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Abstract: This study aimed to synthesize copper oxide (CuO) thin films using an eco-friendly green
synthetic approach. A sol-gel spin coating technique was employed for the synthesis of the CuO thin
film using Allium cepa as a reducing agent. The fabricated CuO thin film was investigated using the
Fourier Transform-Infrared (FTIR) spectroscopy, Ultraviolet-visible spectra studies (UV-Vis), energy-
dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD) analysis, scanning electron microscopy
(SEM), and the Four-Point Probe measurement. The SEM micrographs revealed that the particles
were spherically shaped, while the EDX analysis revealed that the CuO thin film was composed of
copper and oxygen elements. Furthermore, the XRD analysis confirmed the monoclinic crystalline
structure of the CuO thin film, while the FTIR spectroscopy investigated the chemical bonds formed
during the production process. Contrarily, the UV-Vis spectroscopy reported a strong absorption of
the film at the visible spectra with an estimated optical energy band gap of 1.48 eV. The electrical
analysis, however, disclosed that the synthesized thin film portrayed good semiconducting behaviors.

Keywords: CuO; thin film; spin coating; Allium cepa; biosynthesis

1. Introduction

Copper (Cu), being a 3d transition metal, possesses impressive physicochemical
qualities; however, due to its fundamental instability, copper thin films are liable to surface
oxidation when exposed to the surrounding atmosphere at room temperature. This thus
leads to the fabrication of copper oxides [1]. Copper oxides (Cu2O) have been researched
as semiconductors for multiple reasons, which include the natural abundance of starting
material copper; its simplicity of production by the oxidation of Cu; its non-hazardous
nature; and its remarkably excellent optical and electrical properties by Cu2O [2]. Copper
is composed of two popular oxides: tenorite (CuO) (cupric oxide) and cuprite (Cu2O)
(cuprous oxide). The tenorites and cuprites are p-type semiconductors that have narrow
bandgap energies of 1.21 to 1.51 eV and 2.10 to 2.60 eV distinctively [3,4]. Being a p-type
semiconductor, its conductivity rises as a result of holes existing in the valence, which is
attributable to either doping or annealing. CuO which is a semiconducting compound
located in group I-IV of the periodic table, has over the years been of much interest as a
result of the electrical and optical properties it possesses [2]. Additionally, its high optical
absorption rate [5,6], excellent electrical conductivity [7], non-toxic nature [8], production
efficiency, and more especially, its low cost of manufacturing have resulted in the material
drawing a lot of attention from industries. Furthermore, as a result of its powerful solar
absorbance and minimal thermal emittance [9], CuO has been acknowledged to be an
attractive solar absorber, while Cu2O is a very favorable option for solar cell applications
due to its suitability for photovoltaic energy conversion [10,11].

Due to the appealing nature of the physicochemical properties of transition metals
or nanostructured metal oxide materials, considerable efforts have been made regarding
the production of such metals and metal oxide nanoparticles with the preferred shapes
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and sizes [12,13]. Amidst the transition metal oxides, CuO is considered to be among the
best recognized p-type semiconductors which exist naturally. Moreover, besides nanostruc-
tured copper oxides being typically versatile, they also proffer ideal qualities in numerous
applications such as semiconducting sensors, solar cell fabrication, electrochemical devices,
high-critical-temperature superconductors, photovoltaic material, lithium-ion batteries,
catalysts, and field emission emitters [14–19]. The size together with the morphology
of nanostructured CuO materials significantly influences their electrochemical proper-
ties; hence, it is of high relevance to control the morphology as well as the cyclability
improvement of CuO-based materials [20]. In recent times, polycrystalline thin films of
CuO of different sizes and structures have been formed from an array of manufacturing
processes like simple solution preparation, self-catalytic mechanism, hydrolysis, exposure
to microwave irradiation thermal oxidation, hydrothermal and solvothermal synthesis,
chemical conversion, electrodeposition, chemical brightening, chemical vapor deposition,
spraying, plasma evaporation, molecular beam epitaxy, and reactive sputtering [21–23].
However, these chemical preparation techniques require the usage of exorbitant, toxic,
non-eco-friendly, and harmful chemicals; therefore, they are undesirable in many fields.
Nevertheless, the effect of green synthesis brings about an enhancement over the physical
and chemical methods, since it is eco-friendly, affordable, can simply be upgraded to per-
form large scale synthesis, and provides little need for the usage of high energy, pressure,
temperature, and toxic chemicals for synthesizing morphological controlled nanostruc-
tured materials, which will majorly be used in solar cell applications [24]. In accordance
with Nair et al. [21], physical features of thin films of CuO are dependent on the deposition
approach, along with the conditions of deposition. In addition, the authors pointed out
the effects of calcination on the structural, electrical, and optical properties of CuO thin
films, and it was thus concluded that heat-treating Cu2O at a temperature of 350 ◦C could
bring about the transformation of Cu2O to CuO [25]. In another study carried out by
Mehdi et al. [2], they communicated on copper oxide thin films produced from the sol-gel
spin coating technique deposited on glass substrates. The technique was comprised of
the CuO thin film being coated on a glass substrate and spun for 30 s at 4000 rpm, which
was afterwards dried at 250 ◦C on a hot plate and subsequently calcined at increased
temperatures. The authors narrated the annealing effects and finalized that apart from
the samples being polycrystalline with monoclinic crystal structures, they also possessed
higher absorbance at higher annealing temperatures.

The spin coating approach is a deposition technique that uses centrifugal force. It is
one of the ideal preferences of many institutes for research in diverse specializations
because of its convenience, affordability, and the exceptional results achieved through
it [26]. This deposition approach is described as a formation process that makes use of
chemical solutions for the manufacture of thin film coatings on suited plane substrates.
The inorganic/organic material solution required to be produced is applied onto the glass
substrate via a pipette, which is consequently spin-coated [27]. The total thickness of the
manufactured film can be controlled by how viscous the solution is, the rotation speed, and
the time designated for the complete revolution of the spin. Similarly, the film thickness
can be changed by alternating the spin rate, since a higher spin rate will produce thicker
films [26]. Tin oxide thin films, niobium oxide thin films, copper niobate thin films, and
tin/copper oxide thin films, which possess similar crystal structures and have almost the
same applications, can be fabricated with this same technique.

Different research works relating to antibacterial activities, catalysis, sensors, solar
cells, etc., have been implemented with the use of affordable and environmentally safe
biomaterials which include, bacteria, fungi, and extracts from leaf/fruit/stem/flower such
as aloe vera, Calotropis gigantea, Gloriosa superba L., Helianthus annus, Centella Asiatica, gum
Karaya, Acalypha indica, Magnolia, Terminalia Arjuna, Lawsonia inermis, Citrus Sinensis [28–31],
for the synthesis of CuO. However, this research study focuses on the synthesis of copper
oxide thin films using waste Allium cepa peels as a reducing agent. This was achieved
with the use of the sol-gel spin coating deposition process. Thereafter, the morphology,
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crystallinity, as well as elemental composition of the fabricated thin film was assessed
by adopting SEM, XRD, and EDS analysis respectively. In addition, FTIR was carried
out to ascertain the chemical bonds that were formed, UV-Vis analysis of absorbance
and transmittance spectra were conducted to determine the amount of light that can be
absorbed and transmitted by the thin film, with an analysis of the film’s conductivity also
carried out.

2. Experimental Methods
2.1. Materials

The chemicals employed in this study were obtained from Sigma-Aldrich. They include:
(99.8%), ethanol (99.9%), acetone (90%), copper (II) sulphate pentahydrate (CuSO4·5H2O),
deionized water, silicon glass substrate, fluorine tin oxide (FTO) glass substrate, and waste
Allium cepa peels. The waste Allium cepa peels were gotten from the school hostel of the
University of Johannesburg South Africa. The purchased chemicals were all procured from
Sigma-Aldrich, and they were used as received without subjection to any more purification.

2.2. Preparation

The 3 mm thick FTO glass substrate is first cut to the right size of 10 mm × 20 mm.
It is then washed with detergent and deionized water, acetone, and ethanol. The glass
substrate is afterward sonicated for 10 min in ethanol to remove any residual contaminants
on the glass substrate and subsequently dried in nitrogen gas. The sol-gel synthesis of
copper oxide thin film was achieved with a modified method previously reported by
Krishnaprabha et al. [10]. In this study, CuSO4·5H2O was utilized as copper precursor
while Allium cepa was adopted as the reducing agent for the synthesis of copper oxide. The
waste peels of Allium cepa were sheared into smaller pieces and then placed in de-ionized
water (15 g/30 mL), boiled, cooled, and afterward filtrated to obtain the filtrate. The CuO
thin film was created using a sol-gel method which involved adding 10 mL of the plant
extract to a strenuously stirred 30 mL aqueous solution of CuSO4·5H2O (0.1 M). This
resulted in the solution illustrated in Figure 1. The mixture was then aged for 24 h and
thereafter deposited on a very clean glass substrate by employing a spin coater unit set to
1000 and 3000 rpm for 10 and 30 s respectively. This was to enhance the uniform dispersion
of the solution well over the substrate and for the formation of the thin film. The film was
subsequently annealed at 400 ◦C for 3 h. The reaction temperature of 400 ◦C adopted for
this study was a result of the findings from the existing works of Krishnaprabha et al. [10]
and Johan et al. [32], which stated that the properties possessed by CuO thin films are
unfavorable when the annealing temperature is below 400 ◦C.
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2.3. Materials Characterization

The elemental composition together with the surface morphology of the produced thin
film was analyzed with the use of SEM/EDS (TESCAN VEGA 3 TC SEM with an Oxford
Energy Dispersive Spectrometer manufactured by TESCAN in Brno Czech Republic).
XRD analysis (PANalytical X’Pert PRO X-ray Diffractometer using Cu radiation with K
Beta filter, manufactured by PANalytical in Almelo, Netherlands) was carried out on the
film to determine the structural qualities of the manufactured film. FTIR (IRAffinity-1S
Fourier Transform Infrared Spectroscopy manufactured by Shimadzu in Kyoto, Japan) was
conducted to study the chemical bonds possessed by the formed thin film. The UV-Vis
transmittance and absorbance spectra were executed using the UV-1800 spectrophotometer
to detect the amount of light the film can transmit and absorb, while the conductivity of the
film was deduced with the Four Probe measurement (Four Probe-Resistivity Measurement
SK012 manufactured by Indosaw in Ambala cantonment, India).

3. Results and Discussion
3.1. Scanning Electron Microscope (SEM) Analysis

The scanning electron microscope is a piece of excellent equipment for studying the
surface morphology of thin films because it provides essential information on the sizes and
shapes of particles. Previous research works have shown that the surface morphology of
transparent conducting oxide (TCO) films has an impact on both the optical and electrical
characteristics of the films, which are both important aspects in the application of optoelec-
tronic devices. For instance, increased film surface roughness lowers the performance of
solar cell photovoltaics, hence the need to study the surface morphology of thin films [33].
The morphological and structural features of the CuO film (Figure 2) which were deposited
on a glass substrate and heat-treated at 400 ◦C for 3 h, were examined using the SEM
analysis. The image from the SEM analysis displayed significant interparticle porosities
which allowed the passage of vapor [34]. However, the size of the synthesized material
(16.7 nm) is still within the nanometer range, but with a non-homogenous structure [35],
while the film thickness was calculated to be 106.4 nm similar to previous studies of Lai
et al. [36], Shariffudin et al. [37], and Lee & Wang [38]. From the SEM micrograph, it is
obvious that the synthesized CuO was majorly composed of spherical agglomerates of
CuO nanoparticles [39]. In general, the obtained results correspond to those of previous
studies of [34,35,39–42], which was also demonstrated by the Energy Dispersive X-ray
(EDX) analysis in the subsequent section that the synthesized material was solely CuO.
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3.2. Elemental Analysis

With the application of the energy-dispersive X-rays (EDX), the elemental composition
and the purity of the produced CuO thin film calcined at 400 ◦C were studied. Depicted in
Figure 3 is the EDX spectrum of the CuO thin film to affirm the occurrence of Cu and O in
the prepared sample, as well as to analyze the chemical formation of the deposited mate-
rial. The EDX spectrum illustrated in the figure confirms the existence of the constituent
elements of silicon (Si), oxygen (O), and copper (Cu) in the synthesized CuO thin film. The
silicon (Si) peak which was noticed from the figure originated from the glass substrate
used for the deposition process which was made from silicon material [43]. Apparently,
from the EDX pattern in Figure 3, it can be confirmed that CuO thin film was successfully
formed from CuSO4·5H2O. The peak locations from the EDX spectrum showed consistency
with CuO [35]. No other peaks were observed in the EDX spectrum which confirmed the
production of pure CuO thin film on the glass substrate [39]. Thus, the aqueous Allium cepa
leaf extract was discovered to be a strong eco-friendly reducing agent for reducing metal
salts to their nanostructures. These discoveries are consistent with prior studies [35,44], but
with minor variations owing to the changes in the chemical composition. Although the
EDX analysis shows the elemental composition of the fabricated film, there is still the need
for the structural properties of the synthesized film to be examined. This is to precisely
ascertain the crystalline phase of the formed thin film.
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Figure 4. X-ray diffraction pattern of CuO thin film. 

Figure 3. EDX spectra of the CuO thin film.

3.3. X-ray Diffraction Analysis (XRD)

The crystalline structure of the fabricated copper oxide thin films was characterized
by X-ray diffraction (XRD) (PANalytical X’Pert PRO X-ray Diffractometer) using Cu K α
radiation (λ = 1.5406 A◦) in the 2θ range start position of 4◦ and end position of 90◦ at
40 kV, 40 mA. All the observed diffraction peaks in Figure 4 can be indexed in the mono-
clinic phase with the unique 2θ diffraction peaks of, 32.51◦, 35.43◦, 38.70◦, 46.27◦,48.77◦,
53.47◦,58.24◦, 61.55◦,65.79◦, 66.26◦,67.86◦,68.08◦ and 72.46◦ being attributed to (110), (002),
(111), (−112), (−202), (020), (202), (−113), (022), (−311), (113), (220), and (311) lattice
planes, respectively. These values agree with those previously reported as well as on
the corresponding “JCPDS” (Joint Committee on Powder Diffraction Standards) card No.
45-0937 [45,46]. In addition, the average size of the crystallite was determined by adopting
the Debye–Scherrer equation [47,48].

D =
0.9λ

βCosθ
(1)
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where ‘λ’ is defined as the wavelength of X-ray (0.154060 nm), ‘β’ is the FWHM known as
the full width at half maximum, ‘θ’ is the angle of diffraction, and “D’ is crystallite size.
The average crystallite size estimated with the Scherrer equation was 16.7 nm.
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This thus was in close relation with the crystallite size of CuO powder in Manjunath
et al. [49] and Buazar et al. [50] which were 8 and 20.76 nm, respectively, which was within
the ideal crystallite nanometer range of less than 50 nm. However, the existence of stress in
thin films and functional coatings poses a key problem in several technological applications
because high levels of residual stress may significantly influence the performance, dura-
bility, and reliability of material components and devices [51]. Residual stresses can have
a major effect on the adhesion and fracture strength of thin films, on the ductility of bulk
metallic glasses [52], the performance of the optoelectronic components, and the lifespan
of microelectromechanical systems (MEMS) and nanoelectromechanical (NEMS) [53]. On
the other hand, stress may also improve the physical characteristics of nanostructures
and thin layers, such as conductivity, piezoelectricity, dielectric permittivity, and magnetic
anisotropy. It can also increase the mobility of charge carriers in silicon-based semiconduct-
ing technologies [54]. Consequently, the obtained results from this study corroborated with
the EDX results of previous sections which revealed that the fabricated thin film consisted
of only CuO.

3.4. Fourier Transform Infrared Analysis (FTIR)

One effective approach to examine the vibrational frequencies of specific bonds in a
molecule is Fourier transform infrared analysis (FTIR). The prepared copper oxide thin
film was scanned at room temperature within 4000 cm−1–400 cm−1 as revealed from
the FTIR spectrum displayed in Figure 5. The observed peaks at 453 cm−1, 531 cm−1,
608 cm−1 correlate to the characteristic Cu-O bond stretching vibration of CuO [32,55].
Moreover, the absence of peaks at 605 and 660 cm−1 completely rule out the possibility
of another phase, namely, Cu2O [56]. Furthermore, the appearance of peaks at 531 and
1051 cm−1 clearly shows various modes of bending vibration associated with the Cu–O
bond while the presence of the peak at 1669 cm−1 also confirms the stretching vibration
of the Cu–O bond [57]. The exclusion of peaks above 3000 cm−1 which represents the
O–H stretching vibrations of H2O reveals that water molecules were not adsorbed [58].
Hence, the vibrational peaks from this study which represent the existing phase of the
FTIR analysis also corroborate with the XRD peaks of the pure phase CuO, thus defining
its monoclinic phase occurrence.
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3.5. Uv-Vis Absorbance

As a result of the combined oscillation of free band conductive electrons which get
excited from incident electromagnetic radiations due to the absorption of visible light,
surface plasmon absorption (SPA) can be observed in metal oxides [10]. To comprehend
the effect of light absorption on the CuO thin film, the optical properties of the film
were analyzed with the use of the UV-Vis diffuse absorbance spectra (DRS). Illustrated
in Figure 6 is the UV-Vis absorption spectrum of CuO thin film produced at 400 ◦C, at
wavelengths ranging between 300 nm to 800 nm. The absorption peak of the CuO thin film
was typically discovered at 390 nm like in previous related literature [30,59–61]. However,
a widening absorption peak moving towards an increasing short visible wavelength region
(400–600 nm) was observed in the sample, which is attributable to the intrinsic bandgap
of CuO [62]. In addition, the absorbance around 565 nm (Figure 6) has been recognized
in CuO systems as an indication of SPA [63,64]. The figure reveals the center of the SPA
peak (565 nm) to have moved to higher absorbance with an increase in the wavelength,
thus exhibiting a redshift. These illustrations thus state that the amount of light the film
can absorb and the SPR peak location is dependent on the SEM analysis (shape and size)
of the thin film. From Figure 6, the CuO absorption spectrum is noticed to have a sloping
background caused by interband transitions [64,65]. Therefore, with reference to the figure,
it can be said that the synthesized CuO strongly absorbs at the entire visible spectrum with
minimal transparency for nanostructured samples of bigger band gaps, which can absorb
in the UV region [66].

Coatings 2021, 11, x FOR PEER REVIEW 8 of 14 
 

 

the effect of light absorption on the CuO thin film, the optical properties of the film were 
analyzed with the use of the UV-Vis diffuse absorbance spectra (DRS). Illustrated in Fig-
ure 6 is the UV-Vis absorption spectrum of CuO thin film produced at 400 °C, at wave-
lengths ranging between 300 nm to 800 nm. The absorption peak of the CuO thin film was 
typically discovered at 390 nm like in previous related literature [30,59–61]. However, a 
widening absorption peak moving towards an increasing short visible wavelength region 
(400–600 nm) was observed in the sample, which is attributable to the intrinsic bandgap 
of CuO [62]. In addition, the absorbance around 565 nm (Figure 6) has been recognized in 
CuO systems as an indication of SPA [63,64]. The figure reveals the center of the SPA peak 
(565 nm) to have moved to higher absorbance with an increase in the wavelength, thus 
exhibiting a redshift. These illustrations thus state that the amount of light the film can 
absorb and the SPR peak location is dependent on the SEM analysis (shape and size) of 
the thin film. From Figure 6, the CuO absorption spectrum is noticed to have a sloping 
background caused by interband transitions [64,65]. Therefore, with reference to the fig-
ure, it can be said that the synthesized CuO strongly absorbs at the entire visible spectrum 
with minimal transparency for nanostructured samples of bigger band gaps, which can 
absorb in the UV region [66]. 

300 400 500 600 700 800

0.8

0.9

1.0

1.1

1.2

1.3

1.4

A
bs

or
ba

nc
e (

a.
u.

)

Wavelength (nm)

 CuO

 
Figure 6. The UV-visible absorption spectra of CuO thin film. 

3.6. Band Gap 
With the UV-V is absorption spectrophotometer being utilized to analyze how much 

light the CuO thin film is capable of absorbing, the initial absorption which conforms with 
the electron excitation from the valence band to the conduction band is adopted to deduce 
the optical band gap value of the manufactured film. In other words, the Tauc plot is em-
ployed for the calculation of the energy bandgap of the CuO thin film. (eV). The relation-
ship which binds the absorption coefficient (α) and the incident photon energy (hυ) to-
gether can be written as, 

αhυ = K (hυ–Eg)n (2)

where Eg = bandgap energy, α = absorption coefficient, K= proportionality constant, and 
hυ = energy of the incident photon, with n = 2 for a direct bandgap and n = ½ for an indirect 
bandgap. 

The bandgap is determined from the manipulation of the slope-intercept from the 
graph of (αhυ)2 versus hυ. A straight line as displayed in Figure 7 is derived when (αhυ)2 
against hυ (eV) is plotted, which denotes that a direct allowed transition is responsible for 

Figure 6. The UV-visible absorption spectra of CuO thin film.



Coatings 2021, 11, 1545 8 of 13

3.6. Band Gap

With the UV-V is absorption spectrophotometer being utilized to analyze how much
light the CuO thin film is capable of absorbing, the initial absorption which conforms
with the electron excitation from the valence band to the conduction band is adopted to
deduce the optical band gap value of the manufactured film. In other words, the Tauc
plot is employed for the calculation of the energy bandgap of the CuO thin film. (eV). The
relationship which binds the absorption coefficient (α) and the incident photon energy (hυ)
together can be written as,

αhυ = K (hυ − Eg)n (2)

where Eg = bandgap energy, α = absorption coefficient, K= proportionality constant, and
hυ = energy of the incident photon, with n = 2 for a direct bandgap and n = 1⁄2 for an indirect
bandgap.

The bandgap is determined from the manipulation of the slope-intercept from the
graph of (αhυ)2 versus hυ. A straight line as displayed in Figure 7 is derived when (αhυ)2

against hυ (eV) is plotted, which denotes that a direct allowed transition is responsible
for the absorption edge. The optical band gap (Eg) is obtained at the point where the
straight line intercepts the hυ axis. The optical band gap value for the copper oxide thin
film (Figure 7) obtained from the sol-gel spin coating deposition approach is evaluated to
be 1.48 eV, which is in accordance with the stated range of 1.21 eV to 1.51 eV for copper
oxide (CuO) [17,32,67]. This reduced bandgap may have resulted from an increase in the
thickness of the CuO thin film [68], which thus increases the possibility of the thin film
being applied as an absorber layer in the fabrication of solar cells [69].
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3.7. UV-Vis Transmittance

Presented in Figure 8 is the optical transmittance of the spin-coated CuO thin films
in the spectral range of 200 nm to 800 nm achieved through the UV-Vis spectrometer.
Generally, materials that display wide band-gap energies are known to have excellent
transmittance, while those exhibiting low bandgap energies possess inferior transmittance,
as is the case in this study. Furthermore, the film crystallinity, energy bandgap, and surface
morphology are all influential on the transmittance of thin films [70].
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From the plot (Figure 8), the film transmits effectively in the visible range than at the
UV region. However, the coating at the entirety of the visible wavelength region was of
low transparency, revealing an optical transmittance value of less than 30% [71,72], with
a characteristic adsorption edge around the 350 nm region which could be attributed to
the band edge of the CuO phase [72,73]. This decrease in transmittance experienced by the
thin film may have resulted from the scattering of light at the coarse surface [71,74]. This
result thus corroborates with the low energy band gap of 1.48 eV derived from the CuO
thin film in the previous section.

3.8. Electrical Properties
Conductivity

The electrical conductivity of the CuO thin film was determined with the utilization of
the four-point probe technique. The electrical conductivity of p-type CuO films varies with
copper vacancy density, which acts as shallow acceptors [75]. The fabricated CuO thin film
was revealed to be of intrinsic p-type semiconducting behavior which was probably a result
of increasing copper deficiencies [76]. Revealed in Figure 9 is the electrical conductivity
as a function of temperature for the CuO thin film. The figure showed that a temperature
increase resulted in a significant conductivity increase of the annealed nanocrystalline
CuO thin film which arose from an increase in the hole concentration, similar to previous
findings of [77,78], with this conductivity pattern related to prior studies of [79,80]. Besides
the annealing temperature, the increase in the electrical conductivity which was observed
in this study can also be attributed to the film’s structure and texture, [81–83]. Thus, it
is possible to tune the electrical properties of CuO by changing the stoichiometry and
crystallinity of the CuO sample during the deposition process [84,85].
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4. Conclusions

Synthesis of CuO thin film using Allium cepa extract as the reducing agent has been
demonstrated in this study. By the utilization of a naturally existing plant, Allium cepa
(aqueous extract) as the reducing agent, copper oxide nanoparticles were formed and
accumulated into nanospheres. Peculiar IR bands at 453, 531, and 608 cm−1 indicated the
formation of the Cu-O stretching vibrations. The crystalline structure and morphology
studies carried out by the XRD, and SEM analysis demonstrated that the synthesized
CuO thin film was of a monoclinic phase and was also spherically shaped. The fabricated
CuO thin film was without impurities as illustrated by the EDX analysis. The UV-Vis
spectroscopy revealed that the fabricated thin film absorbed and transmitted strongly at
the entire visible wavelength regions with minimal and low transparencies respectively.
While the estimated bandgap indicated that the produced thin film exhibited traits of
a good conductor. Similarly, the electrical analysis revealed that the manufactured film
possessed excellent electrical properties. In future, this environmentally friendly green
approach of producing CuO thin films can be expanded towards the production of other
significant industrial metal oxides. Furthermore, future studies can take into consideration
the optimization of the parameters of temperature and concentration, to develop and
improve on the findings that have been achieved from this study.
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