. As shown in Figure 4b, the high-
resolution spectrum of C1s for MoS2-APTES can be deconvoluted into four components
situated at 283.60, 284.4, 285.3 and 286.4 eV, which correspond to C–Si, C–C, C–N and C–O
bonds, respectively [32]. In addition, the presence of C–N and C–C derives from APTES,
while C–Si is probably created by the dehydration condensation of Silanol [33]. Figure 4c
displays the high-resolution Si 2p spectrum which can be split into three peaks. The two
peaks at 102.3 and 103.2 eV are observed, which correspond to the Si–O–C and Si–O–Si,
respectively [11]. The third peak located at 101.8 eV results from the Si–C bond. From
the high-resolution Si 2p spectrum, it could be concluded that the silane coupling agent
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APTES hydrolyzes during the process of modification, and the produced silanol could
undergo dehydration condensation by itself. In addition, the Mo 3d spectrum (Figure 4c) of
MoS2-APTES shows five characteristic peaks. The two peaks located at Mo 3d5/2 (229.2 eV)
and Mo 3d3/2 (232.4 eV) are attributed to characteristics of Mo4+, which prove the signs of
MoS2. In the meantime, the peak appeared at 226.3 eV, which is the result of the strong
overlap of the S2s and Mo 3d region. The peaks at 233.3 eV of Mo 3d5/2 and at 235.7 eV
of Mo 3d3/2 are characteristic of Mo6+ species, which signify the crosslinking systems
between MoS2 and APTES [34]. All of these XPS features reveal the successful modification
of APTES on the surface of MoS2.
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The thermal stability of MoS2 and modified MoS2 was studied via TGA from 40 ◦C
to 800 ◦C under N2 atmosphere. The TGA curves of the initial MoS2 and MoS2-APTES
hybrids are exhibited in Figure 5. There is no obvious loss of weight during the thermal
decomposition procedure of the original MoS2, manifesting its excellent thermally stability
in a nitrogen atmosphere [24]. For MoS2-APTES, an enormous amount of decline in weight
is attributed to the thermal decomposition of APTES on the surface of MoS2 and the
evaporation of the residual water. At the same time, the TGA curves also prove that the
amount of APTES in MoS2-APTES hybrids is about 19.4 wt.%.
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The fracture surface of different coatings was investigated by SEM and the images
are displayed in Figure 6. For the neat WEP coating (Figure 6a), the fracture surface of it
is relatively smooth [35]. After adding MoS2 into coating, it could be clearly spotted that
the fracture surface of composite coating (Figure 6b) gets tough. However, some serious
agglomeration of MoS2 can be observed, because the pristine MoS2 cannot effectively
disperse in WEP resin and lacks interfacial bonding between MoS2 and resin [36]. In
contrast with these, there is no obvious agglomeration in the MoS2-APTES/WEP composite
coating (Figure 6c) and the MoS2 after the modification of APTES is well dispersed in
waterborne epoxy resin, which highlights the better compatibility between MoS2-APTES
and WEP. This still suggests that the MoS2-APTES/WEP composite coating can provide
steel with superior corrosion resistance performance to corrosive media.
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3.2. EIS Test

EIS was employed to investigate the corrosion resistance performance of the water-
borne epoxy coatings at the steady open circuit potentials after an increasing amount of
immersion time. The achieved studying data were drawn as Nyquist and Bode diagrams
through the immersion time for 5, 15, 30, and 50 days. From Figure 7a,c,e, it could be obvi-
ously spotted that with the extending immersion time, the impedance diameters of all the
epoxy coatings expose a decline in the Nyquist plots, which means that the anticorrosion
property of the coatings is dwindling. As shown in Figure 7a,b, the pure WEP coating only
has a semi-arc and one time constant when the immersion time is at 5 days. However, as
the time extends to 15 days, the second time constant and two arcs appear, demonstrating
that pure WEP coating cannot maintain the decent ability of corrosion resistance for N80
steel. Even though the arcs diameter of the MoS2/WEP coating (Figure 7b) was much larger
than that of the neat WEP coating at the original immersion in 3.5 wt.% NaCl solution
(5 days), it dramatically plunges and the second time constant appears similarly when the
immersion time merely increases to 15 days. In this situation, the bad dispersibility and
compatibility of MoS2 in the WEP coating are the main factors. In obvious contrast to the
neat WEP and MoS2/WEP, MoS2-APTES/WEP coating (Figure 7e), exhibits the largest
impedance arcs after the same immersion time and has only one semi-arcs. Additionally,
this compound coating keeps one time constant from 5 to 50 days immersion, which
proves that MoS2-APTES coating possesses an outstanding barrier ability and an excellent
anticorrosion property.

In general, the lowest impedance moduli (|Z|0.01Hz) can be used as an effective
method to assess the anticorrosive performance of the coating, which means that the
higher |Z|0.01Hz of the coating, the better its protective ability [37]. For Figure 7b, it
is clearly displayed that the neat WEP coating owns a low original value of |Z|0.01Hz
about 3.5 × 107 Ω·cm2. Then, the impedance value dives heavily with the increase in the
immersion period because of the entering of corrosive medium (O2, H2O, Cl−) through
the coating’s micropores or cracks. The variation of the |Z|0.01Hz value of MoS2/WEP
(Figure 7d) coating has a similar tendency to the WEP coating, which is derived from
the agglomeration of MoS2 in WEP resin. The MoS2-APTES/WEP coating (Figure 7f)
shows the largest |Z|0.01Hz value (2.738 × 109 Ω·cm2). Above all, its value also has
3.647 × 107 Ω·cm2 even after the immersion time of 50 days in 3.5 wt.% NaCl solution,
which can be ascribed to the homogeneous dispersion of MoS2-APTES in the WEP matrix
and the interactions with them. All of the results prove the addition of MoS2-APTES into
WEP coating and can offer carbon steel a long-period anticorrosion protection capacity.

The electrical equivalent circuit of ZSimpWin was used to fit the EIS data and was
exhibited in Figure 8. The electrochemical parameters including CPEc and CPEdl represent
the coating capacitance and double-layer capacitance, respectively. Rc, Rs, and Rct denote
the coating resistance, solution resistance (resistance between the specimen coating elec-
trode and saturated calomel electrode), and charge transfer resistance, respectively [38]. All
these electrochemical parameters derived from the EIS charts are summed up in Table 1.
The Rc values of neat WEP, and MoS2/WEP decline constantly following the extension
of the immersion period. When the immersion time arrives at 15 days, the Rct fitted
with the second equivalent circuit model appears, demonstrating that the erosive media
reach the interface between the coating and steel going through the coating defects and
the protective coating loses the ability of corrosion resistance for metal. In contrast, the
MoS2-APTES/WEP coating exposes the higher Rc value and no Rct value even longing
for an immersion time of 50 days, which indicates that the MoS2-APTES/WEP coating
is endowed with the superior capability of blocking the penetration of corrosive media.
These are another powerful evidence that the addition of MoS2-APTES could enhance the
anticorrosion of WEP coating.
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Table 1. Electrochemical impedance data of neat and composite waterborne epoxy coatings.

Sample. Time CPEc Rc (Ω·cm2) CPEdl Rct (Ω·cm2)

Y0 (ohm−1 cm−2sn) ncoat Y0 (ohm−1 cm−2sn) ndl

Epoxy 5 d 1.736 × 10−9 0.953 3.517 × 107 - - -
15 d 2.043 × 10−8 0.945 4.355 × 106 2.145 × 10−6 0.73 1.19 × 106

30 d 1.4 × 10−8 0.795 1.911 × 105 6.552 × 10−6 0.68 5.572 × 105

50 d 1.369 × 10−5 0.67 4.448 × 105 1.779 × 10−5 0.62 2.543 × 105

MoS2 5 d 1.808 × 10−9 0.94 5.476 × 107 - - -
15 d 3.036 × 10−8 0.92 4.05 × 106 4.258 × 10−6 0.78 3.688 × 106

30 d 2.155 × 10−8 0.78 1.763 × 105 7.106 × 10−6 0.73 3.225 × 105

50 d 1.614 × 10−5 0.663 2.272 × 104 6.049 × 10−5 0.64 2.929 × 105

MoS2-APTES 5 d 3.59 × 10−10 0.968 2.738 × 109 - - -
15 d 3.757 × 10−9 0.96 6.387 × 108 - - -
30 d 3.565 × 10−9 0.958 3.091 × 108 - - -
50 d 1.63 × 10−9 0.925 3.647 × 107 - - -

Potentiodynamic polarization test of the coatings was performed after immersing in
3.5 wt.% aqueous NaCl solution for 50 days and polarization diagrams were displayed
in Figure 9. Generally speaking, if the protection coating has a higher corrosion potential
(Ecorr) and a lower corrosion current density (icorr), it will be endowed with stronger
anticorrosion property [39]. According to Figure 9, it can be apparently spotted that the
MoS2-APTES/WEP coating shows more positive Ecorr in contrast to MoS2/WEP and a
neat WEP coating. In addition, the icorr of MoS2-APTES/WEP coating is transparently
lower than the others. The obtained results can be clarified via two explanations. One
is that well distributed MoS2 modified by APTES could prolong the corrosive media’s
routes to the substrate; another is that amine groups from APTES could lessen flaws in the
WEP coating by increasing the crosslink density of the coating. Thus, MoS2-APTES/WEP
coating displays the highest anticorrosion result among the three types of coatings.
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3.3. Salt Spray Test

A salt spray test was employed to further evaluate the long-term anticorrosion prop-
erty of coatings. The images of coatings, with 4 cm scratches on their surfaces after being
made, put in salt spray of 5 wt.% NaCl for 5 and 15 days are displayed in Figure 10. For
a neat WEP coating (Figure 10a,d), there are clear bubbles and corrosion products in the
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vicinity of the scratch after the exposure time reaches 5 days, exposing the inferior anticor-
rosion property of the neat waterborne epoxy coating. As the time extends to 15 days, the
corrosion phenomenon increases heavily and much more corrosion products can be easily
observed around the scratch, which are caused by more corrosion medium, which reaches
the metal surface through coating flaws. After the addition of MoS2 (Figure 10b,e), the
MoS2/WEP coating exhibits a similar corrosion protection result to the neat WEP coating
during the salt spray test, because the bad dispersion of MoS2 in WEP and could not act
as an effective barrier for the corrosive medium. In contrast to the neat WEP coating and
MoS2/WEP coating, there are less corrosion products on the surface of MoS2-APTES/WEP
composite coating (Figure 10c,f) even after 15 days of exposure time. The obtained results
above prove that the MoS2-APTES/WEP coating has superior and long-term corrosion
protection because of the physical barrier of MoS2-APTES.

Coatings 2021, 11, x FOR PEER REVIEW 12 of 14 
 

 

 

 
Figure 10. The visual picture of the neat WEP (a,d), MoS2/WEP (b,e) and MoS2-APTES/WEP (c,f) 

samples after 5 and 15 days. 

3.4. The Corrosion Protection Mechanism 

It can be concluded that the MoS2-APTES/WEP coating is endowed with a long-term 

and superior corrosion protection property to M80 steel, considering the results from the 

relevant EIS and salt spray test above. The corrosion protection mechanism of the MoS2-

APTES/WEP coating is shown in Figure 11. In terms of neat WEP coating (Figure 11a), 

corrosive electrolytes such as H2O, O2, Cl− can arrive at the interface between the coating 

and steel through diffusion channels, leading to metal corrosion [40]. Though MoS2 is 

added into the WEP coating, the MoS2/WEP coating (Figure 11b) cannot function effec-

tively as a barrier impact on corrosive medium, because of its inferior dispersion in WEP. 

From Figure 11c, MoS2-APTES exposes homogeneous dispersion in WEP coating, giving 

rise to much more better barrier performance and more superior corrosion resistance 

properties, which is ascribed to the excellent compatibility of MoS2 and WEP. Moreover, 

amine-end groups of APTES could improve the crosslinking density between MoS2-

APTES and WEP matrix. 

 
Figure 11. Schematic illustration of a corrosion protection mechanism for neat WEP (a), MoS2/WEP (b) and MoS2-

APTES/WEP (c) coating. 

4. Conclusion 

In this work: a simple form of the anticorrosive addition MoS2-APTES was devel-

oped, which linked the virtues between MoS2 and APTES. Then, an MoS2-APTES hybrid, 

serving as a pigment, was added into the waterborne epoxy, which shows an apparently 

enhanced anticorrosion performance which effectively protects the N80 steel matrix. The 

successful modification of APTES on MoS2 is proved by FT-IR, XRD, TEM, XPS, and TGA. 

Moreover, the results of the SEM, EIS, potentiodynamic polarization and salt spray test 

reveal a long-term corrosion resistance of MoS2-APTES/WEP. The extraordinary perfor-

mance of corrosion resistance is derived from the good dispersity of MoS2-APTES which 

can prolong the diffusion path of corrosive media going through the coating and APTES 

can strengthen the crosslinking density of waterborne epoxy resin. 
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15 days.

3.4. The Corrosion Protection Mechanism

It can be concluded that the MoS2-APTES/WEP coating is endowed with a long-
term and superior corrosion protection property to M80 steel, considering the results
from the relevant EIS and salt spray test above. The corrosion protection mechanism
of the MoS2-APTES/WEP coating is shown in Figure 11. In terms of neat WEP coating
(Figure 11a), corrosive electrolytes such as H2O, O2, Cl− can arrive at the interface between
the coating and steel through diffusion channels, leading to metal corrosion [40]. Though
MoS2 is added into the WEP coating, the MoS2/WEP coating (Figure 11b) cannot function
effectively as a barrier impact on corrosive medium, because of its inferior dispersion in
WEP. From Figure 11c, MoS2-APTES exposes homogeneous dispersion in WEP coating,
giving rise to much more better barrier performance and more superior corrosion resistance
properties, which is ascribed to the excellent compatibility of MoS2 and WEP. Moreover,
amine-end groups of APTES could improve the crosslinking density between MoS2-APTES
and WEP matrix.
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4. Conclusions

In this work: a simple form of the anticorrosive addition MoS2-APTES was developed,
which linked the virtues between MoS2 and APTES. Then, an MoS2-APTES hybrid, serving
as a pigment, was added into the waterborne epoxy, which shows an apparently enhanced
anticorrosion performance which effectively protects the N80 steel matrix. The successful
modification of APTES on MoS2 is proved by FT-IR, XRD, TEM, XPS, and TGA. Moreover,
the results of the SEM, EIS, potentiodynamic polarization and salt spray test reveal a
long-term corrosion resistance of MoS2-APTES/WEP. The extraordinary performance of
corrosion resistance is derived from the good dispersity of MoS2-APTES which can prolong
the diffusion path of corrosive media going through the coating and APTES can strengthen
the crosslinking density of waterborne epoxy resin.
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