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Abstract: Aiming at the disadvantages of low trend, poor characterization performance, and poor
anti-noise performance of traditional degradation features such as dispersion entropy (DE), a fault
detection method based on sliding dispersion entropy (SDE) is proposed. Firstly, a sliding window is
added to the signal before extracting the DE feature, and the root mean square of the signal inside
the sliding window is used to replace the signal in the window to realize down sampling, which
enhances the trend of DE. Secondly, the hyperbolic tangent sigmoid function (TANSIG) is introduced
to map the signals to different categories when extracting the DE feature, which is more in line
with the signal distribution of mechanical parts and the monotonicity of the degradation feature is
improved. For noisy signal, the introduction of locally weighted scatterplot smoothing (LOWESS)
can remove the burrs and fluctuations of the SDE curve, and the anti-noise performance of SDE is
improved. Finally, the SDE state warning line is constructed based on the 20 criterion, which can
determine the fault warning point in time and effectively. The state detection results of bearing and
check valve show that the proposed SDE improves the trend, monotonicity, and robustness of the
state tracking curve, and provides a new method for fault state detection of mechanical parts.

Keywords: mechanical parts; fault state detection; sliding dispersion entropy; feature extraction

1. Introduction

Diaphragm pump is a kind of transmission power equipment in the metallurgical
industry, which provides power for slurry pipeline transmission. The safe operation of
the diaphragm pump ensures the supply of mineral raw materials, and improves the
production efficiency and the quality of steel products. The poor operating environment,
stress, and load will cause damage to the diaphragm pump, which cause significant
economic losses [1]. Therefore, the maintenance of the diaphragm pump is important.
Bearing and check valve are the most frequently damaged parts in diaphragm pump, and
the price of check valve is high. The maintenance personnel often detect the faults of
bearing and check valve through abnormal sounds of diaphragm chamber and bearing
seat, slurry leakage trace, pressure, and flow. These methods rely on subjective experience
seriously. The excessive maintenance will cause the risk of shutdown, and the frequent
replacement will cause the waste of spare parts, which will cause serious economic losses.
Insufficient maintenance will lead to mechanical failure. Besides, a too late replacement of
parts will lead to secondary failure of other parts, which will bring immeasurable losses
and safety accidents. Therefore, it is urgent to propose a reliable fault detection method to
guide the formulation of maintenance and replacement strategy.

Tracking the fault state of parts and determining the early fault point have important
guiding significance for the design, assembly, and maintenance of the diaphragm pump.
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The time domain, frequency domain, and time-frequency domain features of the vibration
signal excited by faults will change in real time with the state degradation. However, it is
difficult to track and detect the fault states of the diaphragm pump because the vibration
signal is interfered by the pulsation of the slurry and the vibration of parts. In addition, the
signal has nonlinear and non-stationary characteristics due to the influence of transmission
path and hydraulic, mechanical, and electrical factors, which brings great challenges to the
fault state tracking and detection.

There are few researches on fault detection of diaphragm pumps at home and abroad,
but the researches on bearing fault detection still have good reference significance. Mixed
domain features are the most commonly used methods in fault detection, including time
domain, frequency domain, and time-frequency domain features. Li extracted 24 time-
frequency features and selected sensitive feature through monotonicity and correlation
coefficient, finally tracked the bearing degradation state through gate recurrent unit and
3o criteria [2]. Gao extracted the degradation features from the mixed domain features of
the bearing through isometric mapping, then established a reliability model by logistic
regression [3]. Hua extracted the mixed domain features of the bearing and constructed
a fault warning line based on the 30 principle, and finally predicted the degradation
state through the support vector machine [4]. Li selected the effective features from the
mixed domain features of bearing and obtained a degradation curve by self-organizing
feature mapping [5]. Bilendo extracted the mixed domain features and selected effective
degradation features through local linear embedding (LLE) [6]. However, the single
features, mixed domain features, and its fusion features have not achieved satisfactory
results in the fault detection of the bearing and check valve. The reasons for this are that
single features are only sensitive to the specific fault in a specific stage, the fusion features
are redundant and depend on dimensionality reduction methods. Besides, the construction
and dimensionality reduction of mixed domain features depend on the experience of
technicians. The deep learning method can solve the above problems [7]. Ding proposed
a domain adaptive long short-term memory (LSTM) to predict the bearing degradation
state [8]. Hu extracted modes by convolutional neural network and evaluated the bearing
degradation process by fuzzy C mean clustering [9].

Although the above-mentioned deep learning-based methods can avoid the subjective
experience problems in mixed domains, the time cost of deep learning is higher and
neural network structure seriously affects the feature extraction performance. Entropy
can measure the complexity and uncertainty of signal [10] and has the advantages of
simple calculation and high calculation efficiency [11]. Kumar extracted the Shannon
entropy, permutation entropy (PE) and approximate entropy (AE) degradation features of
the bearing and then constructed a bearing degradation trend model by gaussian process
regression [12]. Noman first separated the oscillating eigenvalues from the vibration
signal, then took the PE of the oscillation signal as the bearing degradation feature [13].
Minhas obtained several modes by empirical mode decomposition, then extracted the
weighted multi-scale entropy degradation features of sensitive modes by Hurst index [14].
Li proposed a degradation feature combining composite spectrum and relative entropy,
which can characterize the degradation trend of hydraulic pump effectively [15]. Mostafa
tracked the fault evolution process of gear and bearing through sample entropy (SE), PE,
and dispersion entropy (DE) [16]. Experiments show that the DE [17] is not sensitive to
noise, but sensitive to instantaneous frequency, amplitude, and sequence bandwidth, which
is in line with the feature extraction requirement of vibration signal.

However, the entropy methods also have their own defects, SE is sensitive to signal
length, PE ignores the amplitude information, and they both have poor anti-noise per-
formance. Although the performance of DE is slightly better than that of single features,
mixed domain features and traditional entropy features in the fault detection of diaphragm
pump, DE has not achieved satisfactory results in the fault detection. The problems can be
summarized as follows. Firstly, the vibration signal segment used to extract the DE feature
is discontinuous and irrelevant, which greatly reduces the tendency of the degradation
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feature. Secondly, the results obtained by the normal cumulative distribution function
(NCDF) used in the DE deviate from the actual distribution of vibration signals, which
makes the traditional DE feature unable to well characterize the true characteristics of
vibration signals. Thirdly, the anti-noise performance of DE degradation feature still does
not meet the fault detection requirements of mechanical equipment in the actual industrial
environment. In addition, there is still a lack of an effective fault point detection and early
warning method, which can track the degradation state of parts in real time and warn the
key fault points.

The sliding dispersion entropy (SDE) and its state warning line are proposed and used
for fault state detection and degradation state tracking in this paper. In order to enhance
the tendency of DE degradation feature, a sliding window is added to the signal segment
and the root mean square of the signal in the window is used to replace the signal segment
to achieve down-sampling. In order to improve the characterization performance of DE
feature, the down-sampling sequences are mapped to different categories by introducing
hyperbolic tangent sigmoid function (TANSIG) mapping. Because the TANSIG mapping is
closer to the actual empirical distribution of vibration signal, the proposed SDE enhances
the monotonicity of the degradation feature. To enhance the anti-noise performance, locally
weighted scatterplot smoothing (LOWESS) is introduced to remove the small fluctuations
and burrs of the SDE feature curve. At the same time, an adaptive early warning line based
on 20 criteria is proposed, which can determine the fault warning point effectively. In
summary, the proposed method solves the above problems well. The method can track
the fault state of the parts and determine the fault warning point and provide technical
guidance for the maintenance and replacement of the parts.

The remainder of this paper is organized as follows: in Section 2, the theory of the
proposed sliding dispersion entropy (SDE) and its fault state warning line are introduced.
Then, a state detection method based on SDE is proposed, and the specific steps are
described in detail. In Section 3, the effectiveness of the SDE and its state warning line is
proved by analyzing the bearing data in the laboratory environment, then the proposed
SDE is applied to the fault detection of check valve in the actual industrial environment, and
the proposed SDE was compared with many existing methods. Finally, some conclusions
are presented in Section 4.

2. Methodology
2.1. Sliding Dispersion Entropy (SDE)

The degradation process of mechanical parts lasts a long time, and the categories
and boundaries of fault states are fuzzy. Therefore, it is difficult for traditional features
to characterize the degradation trend of parts [18]. DE can measure the complexity and
chaotic characteristics of the signal, but its performance is not very good in tracking the
state of check valve and bearing. The trend of vibration data is not fully considered in
DE feature, and the description of vibration data distribution characteristics by DE is
not accurate enough due to the use of normal cumulative distribution function (NCDF)
mapping. In addition, DE is easily disturbed by small fluctuations and noise, and the
reliability of tracking is poor. Therefore, a sliding dispersion entropy (SDE) based on sliding
window down-sampling and TANSIG mapping is proposed. Assuming that the vibration
signal of the mechanical part at the k-th (k = 1,2, - - - , K) time point has been collected, the
SDE feature of the vibration signal at the current time point can be expressed as SDE;, and
its calculation procedures are as follows.

(1) In order to enhance the trend of the vibration signal obtained at the k-th time point,
a sliding window with length P is added to the signal to be analyzed at first, and then
the original signal segment in the sliding window is replaced by the root mean square
(RMS) value of the segment signal. In this way, down-sampling is achieved. In the sliding
process of the sliding window, the sliding window reaches the next window after sliding
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h = (P/2) sampling points each time. Wherein, the RMS of the signal segment in the i-th
sliding window can be obtained by the following formula.

(i—1)h+P
UrmS(i) = Z uz(m)/p/ M

=(i—1)h+1

N
Upre(i) = Urms(i) - <Z vrms(i)/N>; (2
i=1

where N = round(M/ P) represents the total number of windows, M represents the number
of data points at the k-th time point, and vp.(i) is the removing mean processing of the
RMS values of the signal in the i-th window. Figure 1 shows the sliding window of the
check valve signal when the signal length in the sliding window is P = 2000. In this paper,
P = 20. The down-sampled signal vy (i)(i = 1,2,---, N) of the signal in the N sliding
windows can be obtained according to the above formula.

< Window 1 and fts Pkampling points 1 [

2 ) le - >

£ " Window 2:

_8 0 ,|' l”,] R TERIY Ut |
= 1

'?Ei —2r P/2 : :( Win('lovlv '3 ’:
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Sampling points
Figure 1. The schematic diagram of sliding window and down—sampling.

(2) In order to improve the characterization performance of DE, the down-sampling
signal are mapped to different categories by introducing TANSIG mapping, and it is used
as the SDE feature of the k-th time point signal. Its calculation is summarized as follows.

Step 1: Map the signal x;(j = 1,2, - -, N) to c categories. Different from DE, the NCDF
function of DE is replaced by the tan-sigmoid mapping function (TANSIG), after which the
original signal x; is mapped to the range between 0 and 1, i.e.,, y = {y1,¥2,- - ,yn},¥ €
(0,1). When the maximum or minimum value of sequence x deviates far from its mean or
median, most of the data in sequence x is easy to be classified into a few categories, but
TANSIG can solve the above problems well.

2
Yi = RN 1, 3)
1+ o2

where ¢ and y are the standard deviation and mean of sequence x. In order to verify the
effectiveness of TANSIG function, we have compared and analyzed the mapping effect and
distribution of linear function (LM), log sigmoid function (LOGSIG), TANSIG function, and
NCDF function based on 76,800 data points of check valve fault signal. At the same time,
these functions are also compared with the actual empirical distribution function (EDF)
of the check valve data. As shown in Figure 2a, the curve corresponding to the TANSIG
mapping function almost coincides with the curve corresponding to the EDF function and
the check valve data distribution curve, which shows that the distribution of most check
valve data is closer to the TANSIG mapping function.

Then, the vibration data points are transformed into the range of 1 to c by the linear
transformation c-y; + 0.5, and then each y; is classified into classes 1 to ¢ according to
the operation rule z]? = round(c-y; +0.5), where z]C. refers to the j-th sequence point that
has been classified and the symbol round(-) refers to rounding operation. Assuming the
number of categories is 3 (c = 3), the classification of the first 2000 data points of the
check valve fault signal is shown in Figure 2b, which indicates that the distribution of the
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vibration signal is closer to the actual empirical distribution of the data after being mapped
by TANSIG.

o

LM mapping
NCDF mapping
LOGSIG mapping
TANSIG mapping
*Actual EDF

[o8)

o
(oY

Distribution of mapping values
(=]
(=)}

—
w

Category of transformed data
o o

(@) (b)

Figure 2. Comparison of mapping methods and classification of mapped data. (a) Comparison of different mapping

methods; (b) data classification after TANSIG mapping.

Step 2: According to z;"* = {zf, Z g Z§+(m—1)d }, each embedding vector z}"“, i =
1,2,---,N — (m — 1)d is established by embedding dimension m and time delay d. Each
z;"* is mapped to a dispersion pattern 77y...o, 1, Where 2§ = vg, 2§, ; = v, -, zf,Jr(mfl)d =
U1, O the number of potential dispersion patterns that can be mapped to each z!"* is
c™. It can be seen that the sequence z;"* has m elements and each of them comes from an
integer from 1 to c [19].

Step 3: For each potential dispersion mode 7ty...,,—1 among the ¢ dispersion modes,
the relative dispersion frequency is p(7ty0...om—1), where N — (m — 1)d is the total number
of embedded vectors.

Number{i|i < N — (m —1)d,z!"* has type Tyo..om—1 }

P(nv()---vmfl) = N — (m — 1)d (4)
Step 4: Calculate DE according to the definition of Shannon entropy [10].
C}‘Vl
DE(x,m,c,d) = — 2 P(7000-om—1) - In(P(7T00...om—1))- @)

=1

The standardized dispersion entropy can be defined as NDE(x,m,c,d) = DE(x,m,c,d)
/In(c™), and relevant theories of DE can be found in literature [17].

(3) With the increase of the time point of data acquisition, that is, from the first time
point to the k-th time point, and then from the k-th time point to the k-th time point, the SDE
feature curve that characterize the state evolution process can be obtained by repeating the
above step (1) and step (2). In the case of weak noise, the SDE feature curves can track the
evolution process of mechanical operation state in real time.

(4) Under the condition of strong noise in the slurry transportation environment, there
are burrs and random fluctuations in the SDE feature curve. Therefore, we can remove
small fluctuations in the SDE feature curve by introducing locally weighted scatterplot
smoothing (LOWESS). Each smoothing point of the SDE curve can be determined by
adjacent data points within a given range, where the regression weight of the data points
in a given range can be represented as follows.

wi = (1= (= x) /a0 ) ©

where x represents the coordinates of the points that need to be smoothed, x; represents
the nearest neighbor point of x in a given range, and d(x) is the distance between x and the
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furthest predicted value in a given range. Then, the initial weight is used to estimate and
the robust coefficient is defined by the residual 7;.

.
= (1- L . 7
4 ( ’6Medz’an<r1|,rz|,~~ ,rnl)D @

The weight function is modified by iterating N times through the above steps, and
the smooth value can be obtained according to the polynomial and weight. More theories
about LOWESS can be found in reference [20]. The SDE method based on LOWESS is
called smooth SDE in this paper.

In order to verify the effectiveness of SDE features, a mixed evaluation index (MEI)
based on monotonicity, robustness and trend indexes is constructed and used to evaluate
the state tracking performance of degraded features such as SDE.

Firstly, the mechanical parts are damaged gradually during the service period, and the
degradation process of the fault state is irreversible except for repairs, so the degradation
feature should be monotonous.

Mon(X):ﬁ|No. of d/dx>0-No. of d/dx<0

, ®)

where X = {x;},_;.x represents the feature sequence, x is the feature value corresponding
to the time point t, and d/dx = x;,1 — x; represents the sequence gradient. The greater
the Mon € [0, 1], the better the monotonicity of the feature curve, but Mon may fail when
the curve fluctuates greatly.

Secondly, the vibration signal affected by environmental noise and operating condi-
tions is non-stationary, and the random fluctuation of the degradation feature will reduce
the reliability of state tracking, so the robustness index is used to evaluate the robustness
of the feature.

X — Xk

1 K T
Rob(X) = sz" exp| — o / )
=1

where x] is the average trend value of the degradation feature at the time point t;, which
can be obtained through LOWESS. Finally, with the increase of degradation time, the
degradation trend of mechanical parts becomes more and more obvious, so the trend index
is used to evaluate the correlation between degradation feature and time.

K(ZII<<=1 xktk) - (ZkK=1 xk) (Zle fk)
\/{Kzg_l X - (2115:1 xk)z] [Kzllf_l t— (Zle tk)z]

The smaller the difference between the absolute value of Tre(X, T) € [—1,1] and 1, the
stronger the correlation between the degradation feature and time. In practice, it is difficult
for a single index to evaluate the tracking ability of a degradation feature comprehensively,
so a mixed evaluation index (MEI) is constructed in this paper.

Tre(X,T) = (10)

3
MEI(X) = a;Mon(X) + apTre(X) + azRob(X), s.t. a; >0, Y a;j=1, (11)
i=1

where a1, ay and a3 are 0.5, 0.3, and 0.2, respectively.

2.2. State Warning Line Based on SDE

Assuming that there is a set of random variables that approximately accord with
normal distribution, and the mean of the set of random variables is y and the variance
is 02, then the probability that the variable is distributed in the range (4 — 30, u + 30) is
99.74%, and the probability that the variable is distributed in the range (y — 20, u + 20)
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is 95.44%. 1If the variable is out of the range (¢ — 20, u + 20), it is considered that the
state has changed. Therefore, this criterion is introduced into fault detection and used to
construct the adaptive threshold of the fault state warning line. If several consecutive SDE
feature values exceed the range (u — 20, y + 20), it is considered that the operating state
of the mechanical parts has changed significantly, and the fault warning signal should be
sent at this time. According to the SDE feature value of the vibration signal at the k-th
(k=1,---,K) time point, a time-varying adaptive state warning line can be constructed,
and the adaptive warning line is shown below.

Ty(t) = mean(SDE(1: t;)) — 2std(SDE(1 : t;)), k=1,2,---,K. (12)

Assuming that the time period (1: f),k =1,--- s is the normal stage and the state
does not change in this stage, we first calculate the lower threshold of degraded state curve
SDEy, k =1,---s;. If it is necessary to determine whether the fault state changes at time
point s, we only need to compare the SDE(1 : t;,) at time point s, with the threshold
Ty, (ts, ) obtained at time point s;, where time point s; is the next time point after time point
s1. If the SDE(1 : t5,) is within the threshold range Ty (ts, ), it indicates that the fault state
has not changed much. If the SDE values of consecutive multiple time points exceed the
corresponding adaptive threshold, it indicates that the fault state has changed, and the first
point exceeding the threshold is determined as the fault early warning point. In this way,
an effective adaptive fault state early warning line can be obtained.

2.3. Fault State Detection Method

In the degradation process from normal to failure, the operating state of mechanical
parts such as bearings and check valves has gone through several degradation stages. In
order to detect the fault stages and detect fault state warning point accurately, a fault state
detection and evaluation method based on SDE is proposed. The implementation steps for
this method are shown in Figure 3.

Smooth SDE feature
(SSDE)

Strong noise condition

SDE feature

Update the
state warning
line

Send warning
signal and make
maintenance plan

Vibration signal at Add sliding
the k-th time point window and
down-sampling

Introduce TANSIG
mapping

k=k+1

Figure 3. Flow chart of fault state detection and evaluation method.

(1) The vibration signal of the mechanical parts at the k-th time point is collected by
interval sampling, and finally the vibration signal of the whole life cycle from normal to
failure is obtained.

(2) Extract the first N data points from the vibration signal at the k-th time point and
extract the SDE features of these data points. If there are too many burrs in the SDE feature
curve, the smooth SDE feature of these data points are extracted.

(3) Update the state warning line in real time to detect whether the current operating
state of mechanical parts has changed. If the fault warning point is not detected by the
continuously updated state warning line, that is, there is no intersection between the state
warning line and the SDE feature curve, then we continue to extract the SDE feature of
the vibration signal at the next time point and update the state warning line according to
Formula (12). The above process will continue until the state warning point is detected.

(4) If the state warning line crosses the fault warning point, that is, the value of the
warning line at consecutive multiple time points crosses the SDE feature curve, the fault
warning signal should be issued immediately and the corresponding maintenance plan
should be formulated immediately.
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In addition, in order to verify the effectiveness of the proposed SDE and adaptive state
warning line, we constructed a mixed evaluation index (MEI) to evaluate the performance of
fault state tracking, and compared SDE with single features, fusion features and traditional
entropy features.

3. Results and Discussion
3.1. Bearing Fault Detection and Comparative Analysis

In order to verify the effectiveness of the proposed SDE feature and state warning
line in the fault state detection of mechanical parts, we first analyzed the degenerate state
of the bearing in the laboratory environment and compared the proposed method with
single features, fusion features, and traditional entropy features. The bearing data from
the intelligent maintenance system (IMS) of the University of Cincinnati is used as the
experimental data in this paper, and the experimental platform is shown in Figure 4. Four
sets of double-row Rexnord ZA-2115 roller (REXNORD, Milwaukee, WI, USA) bearings
operate continuously at a speed of 2000 r/min under the action of the spring radial load
of 26.671 kN. Among them, the diameter of the roller element D,, = 71.501 mm, the pitch
diameter d, = 8.407 mm, the number of roller elements 7, = 16, the contact angle § = 15.17°.
PCB353B33 acceleration sensors (PCB PIEZOTRONICS, Buffalo, NY, USA) are fitted to
each bearing shaft, and the vibration signal is collected once every 10 min via DAQ-6062E
data acquisition card (National Instruments, Austin, TX, USA). The sampling frequency is
20 kHz and the data length is 20,480 points.

Accelerometers | Accelerometer Radial load

l l Thermacouple

foo
K
L]

Bearingl Bearing2 Bearing3 Bearing4

a— Motor

(b)

Figure 4. Illustration of the bearing experiment platform. (a) Bearing test rig; (b) sensor placement illustration; (c) outer

race defect of set number 2.

In the data acquisition experiment, 984 sets of outer race vibration signals from 10:32:39
on 12 February to 06:22:39 on 19 February were collected, which means that the outer ring
vibration signals lasting 164 h from normal to fault can be used to verify the effectiveness
of the method. The experimental signal is from Bearingl of 2nd_test, and the outer race
defect as shown in Figure 4c. For the vibration signal corresponding to 984 time points, the
first 2048 data points of the vibration signal at each time point are extracted respectively,
and the obtained sampling signal is shown in Figure 5. The amplitude of the sampled
signal increases gradually, but it is difficult to track and detect the fault state of the bearing
based on the signal amplitude alone.

As the fault state of mechanical parts changes, the time domain amplitude and proba-
bility distribution, frequency domain energy and spectral peak position, time-frequency
domain characteristics, and energy will change accordingly. Therefore, the traditional time
domain, frequency domain and time-frequency domain features are often used to track the
fault state of mechanical parts and its evolution process. In addition, a single feature can
only characterize the characteristics of a specific fault in a specific fault stage. Therefore,
feature fusion methods are gradually used for state tracking of mechanical parts, including
principal component analysis (PCA), local linear embedding (LLE), linear local tangent
space alignment (LLTSA), and so on.
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Figure 5. Bearing sampling signal.

In order to verify the state tracking performance of the proposed SDE feature, it is
compared with time domain, frequency domain, time-frequency domain features, fusion
features and entropy features. In the experiment, the values of a1, a7, a3 in the mixed
evaluation index (MEI) are 0.5, 0.3, and 0.2, respectively [21]. For the vibration signals from
the first time point to the 984th time point, the SDE features of the vibration signals at each
time point are extracted respectively, and an SDE degradation curve is obtained finally.
Similarly, for the vibration signals corresponding to 984 time points, their 16 time domain
features (T1~T16), 13 frequency domain features (F1~F13), 8 wavelet packet energy features
(TF1~TF8, 3-layer db5 wavelet), 3 mixed domain fusion features based on PCA, LLE and
LLTSA, and 3 entropy features based on sample entropy (SE), permutation entropy (PE),
and dispersion entropy (DE) can be obtained, and the state tracking performance of all
the above degradation feature curves can be evaluated by the mixed evaluation index
(MEI). As shown in Table 1, the MEI 0.4717 of the SDE feature is the largest, and the trend
index (Tre) 0.8166 and robustness index (Rob) 0.9958 of the SDE feature are close to the
corresponding maximum 0.8166 and 0.9999, which indicates that the SDE feature has the
best state tracking performance. The MEI indices of F10 feature and LLE fusion feature
are close to that of SDE feature, and none of the remaining degradation features can fully
consider the monotonicity, robustness and trend of the degradation curve in the state
tracking process.

Table 1. The evaluation results of bearing fault state detection.

Feature Mon Rob Tre MEI  Feature Mon Rob Tre MEI
T1 0.0193 0.9628 0.6334 0.4252 F7 0.0030 0.9857 0.7152 0.4403
T2 0.0010 0.9640 0.6269 0.4151 E8 0.0050 0.9929 0.6680 0.4340

T3 RMS 0.0233 0.9594 0.6301 0.4255 F9 0.0030 0.9898 0.7144 0.4413
T4 0.0193 0.9628 0.6334 0.4252 F10 0.0417 0.9720 0.7189 0.4562
T5 0.0010 0.8725 0.1857 0.2994 F11 0.0193 0.9696 0.0374 0.3080

T6 Kurt 0.0091 0.8050 0.1129 0.2686  F12 0.0050 0.9689 0.0160 0.2964
T7 0.0111 0.9107 0.5107 0.3809 F13 0.0152 0.9713 0.6083 0.4206
T8 0.0111 09110 0.5112 0.3811 TF1 0.0356 0.9939 0.6055 0.4370
T9 0.0010 0.6239 0.3618 0.2600 TF2 0.0030 0.9205 0.1400 0.3057

T10 0.0233 0.9240 0.3962 0.3681 TE3 0.0233 0.9197 0.6577 0.4191
T11 0.0050 0.9919 0.6207 0.4242 TF4 0.0111  0.9286 0.4078 0.3657
T12 0.0111 0.9247 0.1883 0.3206 TF5 0.0071 0.8813 0.3607 0.3400
T13 0.0030 0.9211 0.3240 0.3426 TF6 0.0172 0.8879 0.7433 0.4236
T14 0.0050 0.9192 0.3784 0.3540 TE7 0.0010 09140 0.7462 0.4239
T15 0.0030 0.9775 0.5957 04139 TF8 0.0010 0.9069 0.7589 0.4243
T16 0.0132 09429 0.5453 0.3985 PCA 0.0050 0.5864 0.0114 0.1807
F1 0.0132 0.9634 05547 0.4065 LLE 0.0030 0.9999 0.8071 0.4629
F2 0.0132 0.9260 0.4199 0.3684 LLTSA 0.0010 0.5866 0.4686 0.2702
F3 0.0172 0.9885 0.6996 0.4451 SE 0.0091 0.9135 0.5620 0.3910
F4 0.0193 0.9833 0.6986 0.4443 PE 0.0091 0.9925 0.7807 0.4584
F5 0.0172 09814 0.7183 0.4467 DE 0.0111  0.9903 0.7028 0.4432
F6 0.0254 0.9813 0.5552 0.4181 SDE 0.0193 0.9958 0.8166 04717

The root mean square (RMS), kurtosis (Kurt) and entropy features can characterize the
energy characteristics, impact characteristics, and complexity characteristics of vibration
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signals, respectively. Therefore, Figure 6 shows the normalized degradation feature curves
of RMS, Kurt, SE, PE, and DE, as shown by the blue curve. In order to compare the
effectiveness of adaptive state warning lines based on different degradation features, the
state warning lines of the above features are given by red curves. At the same time,
Figure 6 also shows the normalized feature curve and corresponding state warning line
of the features with high MEI score, including LLE feature, F10 feature, and F5 feature.
Kurt’s feature curve and MEI indicators 0.2686 both show that Kurt has poor performance
in bearing condition detection. The RMS, SE, and PE feature curves can track the fault state
of the bearing, but their adaptive state warning lines (red curves) cannot detect the fault
warning point until after the 560th time point, and their MEI indicators 0.425, 0.391, and
0.458 are all small. The DE, LLE, F10, and F5 feature curves can better track bearing fault
state, and the corresponding state warning line can detect the fault warning point near the
540th time point, which advances the warning time by nearly 20 time points.
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Figure 6. Bearing fault feature curve (blue curve) and state warning line (red curve).

Figure 7 shows the normalized SDE and smooth SDE feature curves and the corre-
sponding adaptive state warning lines. With the increase of time point, the SDE feature
curve experienced a change process from falling to rising, and then rising to falling, and it
maintains the overall monotonicity. It can be seen from the smooth SDE feature state warn-
ing line that the bearing is in normal operation state within the time point range #1~#525,
and the 525th time point is the fault early warning point. The bearing is in a slight wear
state within the time point range #526~#768, the bearing is in a serious wear state within the
time point range #769~#979, and the bearing is completely damaged after the 980th time
point. As can be seen from the SDE feature state warning line, the 529th time point is the
fault warning point and the 764th time point is the severe wear point. Compared with the
fault points detected by the smooth SDE feature, the fault points detected by SDE feature
are relatively lagging, which indicates that the introduction of LOWESS can suppress the
influence of noise and burrs. In Table 1, the mixed evaluation index (MEI) of SDE feature is
the largest, and it can be seen from Figure 7 that the 529th time point and the 525th time
point are the fault warning points detected by the SDE and smooth SDE state warning
lines, respectively. Compared with the single features, mixed domain fusion features and
traditional entropy features, the proposed SDE feature can detect the fault warning point
of rolling bearing earlier. Therefore, SDE and smooth SDE features are effective fault state
detection methods, which can effectively track the state evolution process of bearing.
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Figure 7. SDE and Smooth SDE curve (blue curve) and corresponding state warning line (red curve).
(a) SDE; (b) smooth SDE.
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3.2. Check Valve Fault Detection and Practical Application

The above experiments show that SDE feature can track the running state of bearing
in laboratory environment more effectively. In order to verify the tracking performance of
SDE to the fault state of mechanical parts in industrial environment, the proposed method
is used to detect the fault degradation state of the check valve in the slurry transportation
environment.

The experimental data come from the GEHO-TZPM2000 diaphragm pump (WEIR
MINERALS NETHERLANDS B.V., EGTENRAYSEWEG 9 NL-5928 PH VENLO NETHER-
LANDS) of the DaHongShan slurry pipeline transportation system. The maximum pressure
of the main pump is 24.4 MPa, the working pressure range is 18~21 MPa, the transmission
elevation difference is 1520 m and the flow rate is 350 m? /h. The internal components of the
GEHO-TZPM2000 diaphragm pump include three feed check valves and three discharge
check valves. Figure 8(al,a2) show a discharge check valve and a feed check valve respec-
tively. The mechanical structure of the diaphragm pump check valve is shown in Figure 8b,
and the spool spring forms a weakly damped oscillation system. When the diaphragm
pump is running, the coordinated operation of the feed check valve and the discharge
check valve makes the slurry flow smoothly. The valve core of the check valve moves back
and forth in the valve chamber, the frequent contact between the valve core and the slurry
often causes damage to the valve core of check valve, and Figure 8c shows a valve core that
has been punctured. The sensor measuring point position and signal acquisition system
are shown in Figure 9, and six PCB 352C33 sensors (PCB PIEZOTRONICS, Buffalo, NY,
USA) are mounted on the shells of No. 1, No. 2, and No. 3 feed valves and No. 1, No. 2,
and No. 3 discharge valves respectively. The vibration signal of the No. 1, No. 2, and No.
3 feed valves are collected through 0, 2, and 4 channels of the PXI-3342 acquisition card
(Beijing Fanhua Hengxing Technology Co., Ltd, Beijing, China.), and the vibration signals
of the No. 1, No. 2, and No. 3 discharge valves are collected through channels 1, 3, and 5,
respectively. The sampling frequency is 2560 Hz and the data length is 76,800.

The vibration signal of the check valve is collected through a phased data acquisition
scheme. The check valve is in a safe operation state within the first 500 h, so the vibration
data is collected every 2 h to improve the data acquisition efficiency. The check valve may
be in an early fault state from the 500th hour to the 1000th hour, so the vibration data is
collected every 10 min. The check valve may be in a severe wear phase after the 1000th
hour, so vibration data is collected every 2 min. Then, 421 time point samples are selected
from all the time point samples obtained, and each time point sample contains 2048 data
points. The sampling data is shown in Figure 10. Different from the sampling data of the
bearing, the state degradation data of the check valve contains burrs and noise at any stage,
and the change of amplitude is irregular. Therefore, it is more difficult to detect the fault
state of the check valve compared with the bearing.
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Figure 8. The structure of the diaphragm pump and check valve. (al) discharge check valve; (a2) feed
check valve; (b) structure of check valve; (c) a valve core that has been punctured.
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(d)Stuck valve fault (e)Wear fault
Figure 9. Sensor measuring point, acquisition platform and fault check valve. (a) Inlet valve
measuring point; (b) Outlet valve measuring point; (c) Data acquisition device; (d) Stuck valve fault;
(e) Wear fault; (f) Worn valve seat; (g) Replaced check valve.
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Figure 10. Check valve sampling signal.

In order to verify the state tracking performance of the proposed SDE feature, it is
compared with time domain, frequency domain, time-frequency domain features, fusion
features and entropy features. For the check valve vibration signals from the first time
point to the 421th time point, the SDE features of the vibration signals at each time point
are extracted respectively, and an SDE degradation curve is obtained. Among them, the
first 7680 data points of the vibration signal at each time point are used to extract the fault
degradation features. Similarly, for the check valve vibration signals corresponding to
421 time points, their 16 time domain features (T1~T16), 13 frequency domain features
(F1~F13), 8 wavelet packet energy features (TF1~TF8), 3 mixed domain fusion features
based on PCA, LLE, and LLTSA, and 3 entropy features based on SE, PE, and DE can be
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obtained, and the state tracking performance of all the above degradation feature curves
can be evaluated by the mixed evaluation index (MEI).

As shown in Table 2, the monotonicity index (Mon) 0.0666, robustness index (Rob)
0.9494 and trend index (Tre) 0.6001 of the SDE feature are close to the corresponding
maximum 0.0761, 0.9999, and 0.6846, and the MEI 0.4382 of the SDE feature is the largest,
which indicates that the SDE feature has the best state tracking performance. In addition,
the MEIs of T11, DE, F3, and LLE features are 0.4132, 0.4125, 0.4087, and 0.4052, respectively,
which indicates that these features can also achieve good degradation state characterization
performance. In addition to SDE, DE, and LLE features, those features that can characterize
the operating state of the bearing cannot characterize the operating state of the check valve
effectively, such as RMS, SE, PE, F10, and F5. The results show that it is more difficult
to track the operating state of the check valve, and the single feature is only sensitive
to a specific degradation stage or a specific fault state. Although the fusion features
such as PCA, LLE, and LLTSA can characterize the fault state information of machinery,
these fusion features have strong relevance and redundancy. The MEI index of the 44
degradation features of the check valve is smaller than that of bearing, which indicates
that the degradation process of check valve is more complex and the state tracking is more
difficult. The reason is that the vibration signal of the check valve is affected by the slurry
scouring and multi-part vibration and has nonlinear and non-stationary characteristics,
and the traditional degradation features are not suitable for the fault state monitoring of
the check valve.

Table 2. The evaluation results of check valve fault state detection.

Feature Mon Rob Tre MEI Feature Mon Rob Tre MEI
T1 0.0380 0.8520 0.0652 0.2877 F7 0.0571 0.9479 0.3254 0.3780
T2 0.0285 0.8501 0.0620 0.2817 F8 0.0333 0.9745 0.3589 0.3808

T3 RMS 0.0142 0.8411 0.1026 0.2800 F9 0.0333  0.9621 0.2066 0.3466
T4 0.0380 0.8520 0.0652 0.2877 F10 0.0380 0.8982 0.3893 0.3663
T5 0.0428 0.6580 0.0841 0.2356 Fl11 0.0095 0.8498 0.3105 0.3218

T6 Kurt 0.0571 0.5694 0.0840 0.2162 F12 0.0190 0.7823 0.1837 0.2809
T7 0.0095 0.7583 0.5998 0.3522 F13 0.0047 0.8443 0.3905 0.3338
T8 0.0142 0.7584 0.5962 0.3539 TF1 0.0285 0.7802 0.6846 0.3952
T9 0.0190 0.6151 0.0824 0.2105 TF2 0.0238 0.7716 0.6425 0.3719

T10 0.0142 0.7518 0.0836 0.2494 TF3 0.0047 0.7035 0.4003 0.2935
T11 0.0047 09547 0.6221 0.4132 TF4 0.0047 0.7427 0.5321 0.3316
T12 0.0380 0.7902 0.6644 0.3889 TF5 0.0428 0.6275 0.4898 0.3076
T13 0.0095 0.7778 0.6722 0.3725 TF6 0.0047 0.6974 0.4431 0.3002
T14 0.0047 0.7746 0.6716 0.3691 TF7 0.0190 0.7107 0.3904 0.3008
T15 0.0142 0.8359 0.6561 0.3891 TF8 0.0047 0.7117 0.4510 0.3061
T16 0.0190 0.7838 0.6324 0.3711 PCA  0.0428 09920 0.0840 0.3358
F1 0.0142 0.8139 0.3309 0.3175 LLE 0.0071  0.9999 0.5083 0.4052
F2 0.0190 0.7601 0.0829 0.2541 LLTSA 0.0095 0.6520 0.1708 0.2345
F3 0.0047 0.9328 0.6328 0.4087 SE 0.0095 0.8861 0.3336 0.3373
F4 0.0142 09112 0.6350 0.4055 PE 0.0238 0.9742 0.4658 0.3973
F5 0.0761 0.9338 0.3794 0.3941 DE 0.0285 0.9581 0.5538 0.4125
F6 0.0285 0.8726 0.4408 0.3642 SDE 0.0666 0.9494 0.6001 0.4382

The RMS, Kurt, SE, PE, and DE features and their state warning lines are shown in
Figure 11. In addition, Figure 11 also shows the T11, F3 and LLE feature curves with
large MEI indexes. The RMS (MEI = 0.28), Kurt (MEI = 0.216), SE (MEI = 0.337), and PE
(MEI = 0.397) features that can characterize the degradation state of the bearing cannot
characterize the degradation state of the check valve, and these features can only detect the
abnormal state at the 178th or 179th time point. The feature curves of DE, T11, F3, and LLE
contain many burrs, and the phased variation of the curve is not obvious. In addition, the
state warning line of these four features contains several turning points. Based on this, it
can be determined that the fault warning point is roughly between the 170th time point
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and the 178th time point, and the check valve is in the severe wear phase between the 330th
time point and the 421st time point. This is due to the complex structure of the diaphragm
pump and the variability of influencing factors in the slurry transportation environment,
which makes it difficult to track the fault state of the check valve.
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Figure 11. Check valve fault feature curve (blue curve) and status warning line (red curve).

The fault features of the check valve are not obvious in the slurry transportation
environment. If the damage is not detected until it develops to a certain extent, the repair
time will be insufficient and the repair cost may increase exponentially. Figure 12 shows the
normalized SDE feature and smooth SDE feature of the check valve, and the corresponding
state warning lines (red curve). As shown in Figure 12a, the SDE feature is close to 1 and
the check valve is in a normal state from the first time point to the 169th time point. The
SDE feature has a significant decline in stages from the 170th time point to the 326th time
point, and the check valve may be in a state of slight wear. The decline of the SDE feature
is more obvious from the 327th time point to the 421st time point, and the check valve may
be in a state of severe wear. However, the SDE feature curve contains many burrs and
fluctuations, which makes it difficult to determine the fault warning point through the state
warning line, and the SDE feature can only detect the 170th time point as the state mutation
point. Therefore, it is particularly necessary to track the state of check valve through the
proposed smooth SDE. As shown in Figure 12b, the state warning line of smooth SDE can
detect that the 168th time point is the fault warning point, and the 318th time point is the
key state point. In addition, the smooth SDE feature can track the operation state of the
check valve effectively. The tracking results show that the check valve is in a normal state
from the first time point to the 168th time point, slightly worn from the 169th time point to
the 318th time point, and seriously worn from the 319th time point to the 421st time point.
Under the influence of noise and burrs, the smooth SDE feature and its state warning line
can track the degradation state of the check valve effectively and detect the fault warning
point earlier.
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Figure 12. SDE and SDE feature curve (blue curve) and corresponding state warning line (red curve).
(a) SDE; (b) smooth SDE.

3.3. Comparison and Discussion

Through the two sets of experiments, the effectiveness and superiority of the proposed
SDE and its adaptive state warning line have been proved. In order to further verify the
superiority of the method proposed in this paper, the proposed SDE is also compared with
the latest research results. Under the background of the same IMS bearing degradation
experiment, the SDE proposed in this paper (Figure 7) can detect the fault warning point
adaptively at the 525th time point. However, the energy moment entropy [22] proposed
by Gao cannot detect the fault warning point until the 538th time point. Similarly, the
oscillation based permutation entropy [13] proposed by Noman cannot detect the fault
warning point until the 533th time point. The results show that the SDE proposed in this
paper can detect the fault warning point of mechanical parts earlier and provide more
response time for the repair and replacement of parts. Although the complex wavelet
packet energy moment entropy [23] proposed by Shao can also detect fault warning point
at the 525th time point, the determination of the fault warning point depends on manual
experience and lacks an adaptive state warning line. In contrast, the method proposed in
this paper can track and detect early fault warning points adaptively. In addition, compared
with the latest research results, the proposed SDE has a high tracking efficiency, and the
smoothness and effectiveness of the SDE tracking curve are significant. To sum up, the
proposed fault state detection method based on SDE has outstanding effectiveness and
superiority.

4. Conclusions

In this paper, a fault state detection and evaluation method based on SDE is proposed,
which can track the degradation state of bearing and check valve and detect the operation
state of mechanical parts at the current time. Through the analysis of the IMS bearing data
in the laboratory environment and the check valve data in the industrial environment, the
effectiveness of the proposed method is proved. By comparing the proposed SDE with
single features, fusion feature and traditional entropy feature, the following conclusions
can be drawn.

(1) In the condition monitoring of check valve and bearing, the MEI scores of SDE
features are 0.4382 and 0.4717, respectively, and these two scores are much higher than
those of single features, fusion features, and traditional entropy features. The results show
that sliding window down-sampling improves the trend of degradation features, TANSIG
mapping enhances the performance of SDE features to characterize degradation states, and
the introduction of LOWESS improves the anti-interference performance of features. The
SDE feature and its state warning line can effectively track the operation state of the check
valve and determine the fault warning point earlier.

(2) The reason why the MEI scores of the 44 degradation features of the check valve
is smaller than that of the 44 degradation features of the bearing is that the vibration
signal of check valve in industrial environment is affected by factors such as slurry erosion
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and multi-part vibration. Even so, the proposed smooth SDE feature can still detect the
degradation state of the check valve effectively.

(3) A new method for fault detection of mechanical parts is proposed in this paper,
which can not only guide the formulation of maintenance and replacement plan, but also
improve the operation safety of diaphragm pump and other equipment. Next, we will
study the fault trend prediction methods and early fault diagnosis techniques.
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