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Abstract: In the present work, an advanced technique was applied to coat an Al 2024 alloy with a
surface composite layer reinforced with various nanoparticles. The surface of Al 2024 aluminum
alloy was modified with Ta2C, Al2O3 and multi wall carbon nanotubes MWCNTs nanoparticles by
friction stir process (FSP). An improvement in the surface of the fabricated nanocomposite due to
the refinement of the microstructure grains was achieved. In addition, a significant improvement
in the hardness and wear behavior was observed. The reinforcement particles were incorporated
into double and triple hybrid composite particles to determine the most effective combination for the
controlled properties. The results showed that for the composite reinforced with a double hybrid of
Al2O3 and MWCNTs, the microstructure grains of the fabricated nanocomposite surface were refined
by 40 times. The hardness was significantly improved, i.e., it was increased by 48% by incorporating
the triple reinforcement (Ta2C, Al2O3, and MWCNTs) into the surface of Al 2024 aluminum alloy.
The results of wear properties were in agreement with the results of hardness; the maximum wear
resistance was obtained for Al 2024-Ta2C + Al2O3 + MWCNTs, and the wear rate was reduced by
11 times.

Keywords: metal matrix composites (MMCs); wear resistance; ceramics; nanoconfinement; grain
refinement; friction stir processing

1. Introduction

The incorporation of one or more different reinforcing particles into metals greatly
improves the fabricated metal matrix composite [1,2]. A light metal matrix alloy such
as aluminum matrix composites AMMCs has attracted much attention in contemporary
engineering [3,4]. Due to its light weight and unique mechanical properties, aluminum alloy
is the ideal choice for the fabrication of metal composites using various techniques [5,6].
The fabrication of metal matrix hybrid composites has become more accessible in recent
years due to the revolution in fabrication and processing techniques such as FSP, laser
melting, etc. [7,8]. The FSP process is considered one of the most effective methods for
fabricating metal matrix composite surfaces because of its ability to introduce various
reinforcing nanoparticles into the metal base without significant obstacles during the
fabrication process [9,10]. The FSP method has been used to improve and modify the
surface properties of processed aluminum alloys by using reinforced particles and ceramic
materials such as Al2O3, B4C, SiC, VC, CWNTs, TiB2 and others [11–18]. The hybrid
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composites exhibit excellent strength properties, uniformity and significantly improved
microstructural behavior. SiC and Al2O3 nanoparticles have been used to improve the
wear resistance and microhardness of an aluminum alloy [19]. Moreover, the refinement
of microstructure significantly affects the mechanical properties due to equiaxed grains
produced by FSP process or by the addition of chemical modifiers [20–22].

One of the most difficult goals of researchers is to improve the wear resistance of
aluminum alloys and their composites. Several authors have addressed this problem in the
literature, for example [10,23–31]. The reinforcement particles have been incorporated into
mono and hybrid composites to improve the surface of the aluminum matrix. The hard
ceramic particles such as SiC and other similar particles significantly affect the hardness,
but on the contrary, the wear resistance has not improved noticeably [32]. By using
hybrid reinforcement particles such as Cr and SiC, the wear performance of the Al-Si alloy
was improved by using the standard casting process. Due to their exceptional hardness,
the SiC/Cr particles significantly limit the scratching of the composite surface [33]. The
hardness behavior of the hybrid composite of CNTs/Al2O3-Al 365 was improved by the
infiltration technique; thus, it reached 110 of 52 HV, the compressive strengths of the hybrid
MMCs increased with increasing Al2O3 content [34]. Therefore, the previous works in the
literature investigated the mechanical properties, microstructure and wear behavior of
the hybrid composite matrices using similar reinforcement particles. In the current work,
we focus on using different types of reinforcement particles with different properties and
morphologies of particle shapes to investigate their effects on the mechanical properties,
microstructure and wear behavior. Moreover, the FSP approach has been used to fabricate a
novel hybrid metal composite matrix consisting of three different families of reinforcement
particles (Ta2C + Al2O3 + MWCNTs)/Al 2024.

2. Materials and Methods

Al 2024 aluminum sheets were used to prepare nanocomposites with aluminum metal
matrix surfaces. The chemical composition of the Al 2024 alloy sheets in the as-prepared
state is shown in Table 1. The surface of the base alloy was reinforced with MWCNTs and
Al2O3 nanoparticles and Ta2C particles supplied by Nanoshel-UK-Ltd (Congleton, UK).
The densities of the particles used are listed in Table 2. The process was carried out using
the Friction Stir Processing (FSP) technique via an automatic milling machine (Bridgeport,
Elmira, NY, USA) to produce the nanocomposite surface on the Al 2024 alloy sheets. The
typical fabrication process of the nanocomposite surface using the friction stir process (FSP)
is illustrated in Figure 1a.

Table 1. Chemical composition of the as-received Al 2024 aluminum wt.%.

Cu Mg Mn Si Fe Al

4.1 1.6 0.3 0.1 0.1 Balance

Table 2. The densities of the Al 2024 aluminum alloy and the reinforcement particles.

Element Density, g/cm3

Al 2024 2.78

Ta2C 14.30

Al2O3 3.90

MWCNTs 2.10
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Figure 1. (a) Typical fabrication process of the nanocomposite surface using the friction stir process 
(FSP), and (b) design of the FSP tool. 

The rotational speed of the FSP tool was 1100 rpm, the linear traverse speed was 30 
mm/min, and the tilt angle was 1°, which were chosen according to [35]. Figure 1a shows 
the fabrication of the nanocomposite surface using the FSP. A triangular conical pin was 
used to stir the mixture; the design and dimensions of the tool are shown in Figure 1b. 
The plates were drilled to a depth of 5 mm and a diameter of 2 mm. Two methods were 
used to introduce the reinforcing nanoparticles into the grooved holes: In the first method, 
two mixed reinforcing particles (dual hybrid composites) such as Ta2C + Al2O3, Ta2C + 
MWCNTs, Al2O3 + MWCNTs were used. In the second case, the three additives were com-
bined to prepare a triple hybrid composite of Ta2C + Al2O3 + MWCNTs (Table 3). In addi-
tion, the hybrid particles were mixed before being added to the primary matrix. 

Table 3. The combination of the reinforcement particles into the Al 2024 aluminum alloy matrix. 

Al 2024-H1 Ta2C + Al2O3 Al 2024-H3 Al2O3 + MWCNTs 
Al 2024-H2 Ta2C + MWCNTs Al 2024-H4 Ta2C + Al2O3 + MWCNTs 

The Al2O3, MWCNTs and Ta2C particles were examined by transmission electron mi-
croscopy (TEM, JSM -200F, JEOL, Tokyo, Japan). For TEM characterization, a Branson type 
ultrasonic bath (CPX5800H-E, Emerson, St. Louis, MO, USA) was used to thoroughly dis-
perse the particles in a combination of ethyl alcohol and deionized water. The sample was 
then loaded onto copper-coated carbon grids of size 200 mesh. The TEM analyzes show 
the different morphologies of the nanomaterials. Thin cylinders characterize MWCNTs. 
Voluminous spheres characterize Ta2C particles. The average particle size of Al2O3 and 
Ta2C was 17.3 ± 2 nm and 280 ± 4.5 nm, respectively, while the size of MWCNTS was 40 ± 
3 nm inner diameter and 80 ± 6 nm outer diameter. Scanning electron microscopy (SEM; 
XL30, Philips, Amsterdam, The Netherlands) and optical microscopy (Olympus BX51, Mi-
ami, FL, USA) were used to investigate the microstructure of the generated surface 
nanostructures. The samples for microstructure analysis were mechanically ground and 
polished and then etched; the preparation procedures were described in detail in [36] . In 
addition, the Rockwell hardness testing machine (True Blue United Testing Systems, 
Devens, MA, USA) was used to determine the Vickers microhardness according to the 
ASTM E-384-17 specification [15]. To establish the hardness profile, the Vickers micro-
hardness readings had to be measured on the entire specimen surface in all machining 
areas.The wear test was performed for 10 min at 256 rpm with a load of 0.3 bar on a 316 
stainless steel cylinder (200 mm diameter) in accordance with ASTM G99-04A [37] at room 
temperature. Prior to each test, the cylinder was cleaned with acetone to remove surface 
contaminants; hence the wear specimens used in this method acted as a pin. At ordinary 

Figure 1. (a) Typical fabrication process of the nanocomposite surface using the friction stir process
(FSP), and (b) design of the FSP tool.

The rotational speed of the FSP tool was 1100 rpm, the linear traverse speed was
30 mm/min, and the tilt angle was 1◦, which were chosen according to [35]. Figure 1a
shows the fabrication of the nanocomposite surface using the FSP. A triangular conical pin
was used to stir the mixture; the design and dimensions of the tool are shown in Figure 1b.
The plates were drilled to a depth of 5 mm and a diameter of 2 mm. Two methods were
used to introduce the reinforcing nanoparticles into the grooved holes: In the first method,
two mixed reinforcing particles (dual hybrid composites) such as Ta2C + Al2O3, Ta2C +
MWCNTs, Al2O3 + MWCNTs were used. In the second case, the three additives were
combined to prepare a triple hybrid composite of Ta2C + Al2O3 + MWCNTs (Table 3). In
addition, the hybrid particles were mixed before being added to the primary matrix.

Table 3. The combination of the reinforcement particles into the Al 2024 aluminum alloy matrix.

Al 2024-H1 Ta2C + Al2O3 Al 2024-H3 Al2O3 + MWCNTs

Al 2024-H2 Ta2C + MWCNTs Al 2024-H4 Ta2C + Al2O3 + MWCNTs

The Al2O3, MWCNTs and Ta2C particles were examined by transmission electron
microscopy (TEM, JSM -200F, JEOL, Tokyo, Japan). For TEM characterization, a Branson
type ultrasonic bath (CPX5800H-E, Emerson, St. Louis, MO, USA) was used to thoroughly
disperse the particles in a combination of ethyl alcohol and deionized water. The sample
was then loaded onto copper-coated carbon grids of size 200 mesh. The TEM analyzes show
the different morphologies of the nanomaterials. Thin cylinders characterize MWCNTs.
Voluminous spheres characterize Ta2C particles. The average particle size of Al2O3 and
Ta2C was 17.3 ± 2 nm and 280 ± 4.5 nm, respectively, while the size of MWCNTS was
40 ± 3 nm inner diameter and 80 ± 6 nm outer diameter. Scanning electron microscopy
(SEM; XL30, Philips, Amsterdam, The Netherlands) and optical microscopy (Olympus
BX51, Miami, FL, USA) were used to investigate the microstructure of the generated surface
nanostructures. The samples for microstructure analysis were mechanically ground and
polished and then etched; the preparation procedures were described in detail in [36]. In
addition, the Rockwell hardness testing machine (True Blue United Testing Systems, De-
vens, MA, USA) was used to determine the Vickers microhardness according to the ASTM
E-384-17 specification [15]. To establish the hardness profile, the Vickers microhardness
readings had to be measured on the entire specimen surface in all machining areas.The
wear test was performed for 10 min at 256 rpm with a load of 0.3 bar on a 316 stainless steel
cylinder (200 mm diameter) in accordance with ASTM G99-04A [37] at room temperature.
Prior to each test, the cylinder was cleaned with acetone to remove surface contaminants;
hence the wear specimens used in this method acted as a pin. At ordinary room tempera-
ture, the friction coefficient was measured by pin-on-disk tribometers (CSM Instruments,
Peseux, Switzerland).
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3. Results and Discussion

Increasing the mechanical properties and improving the wear resistance of Al 2024
aluminum alloy should not be accompanied by an increase in weight, which is considered
one of the benefits of this alloy. Thus, it is essential to calculate the increase in the density
of the manufactured composites.

The manufactured composite’s volume can be calculated as in Equations (1) and (2):

volume o f composite (VC) = Volume o f particles (Vp) + Volume o f matrix (Vm) (1)

VC = projected area o f tool × length o f the processed composite (2)

Equations (3) and (4) can be used to calculate the volume of the nano-reinforcements
and the base matrix:

Vp = o f holes along the processed composite × volume o f each hole (3)

Vm = Vc − Vp (4)

Thus, Equations (5) and (6) can be used to determine the volume fraction of the
nano-reinforcements and the base matrix:

Volume f raction o f particles (VFp) =
Vp

VC
(5)

Volume f raction o f matrix VFm =
Vm

VC
(6)

After determining the volume of nano-reinforced particles and the base matrix, the the-
oretical density of the produced composite can be calculated using the following equations
(Equations (7) and (8)):

Density o f composite (ρc) =
Mass o f composite (Mc)

Volume o f composite (Vc)
=

Mp + Mm

Vc
(7)

ρc =

(
ρp × Vp

)
+ (ρmVm)

Vc
(8)

The theoretical densities of the fabricated surface nanocomposites reinforced with
hybrid and tripod nanoparticles are summarized in Table 4. The reinforcement nanoparti-
cles accounted for 11.7% of the volume of the fabricated nanocomposites. In general, the
reinforcement of the Al 2024 aluminum alloy matrix with hybrid or triple components
increased the densities of the fabricated surface nanocomposites (Table 4, last column). The
increase in densities with respect to the base matrix alloy is shown in Figure 2. Due to its
high density, Ta2C has a significant effect on increasing the density of the fabricated surface
nanocomposites containing Ta2C. The maximum increase in density, 27%, was obtained
when H1, Ta2C and Al2O3 were incorporated, while the minimum increase in density, 1%,
was recorded when H3, Al2O3 and MWCNTs were used as reinforcement materials.

Table 4. Fabricated surface nanocomposites’ density.

Composite
ρp,

g/cm3
Vp,
cm3

ρM
g/cm3

Vm
cm3

Vc
cm3

ρc
g/cm3

Al 2024-H1 9.1 0.44 2.78 3.33 3.77 3.52
Al 2024-H2 8.2 0.44 2.78 3.33 3.77 3.41
Al 2024-H3 3.0 0.44 2.78 3.33 3.77 2.81
Al 2024-H4 6.8 0.44 2.78 3.33 3.77 3.25
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4. Microstructure Analysis

The TEM image of the reinforcing particles is shown in Figure 3. Al2O3 and MWCNTs
appear in nano size, while Ta2C can be seen in microparticle size. Figure 4 shows the
microstructure of Al 2024 aluminum alloy sheets in the initial state and after friction stir
processing without reinforcement. The microstructure of the as-prepared samples shows
elongated, non-recrystallized grains due to the cold rolling process (Figure 4a). It can be
observed that the intermetallic phases [1] formed in the aluminum matrix were coarse
and unevenly distributed in the as-rolled specimens after the rolling process (Figure 4a).
The microstructure was significantly changed after the friction stir processing. Specific
microstructure regions were formed after the friction stirring process: the heat-affected
zone (HAZ), the thermomechanical heat-affected zone (TMAZ), and the stirred or nugget
zone (SZ), as shown in Figure 4b. Extreme plastic deformation generated additional heat in
the stirred zone during the friction stirring process, resulting in a dynamically recrystallized
(DRX) grain (Figure 4 area 2). This hypothesis explains why the stirred zone consists of
uniformly equiaxed grains rather than the base metal (BM). Due to the plastic deformation
and heat flux generated (Figure 4 area 1). The material was subjected to thermal cycling
in the heat-affected zone without plastic deformation, resulting in the only insignificantly
altered microstructure.
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Figure 5 shows the microstructure of the fabricated surface nanocomposites for nano-
reinforcements, H1 (Figure 5a), H2 (Figure 5b), H3 (Figure 5c), and H4 (Figure 5d). In
general, the incorporation of nano-reinforcements into the studied metal matrix, Al 2024,
resulted in significant grain refinement in the stirred zone. It is known that the presence
of nano-reinforcement particles in the metal matrix during the stirring friction process
increases the nucleation centers, resulting in many new grains. Moreover, the nano-
reinforcements prevent grain growth in the stirred zone after the dynamic recrystallization
process (DRX) [38]. The average grain size and corresponding aspect ratio of the starting
material after FSP and the fabricated surface nanocomposites are listed in Table 5. It
can be observed that the average grain size decreased greatly after FSP. Moreover, the
grains are almost equiaxed with an aspect ratio of about ≈1. The reinforcing particles
have led to further refinement in addition to the pure FSP effect. Figure 6 shows the grain
size refinement of the FSP treated and the fabricated composites with respect to the Al
2024 alloy aluminum sheet in the as-prepared condition. After the FSP process, the grains
were refined by 22 times of the initial Al 2024 alloy aluminum sheet. The grain refinement
in the produced composites varies between 33 and 40 times, depending on the type of
reinforcement particles.

Table 5. The average grain size of the as-received alloy, after FSP, and manufactured surface nanocomposites.

– Al 2024-BM Al 2024-FSP Al 2024-H1 Al 2024-H2 Al 2024-H3 Al 2024-H4

Average Grain size, µm 180 ± 40 7.5 ± 1.5 4.8 ± 1.1 5.4 ± 1.1 4.4 ± 0.9 4.6 ± 0.8

Aspect ratio
(length/width) 5.5 1.02 1.1 1.05 1.02 1.02
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Figure 7 shows the SEM and Energy Dispersive X-Ray Spectroscopy EDS mapping im-
ages of the fabricated hybrid triple particle reinforced surface nanocomposite, Al 2024-H4.
In this study, the EDS mapping showed the distribution of the reinforcement particles, the
accumulation of the unwanted clusters of the reinforced nanoparticles. It is found that the
Ta2C particles are uniformly distributed in the matrix. The results of SEM and EDS verified
the incorporation of the reinforcements into the fabricated surface nanocomposite. After
FSP, the distribution of Al2O3 nanoparticles and MWCNTs in the Al 2024-H4 composite
was uniform; no aggregation or accumulation of these particles was observed. A small
amount of Ta2C was found to be aggregated in the fabricated surface nanocomposite, which
was due to the large size of these particles. In general, most of the Ta2C was uniformly
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distributed in the matrix. The uniform distribution of the reinforcement particles in the
SZ positively affected the properties of the fabricated composites, such as the hardness
and wear behavior. The more uniform the distribution of reinforcement particles is, the
more uniform and regular the properties are throughout the SZ. Therefore, the uniform
distribution of reinforcement particles is a key issue and challenge in the fabrication of
composites, which has been achieved here.
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5. Hardness Characterization

Figure 8 illustrates the Vickers microhardness profiles and the improvements in the
hardness of the Al 2024 aluminum alloy sheet. The average hardness of the as-prepared Al
2024 aluminum alloy sheets was 97 ± 5 HV. After FSP, the hardness values in SZ decreased
due to the softening effect in SZ (Figure 8a) [37,39,40]. The decrease in hardness values was
about 20% compared to BM (Figure 8b). The addition of reinforcing nanoparticles improved
the hardness in the SZ, and the improvement in hardness was significantly dependent on
the type of reinforcing nanoparticles. In general, the surface nanocomposites reinforced
with Ta2C, Al 2024-H1, H2, and H4 exhibited high hardness in the SZ (Figure 8a), while the
Al 2024-H3 composite showed less improvement. The maximum improvement in hardness
was observed for Al 2024-H4; it was 48% higher than Al 2024 base alloy (Figure 8a).
Reinforcement of a hybrid of Al2O3 and Ta2C resulted in a hardness improvement of 36%
over the Al 2024 alloy. It can be observed that the thermomechanical and heat-affected
zones are the weakest areas since no nanoparticles were reinforced in these areas. Moreover,
the elongated grains, which were partially restored, resulted in lower hardness in these
areas (Figure 8a). Another important observation was the slight fluctuation in hardness
in the SZ of all the composites prepared, which confirmed the uniform distribution of the
reinforced nanoparticles in the SZ.

Figure 9 shows the experimental wear rate due to weight loss and the improvements
in wear rate with respect to the base alloy. The wear rate of Al 2024 aluminum alloy plates
was 0.065 mg/s. After FSP, the wear rate decreased to 0.0183 mg/s, which was due to
the refinement in SZ and the uniform distribution of the intermetallic in SZ compared
to BM (Figure 9a). The introduction of reinforcing nanoparticles into the Al 2024 matrix
resulted in a significant decrease in the wear rate of the fabricated composites. The type
of reinforcing nanoparticles played a major role in improving the wear resistance of the
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fabricated composites. The wear rate was compatible with the hardness results. The
surface nanocomposites reinforced with Ta2C, Al 2024-H2, H1 and H4 exhibited a lower
wear rate in SZ (Figure 9a). The lowest wear rate was observed for Al 2024-H4; the wear
resistance was 11 times higher than BM (Figure 9b). The highest wear rate, 0.00733 mg/s,
was obtained by adding H3.
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Figure 10 shows the profile of the coefficient of friction as a function of sliding time.
The coefficient of friction shows a slightly increasing trend. After the transition period,
the rough trend of the curve becomes stable, indicating that the wear rate has changed
from the initial wear in the transition state to the steady-state wear rate. In addition, the
surface roughness parameters play an important role in evaluating the friction coefficient;
therefore, the initial transition wear rate lasts longer than that of the composites with lower
roughness. The presence of MWCNTs particles in the hybrid composite matrix decreases
the value of the friction coefficient. Figure 11 shows the average value of the coefficient
of friction. Accordingly, the hybrid composite Al 2024-H3 exhibits the lowest coefficient
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of friction among the specimens investigated. The coefficient of friction increased due
to the additional grain refinement that occurred in the stirred zone, as seen in the FSPed
sample, which has the highest value due to the extra plastic deformation that occurred in
the absence of the reinforcing particles. These results were confirmed by the curve of the
hardness profile described in the previous section.
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6. Conclusions

Different dual and triple reinforcing nanoparticles strengthened the aluminum alloy
sheets Al 2024 by friction stirring method. In this study, Ta2C + Al2O3, Ta2C + MWCNTs,
Al2O3 + MWCNTs and Ta2C + Al2O3 + MWCNTs were used as reinforcement combinations.
The physical (density), mechanical, and wear behavior of the fabricated composites were
characterized. After analyzing the data, we can conclude that:

• The incorporation of the different dual and triple reinforcement increased the density
of the fabricated composites. The Ta2C particles were the most important reinforce-
ment in increasing the density as they have extremely high density compared to the
other reinforcement materials. The maximum increase in density, 27%, was observed
for Al 2024/Ta2C + Al2O3, while the minimum, 1%, was observed for Al 2024/Al2O3
+ MWCNTs.

• The incorporation of reinforcement nanoparticles into the studied metal matrix re-
sulted in additional grain refinement in the stirred zone compared to the FSP samples.
The average grain size in the SZ of the fabricated composites was 33-40 times smaller
than that of the as-prepared aluminum alloy sheet Al 2024. The maximum taper
was observed for Al 2024-H3 (Al2O3 + MWCNTs); this can be attributed to the size
of the reinforcement nanoparticles. The SEM and EDS also confirmed the uniform
distribution of all particles in the matrix.

• The reinforcement of Al 2024 alloy with these particles significantly increased the
hardness in the SZ. The presence of the triple reinforcement, Al2O3 + MWCNTs +
Ta2C, resulted in a maximum hardness enhancement of 48%. The minimum hardness
enhancement, 20%, was observed for the dual hybrid Al2O3 + MWCNTs particles.

• The wear results were compatible with the hardness results. The incorporation of
reinforcing nanoparticles in the studied metal matrix increased the wear resistance of
this alloy. The maximum improvement in wear, 11 times of BM, was obtained by the
addition of triple reinforcement, Al2O3 + MWCNTs + Ta2C. The minimum increase in
wear resistance was found to be eight times that of the base metal alloy, which was
achieved by double reinforcement of Al2O3 and MWCNTs nanoparticles.
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