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Abstract: The objective of this study is to explore the flow features and heat transfer properties
of an MHD hybrid nanofluid between two parallel plates under the effects of joule heating and
heat absorption/generation (MHD-HFRHT) by utilizing the computational strength of Levenberg–
Marquardt Supervised Neural Networks (LM-SNNs). Similarity equations are utilized to reduce the
governing PDEs into non-linear ODEs. A reference solution in the form of data sets for MHD-HFRHT
flow is obtained by creating different scenarios by varying involved governing parameters such as
the Hartman number, rotation parameter, Reynolds number, velocity slip parameter, thermal slip
parameter and Prandtl number. These reference data sets for all scenarios are placed for training,
validation and testing through LM-SNNs and the obtained results are then compared with reference
output to validate the accuracy of the proposed solution methodology. AI-based computational
strength with the applicability of LM-SNNs provides an accurate and reliable source for the anal-
ysis of the presented fluid-flow system, which has been tested and incorporated for the first time.
The stability, performance and convergence of the proposed solution methodology are validated
through the numerical and graphical results presented, based on mean square error, error histogram,
regression plots and an error-correlation measurement. MSE values of up to the accuracy level of
1 × 10−11 established the worth and reliability of the computational technique. Due to an increase
in the Hartmann number, a resistance was observed, resulting in a reduction in the velocity profile.
This occurs as the Hartmann number measures the relative implication of drag force that derives
from magnetic induction of the velocity of the fluid flow system. However, the Reynolds number
accelerates in the velocity profile due to the dominating impact of inertial force.

Keywords: Levenberg-Marquardt; supervised neural networks; hybrid nanofluid; thermal slip; mean
square error; error correlation measure
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1. Introduction

Nowadays, the rapid developments in the field of science and technology demands
for more compact and smart devices in terms of better performance, long life and precise
operation. For this purpose, many efforts have been made in recent decades to improve
the rate of heat transfer of various fluids to achieve better thermal and physical properties.
Conventional ways of improving the heat transfer rate through a proper variation of the
velocity field without consuming energy have gained much attention. Thermal conductivity
plays an important and vital role among all other properties in judging the heat transfer
abilities of the fluid. Ultimately, the improvement of the heat-transfer rate in a fluid
by improving the thermos physical properties with the addition of nanoparticles was
an innovative work. Many efforts have been made to enhance the thermal abilities of
conventional fluids with the addition of metallic and non-metallic nano-particles of sizes
less than 100 nm. The field of heat transfer was revolutionized by Choi [1] in 1995, when
he introduced a new class of fluid known as “nanofluid”, with excellent thermal transport
properties as compared to conventional fluids. King et al. [2] verified and validated the
theoretical results of Choi. Afterward, Lee et al. [3] experimentally calculated the rate of
heat transfer for nanofluids consisting of Cu and Al2O3nanoparticles. Even though, these
nanofluidic system fulfill many of the industrial and engineering requirements, researchers
are still in search of more efficient nanofluidic systems.

In the recent years, many studies have been carried out using next generation hybrid
or mixed nanofluid, which are prepared by dispersing two or more types of nanoparticles
in a base fluid. The basic purpose of the hybrid nanofluid is to enhance the heat transfer
properties as compared to based fluid, due to the synergetic effects of various kinds of
nanomaterials. Due to their marvelous heat transfer abilities, hybrid nanofluids have
an extensive application range in industrial, engineering and medical fields such as in
a HVAC system, micro channel heat sink (MCHS), solar heating systems, transformer
cooling, electronic cooling, biomedical and food processing [4]. In recent years, many
researchers have explored the flow behavior of hybrid nanofluid in various geometries
and compared the performance along with heat transfer ability of hybrid nanofluid with
conventional base fluids [5–8].

Shoaib et al. [9] investigated the flow properties and heat transfer effects in 3D MHD
flow of a water-based hybrid nanofluid over an extendable sheet under the influence of
thermal radiation. Furthermore, the behavior of velocity and the temperature field were
also examined against various physical constraints. Rajesh et al. [10] numerically compared
the results of heat and mass transfer for CuO-Ag/H2O (Hybrid nanofluid) and CuO/H2O
(nanofluid) over a vibrating cylindrical chamber. Devi et al. [11] discussed the boost in the
rate of transfer rate by using the hybrid nanofluid in a three dimensional stretchable surface
with MHD and Newton heating effects. Nagoor et al. [12] used a bvp4c solution technique
to investigate the flow of hybrid nanofluid in a revolving frame under thermal radiation
effects. Alempour et al. [13] studied the flow inside a 3-D elliptical tube with circular
cross section. The results obtained revealed an increment in heat transfer and increased
of friction has been observed by transforming the cross section of tube from a circular to
elliptical shape. Ouyang et al. [14] examined the influence of different constraints on the
flow of 3D hybrid nanofluid over a rotating disk with uniform magnetic field.

Waini et al. [15] used a bvp4c solver to numerically study the transpiration effects
over the flow and rate of heat transfer over a stretchable sheet inside a uniform flow of
hybrid nanofluid. Afridi et al. [16] performed a comparative numerical analysis of entropy
generation between ordinary nanofluid and hybrid nanofluid. A reduction in entropy
generation was observed with an increase in the velocity of a fluid. Furthermore, the
influence of various physical constraints over velocity, temperature and entropy generation
has been studied. Shafiq et al. [17] utilized response surface methodology (RSM) to study
the thermo-bio-convective flow over a stretching/shrinking surface with the effects of
Brownian motion and thermophoresis. Nadeem et al. [18] numerically evaluated the heat
transfer rate in the flow of a hybrid nanofluid over a stretching and porous surface as
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compared to ordinary nanofluid. Anuar et al. [19] presented a stability analysis for the flow
of a hybrid nanofluid with injection/suction and thermal radiation effects over a rotating
stretchable sheet. Sreedevi et al. [20] analyzed the heat and mass transfer in MHD flow
of MWCNT-Ag/H2O hybrid nanofluid with suction, chemical reaction, slip and thermal
radiation effects. Venkateswarlu et al. [21] discussed the impact of variable viscosity along
with viscous dissipation on the flow of Cu-Al2O3/H2O hybrid fluid with radiative heating.
Ahmed et al. [22] and Kandasamy et al. [23] investigated the effects of the shape factor of
nanoparticles on time-dependent MHD squeezed flow between two parallel plates while
considering the phenomenon of viscous dissipation. The influence of several physical
parameters on the velocity and temperature field has also been analyzed numerically.
Shoaib et al. [24] compared the behavior of different physical constraint on mass as well as
heat transfer for a three dimensional flow of hybrid nanofluid over a revolving plane under
thermal radiation and viscous dissipation effects. Xiang and Mujumdar [25] examined the
suspensions of nanometer-sized particles in based fluids under the impacts of connective
thermal energy system.

Non-Newtonian fluids are those fluids for which the proper relationship between
stress and strain rate is disrupted. Non-Newtonian fluids are used in the lubricants,
detergents, paints, plastic and nylons industries. Stress inside the viscoelastic fluid is
not instantly eliminated through the removal of applied stress due to the intermolecular
structure. This unique property of non-Newtonian fluid is termed as the memory effect.
The non-Newtonian fluid model provided by Reiner [26] and Rivlin [27] presented a non-
Newtonian fluid model to predict flow behaviors of various biological products as well
as many food products and polymers. The authors discussed that nanofluids, involving
suspended particles, help in the modifications of the transport properties. Moreover, a
theoretical as well as numerical study of a variety of applications and thermal properties of
nanofluid are provided in detail. Elahi et al. [28,29] studied the nanofluid-flow dynamics
in the presence of hafnium particles past slippery wall. Moreover, the authors analyzed
the impacts of heat transfer and magneto hydrodynamics during the entropy generation
system. Almarit et al. [30] investigated the impacts of MHD and mass transfer using the
Cattaneo-Christove heat flux system.

Many of the researchers used traditional deterministic techniques to solve various
fluid dynamics problems including Joule heating, entropy generation, nanofluid and
viscous dissipation [31–34], Molecular Sensitivity of Near-Field Vibrational Infrared Imag-
ing [35], Capillary driven flow in nanochannels [36], application of MnO2-Fe3O4/CuO
hybrid catalysts [37] and Molecule-Plasmon Excitation Coupling [38], and the solution
of such problems through modern stochastic solution methods based on the artificial
intelligence algorithm is innovative. Stochastic solution techniques based on artificial intel-
ligence (AI) algorithms are better and efficient alternatives for various linear and non-linear
mathematical models representing a variety of fluidic problems [39–44]. These solution
techniques are designed based on a modern computational paradigm to tackle the system
of highly nonlinear ODEs representing the mathematical models of such fluid problems.
Researchers have employed modern stochastic methodologies in connection with super-
vised/unsupervised neural networks to solve the different mathematical models in the
field of environmental system [45], the rainfall prediction model [46], model for piezo stage
actuator [47], mosquito dispersal model [48], fluid dynamics [49,50], astrophysics, energy,
and COVID-19 and HIV virus spread models [51–54].

The aim of this study is to explore the characteristics of flow as well as heat-transfer
abilities in an MHD hybrid nanofluid flow due to rotating disk with heat generation/absorption,
velocity and thermal slip effects (MHD-HFRHT) by exploiting the Levenberg–Marquardt-
based supervised neural networks (LM-SNNs). The basic features of the proposed LM-
SNNs for MHD-HFRHT are as follows:

• An innovative solution scheme based on a two-layer arrangement of LM-SNNs is
proposed for the solution of MHD-HFRHT flow model in the form of non-linear ODEs.
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• The MHD-HFRHT flow problem is numerically solved by using “NDSolve” methodol-
ogy in the Mathematica software. Reference solution in the form of data sets is placed
for LM-SNNs for training, validation and the testing of these data sets.

• Comparison of reference solution with proposed LM-SNNs based solution is authenti-
cated with numerical and graphical results of MSE, regression plots, error-correlation
and error histogram which confirm the stability, accuracy, and convergence of solution
methodology.

The remainder of the paper is organised as follows: Section 2 provides the mathemati-
cal modeling of the flow problem, Section 3 provides the solution methodology, Section 4
comprises the results and discussion and Section 5 provides the conclusion.

2. Mathematical Formulation of the Problem

Consider the flow of an incompressible and viscous hybrid nanofluid between two
parallel plates with stretchable lower plates and velocity and thermal slip effects at both
plates. The complete setup rotates around the y-axis with a uniform angular frequency Ω.
During the investigation process, the size of all nanoparticles are assumed to be uniform.
The nanofluid also considered to be electrically conductive and the induced magnetic
field is neglected due to the very small value of the Reynolds number. B0 is the uniform
magnetic field acting along the direction parallel to the y-axis (Figure 1). The temperature
of the system is influenced by Joule heating and heat generation/absorption effects.
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Therefore, keeping in view the above considerations, mathematical expressions repre-
senting flow model are [55,56]:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
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∂x

+ v
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− 2Ωw = νhn f

[
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∂2u
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Subject to the boundary conditions:
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When y = 0 Then u = ax + L0

(
∂u
∂y

)
, v = 0,w = L0

(
∂w
∂y

)
, T = TH + LT

(
∂T
∂y

)
,

When y = H Then = −L0

(
∂u
∂y

)
, v = 0, w = −L0

(
∂w
∂y

)
, T = T0 − LT

(
∂T
∂y

)
.

(6)

In above system of equations u, v and w are velocity components in the direction
parallel to the x, y and z axis respectively. L0 and LT denote the slip coefficients of velocity
and temperature respectively, and Ω represents angular frequency, Q is heat coefficient
and TH is temperature of fluid at height H. Radiation term in Equation (5) is calculated
using the following relationship:

qr = −
(

4σ∗

3k∗

)
∂T4

∂y

After expending T4 about T0 in above expression by using Taylor’s series, we get

T4 = −3T0
4 + 4T0

3T

The set of transformations mentioned below are employed to transform the system of
ODEs into non-linear set of PDEs.

u = ax f ′(η), v = −ahg(η), w = axg(η),
η = y

h , θ(η) = T−TH
TH−T0

.

}
(7)

Various Thermo-physical properties can be mathematically expressed as [57]:
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µ f
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2.5 , ρhn f = ρ f

[(
ρs1
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)
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,
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(
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σb f − σs2
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,
σb f
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σs1 + σf (s− 1)− φ1

(
σf − σs1

)
(s− 1)

σf (s− 1) + φ1

(
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)
+ σs1

The hybrid nanofluid is made up of two types of nanoparticles. φ1 and φ2 represent
the solid-volume fraction of nanoparticles Cu and Al2O3 respectively, whereas φhn f is
the net solid volume concentration of the hybrid nanoparticles which can be calculated
as φ1 + φ2. Density of base fluid, density of Cu nanoparticle and density of Al2O3 are
represented by ρ f , ρs1, ρs2, respectively. The specific heat and thermal conductivity of
Cu nanoparticle, Al2O3 nanoparticle, base fluid and hybrid nanofluid are denoted by
ks1, ks2, k f , khn f , (cp)s1, (cp)s2, (cp) f , and (cp)hn f respectively. Table 1 presents the nu-
merical values for various thermophysical properties against base fluid and nanoparticles
whereas Figure 2 shows the various shapes and values shape factor of nanoparticles.
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Table 1. Thermophysical properties of base fluid and nanoparticles [58,59].

Material

Thermophysical Properties

Density
(Kg/m3)

Thermal
Conductivity
(W m−1K−1)

Electrical
Conductivity

(s/m)

Specific Heat
(J Kg−1K−1)

Water (H2O) 997 0.613 5.5 × 10−6 4179

Cu Nanoparticles 8933 400 3.5 × 107 385

Al2O3 Nanoparticles 3970 40 5.96 × 107 765
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𝑘𝑘𝑓𝑓
𝑘𝑘ℎ𝑛𝑛𝑛𝑛

�
3

3 + 4𝑅𝑅𝑅𝑅
� [𝐴𝐴3𝑅𝑅𝑅𝑅𝑅𝑅𝜃𝜃′ + 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻(𝑓𝑓′2 + 𝑔𝑔2) + 𝑅𝑅𝑅𝑅𝑄𝑄∗𝜃𝜃′] = 0, (11) 

Here,  

𝐴𝐴1 = [(1 − 𝜙𝜙1)(1 − 𝜙𝜙2)]5 2� ,𝐴𝐴2 = [1 − 𝜙𝜙2] �(1 − 𝜙𝜙1) + �
𝜌𝜌𝑠𝑠1
𝜌𝜌𝑓𝑓
�𝜙𝜙1� + �

𝜌𝜌𝑠𝑠2
𝜌𝜌𝑓𝑓
�  𝜙𝜙2,

𝐴𝐴3 = [1 − 𝜙𝜙2] �(1 − 𝜙𝜙1) + �
(𝜌𝜌𝑐𝑐𝑝𝑝)𝑠𝑠1
(𝜌𝜌𝑐𝑐𝑝𝑝)𝑓𝑓

�𝜙𝜙1� + �
(𝜌𝜌𝑐𝑐𝑝𝑝)𝑠𝑠2
(𝜌𝜌𝑐𝑐𝑝𝑝)𝑓𝑓

�𝜙𝜙2.
⎭
⎪
⎬

⎪
⎫

 (12) 

Corresponding BC’s are 

𝑓𝑓(𝜂𝜂) = 0, 𝑓𝑓′(𝜂𝜂) = 1 + 𝛼𝛼𝑓𝑓′′(𝜂𝜂),  g(η)=𝛼𝛼𝑔𝑔′(𝜂𝜂), 𝜃𝜃(𝜂𝜂) = 1 + 𝛽𝛽𝛽𝛽′(𝜂𝜂)     at 𝜂𝜂 = 0,
𝑓𝑓(𝜂𝜂) = 0, 𝑓𝑓′(𝜂𝜂) = −𝛼𝛼𝑓𝑓′′(𝜂𝜂),  g(η)=−𝛼𝛼𝛼𝛼′(𝜂𝜂), 𝜃𝜃(𝜂𝜂) = −𝛽𝛽𝛽𝛽′(𝜂𝜂)     at 𝜂𝜂 = 0

� (13) 

Non-dimensionalized parameters involved in above equations are: 

    𝛼𝛼 =
𝜆𝜆1
ℎ

, 𝛽𝛽 =
𝜆𝜆2
ℎ

, 𝐸𝐸𝐸𝐸 =
𝑎𝑎2𝑥𝑥2

�𝑐𝑐𝑝𝑝�𝑓𝑓(𝑇𝑇𝐻𝐻 − 𝑇𝑇0)
, Ha =

𝜎𝜎𝑓𝑓𝐵𝐵02

a𝜌𝜌𝑓𝑓
, 𝜔𝜔 =

Ωℎ2𝜌𝜌𝑓𝑓
𝜇𝜇𝑓𝑓

,

𝑃𝑃𝑃𝑃 =
𝜐𝜐𝑓𝑓(𝜌𝜌𝑐𝑐𝑝𝑝)𝑓𝑓

𝑘𝑘𝑓𝑓
,𝑅𝑅𝑅𝑅 =

4𝜎𝜎∗𝑇𝑇𝐻𝐻3

𝑘𝑘∗𝑘𝑘𝑓𝑓
,𝑅𝑅𝑅𝑅 =

𝑎𝑎ℎ2𝜌𝜌𝑓𝑓
𝜇𝜇𝑓𝑓

,   𝑄𝑄∗ =
𝑄𝑄0

𝑎𝑎(𝜌𝜌𝑐𝑐𝑝𝑝)𝑓𝑓
. 

(14) 

Figure 2. Shape factors of Nano particles.

Coefficients of skin friction and heat transfer can be expressed mathematically as [11]:

C f =
µhn f
ρ f v0

2

(
∂u
∂y

)
y=0

, Cg =
µhn f
ρ f v0

2

(
∂v
∂y

)
y=0

,

Nu = −h
k f (Tf−T∞)

(
khn f +

16σ∗TH
3

3k∗

)(
∂T
∂y

)
y=0

,
(8)

Equations (2)–(5) are reduced as

f iv − A1 A2
[
Re
(

f f ′′′ − f ′ f ′′
)
− 2ωg′ − Ha f ′′

]
= 0, (9)

g′′ + A1 A2
[
Re
(

f g′ − f ′g
)
+ 2ω f ′ − Hag

]
= 0, (10)

θ′′ + Pr
k f

khn f

(
3

3 + 4Rd

)[
A3Re f θ′ + HaEc

(
f ′2 + g2

)
+ ReQ∗θ′

]
= 0, (11)

Here,

A1 = [(1− φ1)(1− φ2)]
5
2 , A2 = [1− φ2]

[
(1− φ1) +

(
ρs1
ρ f

)
φ1

]
+
(

ρs2
ρ f

)
φ2,

A3 = [1− φ2]

[
(1− φ1) +

(
(ρcp)s1
(ρcp) f

)
φ1

]
+

(
(ρcp)s2
(ρcp) f

)
φ2.

 (12)

Corresponding BC’s are

f (η) = 0, f ′(η) = 1 + α f ′′ (η), g(η) =αg′(η), θ(η) = 1 + βθ′(η) at η = 0,
f (η) = 0, f ′(η) = −α f ′′ (η), g(η) =− αg′(η), θ(η) = −βθ′(η) at η = 0

}
(13)

Non-dimensionalized parameters involved in above equations are:

α = λ1
h , β = λ2

h , Ec = a2x2

(cp) f (TH−T0)
, Ha =

σf B2
0

aρ f
, ω =

Ωh2ρ f
µ f

,

Pr =
υ f (ρcp) f

k f
, Rd = 4σ∗TH

3

k∗k f
, Re =

ah2ρ f
µ f

, Q∗ = Q0
a(ρcp) f

.
(14)

Here Ha represent the Hartman number or Magnetic parameter, Re is the Reynolds
number, Ec is the Eckert number, ω is the rotation parameter, Rd is the radiation parameter,
Q∗ is heat generation/absorption coefficient, Pr is the Prandtl number, α is the velocity slip
parameter and β is the thermal slip parameter.
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Coefficients of skin friction and Nusselt number in non-dimensionalized form are:

C f Rex
1
2 = 1

(1−φ1)
5
2 (1−φ2)

5
2

f ′′ (0),

CgRey
1
2 = 1

(1−φ1)
5
2 (1−φ2)

5
2

g′(0)

NuRex
−1
2 =

( khn f
k f

+ 4Rd
3

)
θ′(0).

(15)

3. Solution Methodology

An optimization-based mathematical process generates nonlinear mapping between
the input and output layers that intends to convert the human brain into the information
acquisition setup, which is known as “Supervised Neural Networks (SNNs)” [60–62].
Complete systematic process of the SNNs has been portrayed in Figure 3. The artificial
neurons, as a basic component of this network, have the task to obtain the information in
terms of input variables and transfer this to the output layers. A nonlinear autoregressive
(NAR) network, based on sigmoid function [63], is an effective approach based on SNNs for
the prediction and estimation of unknown values for a time series by using the re-feeding
mechanism for a defined data set, in which the estimated value may again be used as
an input for further prediction of new values. Figure 4 expresses an NAR-based neural
network model [64] that contains three different layers, consisting of the input, hidden and
output layers with a couple of delay steps, which are used for the estimation of a nonlinear
time series, which can be written as [65]:

y(t) = h(y(t− 1), y(t− 2), y(t− 3), . . . , y(t− d)) + ε(t) (16)

The above expression describes how an NAR based neural network is used to predict
or estimate an unknown value at any time “t” based on its previous values with “d” as the
time delay parameter. The function h(∗) in Equation (16) is estimated by the proper training
of the network through a given input and adjusting the number of neurons. Whereas ε(t)
represent the cumulative error of the whole series y(t).

Hidden layers and the number of neurons are adjusted by keeping in mind the
complexity of the model and the desired accuracy of results. A greater number of neurons
generates more accurate results but, at the same time, enhances the complexity of the
system. On the other side, with less neurons, the computational capabilities of the neural
network might be compromised. The most commonly used neural network is based on
the backward feeding Levenberg-Marquardt method [66,67]. The basic structure of such a
network, with the input and output hidden layers is shown in Figure 5.

The mean square error (MSE) is a valuable tool to illustrate the validity, reliability and
accuracy of the computations. Mathematically, the MSE can be expressed as

MSE =
n

∑
i=1

(yi − yi)
2

n
(17)

Here, yi represents the value of ith reference data point, yi is the value of the ith point
obtained with the operation of neural network and the total number of data set points are
represented by n.
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4. Results and Discussion

A set of transmuted ODEs (Equations (9)–(11)), expressing the flow model of the MHD-
HFRHT problem, is solved in two phases. In the first phase, the said problem is solved by
utilizing the “ND Solve” solution methodology in Mathematica software. The solution of
the MHD-HFRHT problem, containing the numerical values of f ′(η), g(η) and θ(η) of six
scenarios, has four cases according to the variation of parameters as mentioned in Table 2
for each scenario. A total of 500 data set points are formulated for each of the variables
f ′(η), g(η) and θ(η) between a defined domain from 0 to 1 by maintaining the value of
step size of 0.005.

Table 2. Variation of parameters for MHD-HFRHT flow.

Scen. Case Study 1 Case Study 2 Case Study 3 Case Study 4

1 Ha = 1.0 Ha = 1.3 Ha = 1.7 Ha = 2.0

2 α = 0.6 α = 0.8 α = 1.0 α = 1.2

3 β = 0.6 β = 0.8 β = 1.0 β = 1.2

4 ω = 0.2 ω = 0.4 ω = 0.6 ω = 0.8

5 Re = 1.0 Re = 2.0 Re = 3.0 Re = 4.0

6 Pr = 6.0 Pr = 6.3 Pr = 6.7 Pr = 7.0

In the second phase, these data sets are brought to MATLAB for the implementation
of the proposed LM-SNNs. Out of all the imported data set points, 90% are chosen for
training purpose in the network, whereas the remaining 5% of data points are subjected for
the validation and testing processes of the network. An appropriate number of neurons are
selected according to the complexity of the problem and required accuracy of the results.
All computational results comprised of MSE, gradients, Mu and error plots showing the
validity and performance of proposed LM-SNNs are presented graphically in Figures 6–9
and numerically in Table 3.
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Mu, Grad and Validation; (c) Regression Plots; (d) Plot for Error Auto Correlation; (e) Time Fitness Plot; (f) Error Histogram.
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Table 3. Numerical values of all parameters of LM-SNNs methodology.

Scen. Cases Neurons
MSE

Gradient Mu Epochs Computation
Time (s)Training Testing Validation

1
(Ha)

I 70 1.210 × 10−10 6.056 × 10−10 1.384 × 10−10 9.745 × 10−8 1 × 10−8 117 11

II 70 1.054 × 10−10 1.520 × 10−10 1.255 × 10−10 9.833 × 10−8 1 × 10−9 72 09

III 80 1.170 × 10−10 2.340 × 10−10 1.427 × 10−10 9.830 × 10−8 1 × 10−9 125 11

IV 70 7.816 × 10−10 1.284 × 10−9 9.305 × 10−10 9.765 × 10−8 1 × 10−8 127 13

2
(α)

I 70 6.129 × 10−11 9.158 × 10−10 7.982 × 10−11 9.850 × 10−8 1 × 10−8 131 14

II 70 9.734 × 10−11 1.174 × 10−10 1.108 × 10−10 9.804 × 10−8 1 × 10−8 90 08

III 70 1.074 × 10−11 1.335 × 10−10 1.300 × 10−10 9.778 × 10−8 1 × 10−8 122 14

IV 70 9.275 × 10−11 2.112 × 10−10 1.137 × 10−10 9.961 × 10−8 1 × 10−8 85 08

3
(β)

I 70 1.700 × 10−10 1.438 × 10−10 2.598 × 10−10 9.673 × 10−8 1 × 10−9 77 08

II 80 9.865 × 10−11 9.929 × 10−10 7.447 × 10−10 9.972 × 10−8 1 × 10−8 105 10

III 80 1.221 × 10−10 1.410 × 10−10 1.532 × 10−10 9.850 × 10−8 1 × 10−9 97 09

IV 80 9.865 × 10−11 1.314 × 10−10 1.251 × 10−10 9.686 × 10−8 1 × 10−9 48 06

4
(ω)

I 70 7.490 × 10−11 2.124 × 10−10 1.030 × 10−10 9.825 × 10−8 1 × 10−9 168 16

II 70 1.607× 10−10 3.154 × 10−10 2.905 × 10−10 9.897 × 10−8 1 × 10−9 94 09

III 80 4.030 × 10−11 4.620 × 10−11 5.413 × 10−11 9.980 × 10−8 1 × 10−9 191 18

IV 70 6.417 × 10−11 6.722 × 10−11 5.568 × 10−11 9.976 × 10−8 1 × 10−9 115 11

5
(Re)

I 70 8.406 × 10−11 8.462 × 10−11 1.034 × 10−10 9.920 × 10−8 1 × 10−9 84 08

II 80 1.204 × 10−10 2.416 × 10−10 1.474 × 10−10 9.906 × 10−8 1 × 10−9 195 18

III 70 1.012 × 10−10 1.187 × 10−10 1.095 × 10−10 9.930 × 10−8 1 × 10−9 115 11

IV 70 4.521 × 10−10 5.461 × 10−10 6.011 × 10−10 9.899 × 10−8 1 × 10−8 163 15

6
(Pr)

I 70 3.614 × 10−10 8.054 × 10−10 4.766 × 10−10 9.955 × 10−8 1 × 10−8 191 18

II 70 1.057 × 10−10 1.075 × 10−10 1.298 × 10−10 9.998 × 10−8 1 × 10−9 164 15

III 80 7.955 × 10−10 9.290 × 10−10 9.197 × 10−10 9.943 × 10−8 1 × 10−8 130 14

IV 80 1.145 × 10−10 1.248 × 10−10 2.319 × 10−10 9.851 × 10−8 1 × 10−9 198 19

Figure 6a demonstrates the performance of the network by displaying the Mean
square error (MSE) for training, validation and testing for scenario-1 (Variation of Hartman
number “Ha”). Mean square error (MSE) of any solution technique estimates the average
of the square of errors (difference between target and predicted values) divided by the
total number of data points. Smaller values of MSE for any computation technique depicts
better accuracy, good performance and the stability of the solution. Figure 6b presents
the plots of gradient, Mu and validation checks for each case in scenario-1 (Variation of
Hartman number “Ha”). The gradient is some kind of vector with a specific magnitude
and direction that is computed during the training of that network. The gradient vector is
utilized to update the proposed network in an accurate direction with an exact value. Mu is
a parameter that is used to control the applied algorithm in the training of the network.
The convergence of the solution is directly dependent on the value of Mu. Figure 6c
displays the regression plots for training, validation and testing of the network for scenario-
1 (Variation of Hartman number “Ha”). A regression is the statistical measure used to
verify the accuracy of the trained model by checking the closeness of predicted data points
with the regression line. The value of R very much close to 1 shows that the proposed
model prediction is very close to the actual values. If the value of R is 0, the proposed
model completely fails to estimate the actual/correct values. A regression value of equal
to 1 confirms a close relationship between the predicted and targeted values. Figure 6d
exhibits the plot of auto-correlation for scenario-1 (Variation of Hartman number “Ha”).
It can be seen that the maximum value lies above the confidence limit set by the network.
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Figure 6e shows the time series response for scenario-1, through the response of training,
validation and testing against their respective targeted values, whereas Figure 6f exhibits
the error histogram for the same scenario. The error histogram represents the distribution
of errors from the zero line. Each bar of the plot represents the number of values of datasets,
which lies in a specific bin. The maximum number of values lies close to the zero-line
error, which confirms the accuracy and stability of the method. Figure 7a–f demonstrates
performance plots, Grad plots, regression plots, error auto-correlation plots, time series
response and error histograms for the scenario 2 of the computations (Variation of α).
Additionally, the same set of plots for scenarios 3~6 are presented in the Appendix A in
Figures A1–A4, respectively.

A comparison of the proposed LM-SNNs based solution with the referenced numerical
solution for f ′(η) against variation of Ha and α are presented in Figure 8a,b. In the figures,
the impact of the Hartmann number on velocity is given, demonstrating the decrement of
velocity significantly due to an increase in the Hartmann number, while a very minimal
impact of the velocity slip parameter on the velocity profile is observed. This occurs as
the Hartmann number measures the relative significance of drag force that derives from
the magnetic induction of the velocity of the fluid flow system. Similarly, a comparison
of the proposed LM-SNNs based solution with reference numerical solution for g(η)
against variation of ω and Re are presented in Figure 8c,d. In these figures, it can be
seen that the vertical component of velocity is significantly enhanced due to the rotation
parameter, while the radiation parameter does not influence the vertical components
considerably. An identical comparison of the proposed solution with the referenced
numerical solution for θ(η) against ω and β is presented in Figure 8e,f. In these subfigures
thermal slip reduced the temperature profile, but the rotation parameter does not affect
the temperature profile significantly. The absolute error (AE) represents the uncertainty
in the measurement and calculated as the difference between the actual and calculated
value of a quantity. The absolute error is used to express the reliability of computation and
inconsistency in measurement. Figure 9a–f presents a comparison of the absolute error
(AE) for various scenarios.

5. Conclusions

In the present work, the MHD-HRHT model was solved and investigated by em-
ploying the computational strength of LM-SNNs. A conventional data set for velocity
and temperature variable has been generated, out of which 90%, 5% and 5% of the points
are used for training, validation and for testing the network, respectively. This reference
solution is then compared with the result of the proposed LM-SNNs solution. An MSE
of up to 1e-11 and excellent distribution of error validates the convergence, accuracy and
stability of the proposed LM-SNN Model. A variety of graphical and numerical outcomes,
which consist of MSE, error histograms, regression plots and time series responses are
presented. Some of the major findings of the research are as follows:

• By increasing the Hartmann number there more resistance to flow which results in the
reduction of velocity. This happens as the Hartmann number measures the relative
implication of drag force derived from the magnetic induction of the velocity of the
fluid flow system.

• Velocity of the fluid enhances with higher values of the Reynolds number due to the
strength of the inertial force. Moreover, the rotation parameter also accelerates the
velocity of the fluid-flow system.

• Temperature profile declines with an increase in the Hartmann number and thermal
slip parameter.

• With the larger values of Prandtl due to which momentum diffusivity dominates over
thermal diffusivity, are a result of the decrease in the temperature profile.

• Temperature profile decreases for high values of Eckert numbers, which is due to
dominating bulk transport of the fluid flow.
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In future studies, modern solution methodologies, based on artificial intelligence
and machine learning, will be established to investigate the fluid flow problem [68–76]
more efficiently.
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Nomenclature

Symbols
u, v, w Velocity components
k Thermal Conductivity
T Temperature
L0 Velocity slip coefficient
Re Reynolds Number
f, g Transformed components of velocity
CP Specific Heat
θ Transformed temperature
LT Thermal slip coefficient
Nu Prandtl Number

Subscripts
nf Nanofluid
hnf Hybrid nanofluid

Greek Letters
ρ Density
µ Viscosity
η Transformed coordinate
σ Electrical conductivity
φ Nano particle Volume fraction
α Transformed velocity slip parameter
β Transformed thermal slip parameter
ω Rotation parameter
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Abbreviations
MHD Magnetohydrodynamics
MSE Mean square error
PDEs Partial differential equations
CNTs Carbon nanotubes
ODEs Ordinary differential equations
AE Absolute error

HFRHT
Hybrid nanofluid flow due to rotating disk with heat absorption
and thermal slip effects

Appendix A

The outcomes of proposed computing solver LM-SNNs for scenario 3 to 8 of MHD-
HFRHT are provided in Figures A1–A4.
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Plots for Mu, Grad and Validation; (c): Regression Plots; (d): Plot for Error Auto Correlation; (e): Time Fitness Plot; (f): 
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(b): Plots for Mu, Grad and Validation; (c): Regression Plots; (d): Plot for Error Auto Correlation; (e): Time Fitness Plot;
(f): Error Histogram.
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