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Abstract: High-power impulse magnetron sputtering (HiPIMS) was used to deposit ITO/Ag/ITO
(IAgI) and ITO/Cu/ITO (ICuI) sandwiched films on polyethylene naphthalate substrate at room tem-
perature as flexible transparent conductive materials. The hybrid layers were constructed with 40 nm
ITO bottom and top layers, and a 5–20 nm Ag or Cu interlayer. The microstructure and optoelectrical
properties were estimated for these films with various thicknesses of the metal interlayer. Thanks
to the high-power density and highly ionized plasma in the HiPIMS process, the IAgI and ICuI
sandwich structures exhibited good crystallinity and smooth surfaces with high optical transmittance
and low sheet resistance. The optimal figure of merit was obtained as 101.16 × 10−3·Ω−1 for the
IAgI film and 4.83 × 10−3·Ω−1 for the ICuI film with the metal interlayer thickness of 10 nm, both
of which are higher than that from a similar structure reported via sputtering at room temperature.
These results indicate that HiPIMS is a promising technique to deposit transparent conductive films
onto soft substrates for applications in flexible optoelectronic devices.

Keywords: HiPIMS; ITO/Ag/ITO; ITO/Cu/ITO; polymer substrates; transparent conductive materials

1. Introduction

The development of flexible optoelectronic devices, such as photovoltaic solar cells,
thin-film transistors, touch screen panels and organic light-emitting diodes, demands
high quality transparent conductive oxides (TCO) available on large scale polymer sub-
strates [1–9]. Indium-tin oxide (ITO) is the most widely used TCO material with high
optical transmittance and good conductivity [10–15]. However, a single ITO layer is not
adequately stable for use on flexible substrates. A single ITO layer also cannot achieve the
stringent requirements when the diagonal size of the screen increases [16]. A multiple-layer
structure embedding a thin metal layer within two TCO layers has been proposed [17–24].
Specifically, the insertion of a thin Ag or ultra-thin Cu (below 30 nm thickness) interlayer
led to improved electrical and optical properties [25–29]. The deposition of high-quality
multilayer films on polymer substrates is difficult due to restrictions of the substrate tem-
perature during the deposition process. Mostly, RF/DC magnetron sputtering was applied
to deposit TCO films on polymer substrates at room temperature with low power density.
Drawbacks of high resistivity, lower transmittance and the brittleness of the films resulted
from the amorphous nature of the sputtered films [30–32]. Low-temperature annealing [33],
refractive index-matching layers [34,35] and buffer layers [36] have been adopted to im-
prove the performance of the TCO films deposited on polymer substrates, which inevitably
complicates the manufacturing process and increases cost. High power density magnetron
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sputtering improves the crystallinity but comes with nonuniform grain size [37]. As such,
currently, all magnetron sputtered TCO films are deposited at a low power density of a few
W/cm2 [38,39], giving rise to low crystallinity and thus low conductivity.

The high-power impulse magnetron sputtering (HiPIMS) technique has been em-
ployed to deposit films on polymer substrates [40–42]. It provides high peak power density
(>0.5 kW/cm2) and current density (3–4 A/cm2), low duty cycle (less than 5%) and about
three orders of magnitude higher plasma density (1018–1019 m−3) than that of the con-
ventional magnetron sputtering [43,44]. The high ionization of the target atoms and the
working gas enable better control of the film growth, leading to a high-quality film with
good uniformity, better adhesion, low defectivity and less roughness at a relatively low
substrate temperature [40,45–47]. Furthermore, the use of HiPIMS to deposit ITO and Cu
can improve the qualities thus the properties of the film [37,48]. However, there is a lack of
TCO/metal/TCO films deposited by HiPIMS. In our group, HiPIMS has been successfully
used to deposit many kinds of films and coatings [49–51].

In this study, HiPIMS was used to deposit ITO-Ag-ITO (IAgI) and ITO-Cu-ITO (ICuI)
sandwich structures on 125 µm thick polyethylene naphthalate (PEN) substrate. The
bottom and top ITO layers were fixed at 40 nm, and the thickness of the Ag and Cu
interlayer was varied from 5 to 20 nm. The microstructures and optoelectrical properties
of IAgI and ICuI films with various thicknesses of the interlayer were investigated. The
metal-inserted sandwich structures with large figures of merit (ΦTC) were obtained on
flexible TCO films with higher transmittance and lower sheet resistance.

2. Materials and Methods

In this research, thin metal films of Ag or Cu were inserted in between two ITO thin
films to form two different ITO–metal–ITO (IMI) sandwich structured films, ITO/Ag/ITO
and ITO/Cu/ITO. These two sandwich films were prepared using HiPIMS technique
(Huettinger Highpulse 4001 G2) on flexible substrates (PEN) and Si substrate. Si substrate
was used for selected film characterizations. The thickness of the polymer substrates
was 125 µm. During the deposition, the substrate rotated at a speed of 5 rpm at room
temperature without bias. A thermal couple near the substrate surface was used to measure
the substrate temperature. ITO (99.99%, Sn2O3:In2O3 = 90:10 wt.%) and metal target (Ag:
99.95%, Cu: 99.99%) were used to deposit the ITO films and metal films with a unipolar
mode and arc handling capability of 1000 arcs/s. The magnetic track area inside the
cathode was 126 cm2. After the system was evacuated to 1 × 10−6 torr, the deposition
process was performed at 3 × 10−3 torr with pure Ar flow at a rate of 30 sccm.

Before the deposition process, all the targets were cleaned for 5 min with peak current
of 6 A, duty cycle of 30%, frequency of 1000 Hz and pulse-on time of 300 µs. During
the HiPIMS process, the real-time voltage and current were obtained using a digital
oscilloscope. The triple-layer structure films were obtained by depositing ITO and thin
metal layers sequentially in the HiPIMS system, in which every combination of each
thickness was adopted to determine the optimum condition; 150 Hz frequency, 100 µs
pulse-on time and 1.0 kW average power were employed for the ITO deposition. The
frequency for the metal interlayer deposition was 250 Hz. The pulse-on times were 150
and 100 µs for Cu and Ag targets, respectively. A constant current mode was used while
the peak current setting for the Ag target was 50 A and that for the Cu target was 100 A.
According to the recordings from the digital oscilloscope, the mean power (voltage ×
current × duty cycle) value of the Ag targets was around 1.3 kW, and that of the Cu targets
was around 2.1 kW; the peak power (the highest voltage × highest current during the
pulse) value was 48.6 kW for the Ag target and 61.9 kW for the Cu target. During the whole
deposition process, the system temperature was below 70 ◦C.

An α-step profile analyzer (Tencor P-10, Surface profiler, Class One Equipment Inc.,
Decatur, GA, USA) was used to measure the film thickness. The microstructures of the
films were determined using grazing incident X-ray diffraction (GIXRD, BRUKER D8
and BRUKER D8 SSS, PANanalytical, Almelo, Netherlands) with a 1.5-degree incident
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angle, and the root-mean-square (RMS) surface roughness was measured by atomic force
microscopy (AFM, Agilent 5400, Agilent Technologies, Santa Clara, CA, USA). A JSM-6700F
field-emission scanning electron microscope (FE-SEM, JEOL, Tokyo, Japan) was used at an
operating voltage of 3.0 kV to analyze the surface morphology of the Ag or Cu layers on the
bottom ITO film. The film composition and the chemical bonding state were characterized
by X-ray photoelectron spectroscopy (XPS, ULVACPHI, PHI 5000 VersaProbe, ULVACPHI,
Chigasaki, Japan) with a primary excitation source of monochromatized Al-Kα (1486.6 eV);
the pass energy was fixed at 50 eV and the beam current density was 2.5 × 10−3 A/cm2.
The optical transmittances of the ITO/Ag/ITO and ITO/Cu/ITO triple-layer structures
were measured by an N & K analyzer (model: 1280, N & K Technol, San Jose, CA, USA).
Van der Pauw Hall measurements (ACCENT, HL-5500PC, Nanometrics, Milpitas, CA,
USA) were used to measure the electrical properties of the films.

3. Results and Discussion
3.1. Material Properties of the Sandwiched TCO Films

A TCO film’s crystallinity determines its photoelectric property. Figure 1 shows
GIXRD patterns of the IAgI (a) and ICuI (b) hybrid layers of various thicknesses deposited
on the PEN substrate. It shows that all the films had crystalline structures. Except for the
peaks responding to the PEN substrate, the diffraction peaks (222) and (400) associated
with the ITO layer were observed for all the samples, indicating the crystallinity of the
ITO film with body-centered structure (JCPDS card number 06-0416). The IAgI films
possessed an Ag (111) peak around 38.2◦, corresponding to the FCC crystalline structure.
For the ICuI films, a broad Cu (200) peak at 50.8◦ was observed for the films. There
is no obvious difference in the peak intensity according to the various metal interlayer
thickness, indicating stable film quality deposited by HiPIMS even with the 5 nm ultra-thin
metal interlayer. The crystalline size of the metal interlayer was obtained from the Scherer
equation.

D = 0.9λ/βcosθ (1)

where λ = 0.154 nm is the wavelength of the X-ray radiation, β is the corrected full width
at half-maximum (FWHM) and θ is the Bragg angle. The calculated results of the Ag
(111) and Cu (200) crystalline sizes are presented in Table 1. With the increase of the metal
interlayer thickness from 5 to 20 nm, the Ag and Cu grain size show varying degrees of
increase. The grain size of the Ag layer was fairly large due to the agglomeration of the
Ag atoms, whereas the Cu layer inserted in the ICuI films had very fine grain. Here, it is
also worth mentioning the grain size effect for both the electrical and optical properties
of the films: higher values of grain size imply reduced scattering at grain borders, and
consequently, increased electrical conductivity of the film and higher light transparency.
Hence, a better performance of IAgI films is expected with the larger grain size.

It should be noted that, in other studies of IAgI or ICuI films deposited by magnetron
sputtering on polymer or glass substrates at room temperature, they rarely showed any
strong diffraction peaks in the XRD patterns [29,52,53]. That was mainly due to the low
substrate temperature, the low kinetic energy of the sputtered atoms and too-thin a metal
interlayer in IMI films to form the crystalline phase. The poor crystalline film could be
highly defective with more grains at the boundaries, resulting in a serious hindrance to
carrier transport, thereby leading to a higher film resistivity. In this study, the HiPIMS
process provided high plasma density and more activated ions to make it more effective
in the crystallization of ITO and metal films. This superiority of HiPIMS is more obvious
when depositing ultra-thin films, as in the samples in this study.
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no obvious difference in the surface morphology, except flatter and smoother, as seen in 
Figure 2d, due to the longer deposition time. 
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Table 1. The Ag (111) and Cu (200) crystallite sizes with different metal interlayer thicknesses on the
PEN substrate (nm).

Sample
Thickness

5 nm 10 nm 15 nm 20 nm

Ag 4 6 7 8
Cu 1 1 1 2

FESEM views of 5 and 10 nm Ag and Cu films on the bottom ITO deposited on the
PEN substrate are shown in Figure 2, respectively. In the case of 5 nm Ag thickness, Ag
islands were observed (Figure 2a). These Ag islands scattered the incident light, most
likely leading to a low transmittance. Additionally, the discontinuous Ag film could
hardly contribute to the conductivity of the sandwiched IAgI film. When the Ag thickness
increased to 10 nm, a continuous Ag film formed and almost completely covered the
bottom ITO layer, as shown in Figure 2b. The coalesced Ag islands could suppress the
light reflections and scatterings and remarkably decrease the sheet resistance, resulting in
high conductivity and transmittance of the films. For the Cu film grown on the bottom
ITO layer, the continuous film with very small Cu particles formed with 5 nm Cu film
thickness, as shown in Figure 2c. With the increase of the Cu layer thickness to 10 nm, there
is no obvious difference in the surface morphology, except flatter and smoother, as seen in
Figure 2d, due to the longer deposition time.

The surface roughness of a TCO film is important, as it affects the electro-optical
properties of the films. The atomic force microscopy (AFM) images in Figures 3 and 4 show
the surface roughness of IAgI and ICuI films deposited on the glass substrate, respectively.
The RMS values of the IAgI films were determined to be 0.93, 0.92, 0.95 and 0.95 nm, and
those of the ICuI films were 1.16, 1.08, 1.10 and 0.96 nm with the interlayer thicknesses of
5, 10, 15 and 20 nm, respectively. These films exhibited very smooth surfaces regardless
of the metal layer thickness, which is attributed to the advantages of the HiPIMS process,
mainly including average powder size and denser coating morphology. A smooth surface
improves the transmittance by reducing the diffused reflection of light, and also suppresses
the scattering of free carriers, leading to an increase in carrier mobility and thus a decrease
in electrical resistivity. These effects are notable, particularly in very thin films, like the
films in this study. The smooth surface can also be expected to form a continuous metal
interlayer in this sandwich structure.
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Following a peak fitting procedure, Ag 3d and Cu 2p XPS spectra of IAgI and ICuI
films on PEN substrate with an Ag/Cu thickness of 10 nm were gathered (Figure 5).
Two spin–orbit pairs of components are individuated in Figure 5a. The main Ag 3d5/2
component is centered at binding energy (BE) 368.4 eV, corresponding to metallic silver
atoms [54,55]. The second spin–orbit pair of low intensity at a higher BE value (Ag 3d5/2
at 368.4 eV) results from the oxidized Ag [56]. The Cu 2p spectrum (Figure 5b) identified
two spin–orbit pairs as well. The pure Cu 2p core reached 932.0 eV (Cu2p3/2) and 951.8 eV
(Cu2p1/2). The peak at 932 eV could also indicate the possibility of the presence of CuO
(Cu2O). As the peak area is proportional to the intensity of the associated component, the
intensity ratios of metallic atoms to oxidized parts were determined as 0.90:0.10 for IAgI
films and 0.91:0.09 for ICuI films. The XPS spectra indicate that independent Ag and Cu
interlayers were deposited with small extents of oxidation.
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3.2. Opto-Electrical Properties of the Sandwiched TCO Films

Figure 6 displays the transmittance spectra of IAgI and ICuI sandwich films with the
various thicknesses of the interlayer of Ag and Cu on the PEN substrate. The 80 nm ITO
films without the metal interlayer show an optical transmittance of 72.32% at a wavelength
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of 550 nm. The transmittance of the IAgI and ICuI films varies with the thicknesses of
the Ag and Cu layers. For the IAgI films in Figure 6a, with the Ag thickness of 5 nm, the
transmittance of 83.25% was observed at a wavelength of 550 nm. The increase of the Ag
thickness to 10 nm led to a transmittance improvement to 96.61% due to the transformation
of the morphology of the Ag film from discontinuous to continuous, as shown in Figure 2,
which has lower adsorption. With further increases of the Ag thickness to 15 and 20 nm,
the transmittance decreased gradually. For the ICuI sandwich films, a monotonic slight
decrease of the optical transmittance in the visible region was observed with the increase of
the thickness of the Cu interlayer from 5 to 20 nm, as displayed in Figure 6b. The highest
transmittance of 80.16% was observed at a Cu thickness of 5 nm. The decrease of the optical
transmittance of the IMI films with the increase of the metal interlayer thickness was due
to the increase of the free carrier concentration (absorption) and the reflection from the
thicker metal layer. The higher optical transmittance of IAgI than ICuI sandwich film in
the 400–800 nm wavelength range can be attributed to the more effective surface plasmon
resonance of the Ag layer than that of the Cu layer [57,58]. Figure 6 also shows that the
80 nm ITO films had a stable transmittance, whereas the transmittance of IAgI and ICuI
films varied with the different wavelength regions. This phenomenon is caused by the
plasma resonance frequency effect of the metal interlayer [59]. It should be noted that the
IAgI and ICuI films in this research showed amazingly high transmittance. Especially
for IAgI films, the transmittance values at 550 nm wavelength were even higher than
those of 80 nm ITO film, regardless of the Ag layer thickness. The higher transmittance
of the IMI layers than that of the ITO monolayer resulted from the index-matching of the
metal–oxide–metal structure [60,61]. Above all, the excellent optical properties of the IAgI
and ICuI benefit from the high quality of the films with good crystallinity and smooth
surfaces, as analyzed above.
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Table 2 shows the electrical properties, including the carrier density, carrier mobility,
electrical resistivity and sheet resistance of the IAgI and ICuI sandwich films on the
PEN substrate. The carrier concentration increased from 1.29 to 2.41 × 1022/cm3 for
IAgI films with an increase of the Ag layer thickness from 5 to 20 nm; and from 1.39 to
11.59 × 1022/cm3 for ICuI films with an increase of the Cu layer thickness from 5 to 15 nm.
The decrease of carrier concentration for the 20 nm thick Cu layer may be attributed to the
high diffusion coefficient of Cu films and the Cu substitution at the In sites of the ITO films,
which may have reduced electrons in the ITO matrix [62]. The carrier concentration strongly
influences both the optical transmittance and the sheet resistance. A high concentration
of free charge carriers could absorb the photons and decrease the optical transmittance,
especially at the longer wavelength. High carrier density also decreases the resistivity of
the film. As a result, the sheet resistance and resistivity of the hybrid films decreased with
the increasing of the metal interlayer. High conductivity was obtained with the thickest
metal interlayer as 4.06 Ω/sq for IAgI films and 4.58 Ω/sq for ICuI films. The improvement
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of the conductivity of the films with an increase of metal thickness can be explained by
Equation (2) following the parallel circuit model.

1
RT

=
1

RITO,bottom
+

1
RM

+
1

RITO,top
=

2
RITO

+
1

RM
≈ 1

RM
=

dM
ρM

(2)

where RT is the total resistance of the film; RITO,bottom and RITO,top are the resistances of the
bottom and top ITO layer; and RM, dM and ρM are the resistance, thickness and resistivity
of the metal interlayer, respectively. Given the high resistivity of the ITO layer, the RT could
approximately equal the ratio of the resistivity and the thickness of the metal interlayer. In
other words, the electrical properties of the IMI films are mainly decided by the inserted
metal layer. Although the resistivities of bulk Ag (1.587 × 10−6 Ω/cm at 293 K) and bulk
Cu (1.678 × 10−6 Ω/cm at 293 K) are similar, the resistance of the ICuI film is higher. It can
be explained by the smaller carrier mobility values of ICuI films, which validates the grain
size effect introduced in Table 1: smaller grain size causes the severer scattering caused by
grain boundaries and accordingly decreases the carrier mobility.

Table 2. Electrical properties of ITO/Ag/ITO and ITO/Cu/ITO films on PEN substrate as functions of the Ag and Cu
interlayer thickness on the PEN substrate.

Property ITO/Ag/ITO ITO/Cu/ITO

Metal layer thickness (nm) 5 10 15 20 5 10 15 20

Concentration (×1022/cm3) 1.29 1.77 2.36 2.41 1.39 2.87 11.59 9.39

Mobility (cm2/Vs) 0.98 5.39 5.27 6.38 2.25 2.31 0.62 1.45

Resistivity (×10−5 Ω/cm) 48.85 6.58 5.03 4.06 19.96 9.39 8.65 4.58

Sheet resistance (Ω/sq) 57.47 7.29 5.29 4.06 23.48 10.43 9.11 4.58

In TCO applications, optical and electric characteristics play key roles. The figure of
merit (ΦTC), which represents the relationship between the optical transmittance and the
sheet resistance, is an important factor to evaluate the performance of TCO films. Figure 7
shows the optical transmittance (@ 550 nm) and the ΦTC of the IAgI (a) and ICuI (b) films
as functions of the thicknesses of Ag and Cu on PEN substrates, respectively. The ΦTC is
calculated using the Haacke equation, which is defined as:

ΦTC = T10/Rsh (3)

where Rsh is the sheet resistance and T is the optical transmittance (here, at 550 nm). The
ΦTC values of IAgI films are shown in Figure 7a. The maximum ΦTC value was obtained at
about 10 nm Ag thickness as 101.16 × 10−3 Ω−1. The lowest ΦTC at 5 nm Ag thickness was
due to the high sheet resistance, resulting from the high open ratio of the discontinuous
Ag layer [16]. The decreased ΦTC value with Ag thickness above 10 nm is attributable to
the decreased optical transmittance by the increase of the Ag metal layer. For the ICuI
films, Figure 7b shows ΦTC with the values in a small range from 3.68 to 4.83 × 10−3 Ω−1

with the range of Cu thickness from 5 to 20 nm. The resemblance to the morphology and
crystallinity of the Cu interlayer caused the similarity of the ΦTC value. The highest ΦTC
(4.83 × 10−3 Ω−1) was obtained using a 10 nm Cu film on the PEN substrate.

Table 3 lists results in this study and previously published values of the figure of merit,
optical transmittance at 550 nm and sheet resistance of multilayer, transparent conductive
films deposited on flexible substrates mostly by sputtering. The ΦTC value obtained in
this work is much higher than previously reported values. It should be noted that in some
of those studies, extra works have been adopted to improve the opt-electrical properties
of the films, such as post-annealing and the use of buffer layer. The comparison of this
research and others proves the high reliability and superiority of HiPIMS for depositing
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transparent conductive materials on polymer substrates under room temperature for
flexible applications.
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Table 3. Largest ΦTC, minimum sheet resistance (Rs) and maximum optical transmittance of sandwich transparent
conductive films deposited with various methods reported in this study and other literature.

ΦTC (10−3 Ω−1) Rs (Ω/sq) Transmittance (%; at 550 nm) Structure Deposition Method Reference

101.16 7.29 97 ITO/Ag (10 nm)/ITO/PEN HiPIMS This work
4.83 10.43 74 ITO/Cu(10 nm)/ITO/PEN HiPIMS This work
6.66 8.93 82.4 ITO/Ag/ITO/PET RTR sputter [63]
64.57 6.4 91.4 ITO/Ag/ITO/CPI Sputter + anneal [33]

24 6.7 83.2 ITO/Ag/ITO/PET Sputter [64]
36.6 6.12 86.1 MTO/Ag/MTO/PET Sputter [53]
14 9.2 84 AGZO/Ag/AGZO/PET RTR sputter [65]

4.12 11.8 73.9 ITO/Cu/ITO/PET RTR sputter [66]
0.52 36 67 ITO/Cu/ITO/PC Sputter [29]
0.094 143 65 SiO2/ITO/Cu/ITO/PET Sputter + buffer layer [67]

Note: RTR: Roll to Roll.

4. Conclusions

In this study, HiPIMS was used to deposit ITO/Ag/ITO, ITO/Cu/ITO sandwich films
with various metal interlayer thicknesses on PEN polymer substrate at room temperature
as flexible transparent conductive materials. This is the first time the HiPIMS process
has been used in the fabrication of multilayer TCO films. The high power density and
highly ionized plasma in the HiPIMS process lead to improved film qualities, such as good
crystallinity, smooth surfaces and few defects. Therefore, the enhanced electrical and optical
performances of the films were obtained with high transmittance (IAgI: 97%; ICuI: 74%
at 550 nm) and low resistivity (IAgI: 7.29 Ω/sq; ICuI: 10.43 Ω/sq). IAgI film has a better
performance with higher transmittance and lower resistivity due to the more effective
surface plasmon resonance of the Ag layer than that of the Cu layer. The photoelectric
properties of these sandwich structure films were optimized by adjusting the thicknesses
of the Ag and Cu interlayers. The optimum samples according to the figure of merit were
obtained as IAgI film (ΦTC = 101.16 × 10−3 Ω−1) and ICuI film (ΦTC = 4.83 × 10−3 Ω−1)
with 10 nm Ag and Cu layers, respectively. These results are superior to those sandwich
films deposited by sputtering under room temperature. By combing the options for
large-scale industrial production methods for the thin films, HiPIMs was proven as a
promising method to deposit TCO films on polymer substrates for applications of flexible
optoelectronic devices.
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