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Abstract: In this paper, the slump flow and mechanical strengths (compressive and flexural strengths)
of the reactive powder concrete (RPC) with rice husk ash (RHA) and waste fly ash (WFA) were
investigated. The following corrosion resistance of steel bars-reinforced specimens was researched.
The ultrasonic sound, the mass loss rate, the electrical resistance, and the electrical resistance time
history curves were determined to reflect the corrosion resistance of steel bars. The influence of NaCl
freeze–thaw cycles and dry–wet alternations was considered. Results showed that the addition of
RHA and WFA demonstrated a negative effect on the fluidity of fresh RPC. The fluidity of fresh
RPC with WFA was lower. Moreover, RHA and WFA could effectively improve the mechanical
strengths of hardened RPC, and the enhancing effect of RHA was higher. The increasing dosage of
RHA could improve the corrosion resistance of steel bars in RPC when the specimens were exposed
to the environment of NaCl freeze–thaw cycles and dry–wet alternations. However, when WFA
was added, the effect was the opposite. The steel bars in RPC corroded more seriously when the
specimens were exposed to the environment of NaCl dry–wet alternations than the environment of
NaCl freeze–thaw cycles.

Keywords: reactive powder concrete; rice husk ash; waste fly ash; corrosion resistance; electrical re-
sistance

1. Introduction

Billions of tons of waste fly ash and rice husk ash are produced due to the generation
of domestic refuse and agricultural production. Waste fly ash and rice husk ash are solid
wastes that pollute the environment without reasonable treatment. The burned waste fly
ash can pollute water source when buried in soil, while the rice husk ash easily causes
haze. If the solid waste can be recycled, the pollution of solid dust will be alleviated.
Moreover, the reuse of solid dust will provide more resources for human production and
construction [1–4]. Cement concrete is the main construction building material, which has
been used for many years. Massive pollution comes into being during the production and
application of construction materials. Moreover, the production of construction materials
leads to the cost of natural resources and energy. Therefore, the development of suitable
raw materials is necessary [5–7].

Waste fly ash and rice husk ash possess a large number of active ingredients that may
be advantageous to the cement hydration. Based on this reason, the addition of waste fly
ash and rice husk ash can be used as active admixtures [8,9]. Hrvoje et al. reported that the
rice husk ash with rich amorphous silica can promote the cement hydration and enhance
the mechanical strengths of cement concrete [10]. Moreover, prior research pointed out that
the addition of the rice husk ash was able to improve the corrosion resistance of steel bars
in the cement concrete [11]. Moreover, Sharma et al. confirmed that the addition of rice
husk ash could effectively prevent shrink and decrease the cracks of cement concrete [12].
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The waste fly ash with a large amount of active substances was able to replace some
cement. Furthermore, the waste fly ash could be applied in the preparation of 3D printable
concrete [13]. However, the fluidity of cement concrete could be decreased by the addition
of waste fly ash. Additionally, the cement concrete with waste fly ash may release some
toxic substances and may pollute the environment [14,15]. Although the application of
solid wastes (waste fly ash and rice husk ash in the cement concrete) have been reported,
little attention has been paid to the research of the use of waste fly ash and rice husk ash in
the durability of reactive powder concrete.

Researchers [16–21] found that the addition of rice husk ash with a pozzolanic effect
could effectively increase the compactness of hydration products, thus improving the
mechanical strength and the resistance of chloride ion permeability and carbonation.
Moreover, as reported in some journals [22,23], the addition of rice husk ash could decrease
the freeze–thaw damage. Furthermore, cement concrete with a low dosage (mass loss
ratio by total binder materials lower than 10%) of rice husk ash could decrease the water
permeability and freeze–thaw damage. Although some research about the durability of
cement concrete with rice husk ash were reported, little attention was paid to the research
on the external erosion of sodium chloride on the degradation of cement concrete with husk
ash. Additionally, the waste fly ash possessing many metal elements may endanger the
durability; little research about this topic is reported [24,25]. Cement concrete is generally
prepared with steel bars during its operation. The steel bars corroded seriously when
applied in a marine environment [26,27]. The research on the corrosion of steel bars’ inner
reactive powder concrete with waste fly ash and rice husk ash is a novel topic and is
discussed in this study.

This paper is devoted to the study of the mechanical strengths of reactive powder
concrete with the addition of rice husk ash and waste fly ash. The following corrosion
resistance of inner steel bars exposed to the environment of NaCl freeze–thaw cycles and
dry–wet alternations was investigated. The concentration of sodium chloride solution in
this study was 3%. The ultrasonic velocity, mass loss, and electrical parameters (electrical
resistivity and electrical resistance time history curves) were determined to reflect the
corrosion resistance of specimens. This thought of the thesis will provide a view of the
application of rice husk ash and waste fly ash in the future.

2. Experimental
2.1. Raw Materials

Ordinary Portland cement (OPC) provided by Anhui Conch Cement Co., Hefei,
China, was applied to manufacture the reinforced reactive powder concrete (RPC) with
rice husk ash and waste fly ash. Mineral admixtures including silica fume and Ground
Granulated Blast Furnace Slag (GGBS), offered by Lingshou Aihong mineral products Co.,
Ltd., Lingshou, China, were applied to manufacture RPC. The specific surface areas of
silica fume and GGBS were 15 m2/g and 436 m2/kg. Meanwhile, their corresponding
densities were 2.2 g/cm3 and 2.9 g/cm3. Quartz sand composed of 99.6% SiO2, 0.02%
Fe2O3, and other ingredients was used as aggregate. Quartz sand shows the particle sizes
of 1~0.71 mm, 0.59~0.35 mm, and 0.15~0.297 mm. The mass ratios of quartz sand with
particle sizes of 1~0.71 mm, 0.59~0.35 mm, and 0.15~0.297 mm were 1:1.5:0.8. Rice husk
was provided by Jiangsu Province. The rice husk was burned at the temperature of 500 ◦C
for 2 h. The residue was calcined and ground in a vibrating mill for 15 min. After all
these steps were finished, the rice husk ash (RHA) formed. The specific surface area of
rice husk ash was 54 m2/g. The waste fly ash (WFA) with the specific surface area of
18 m2/g, produced by Shanghai Pudong New Area Yuqiao domestic waste incineration
plant, Shanghai, China, was used in this experiment. The WFA was treated by wet grinding
with a ball mill before use. The RHA and WFA were dried in a vacuum oven at 105 ◦C
to a constant weight. The chemical compositions of WFA and RHA were determined by
X-ray fluorescence spectrometer. Tables 1 and 2 show the composition and the particle size
distribution, respectively.



Coatings 2021, 11, 1480 3 of 14

Table 1. Chemical composition of the cementitious materials/%.

Types SiO2 Al2O3 Fe2O3 MgO CaO SO3 Ti2O CdO Cr2O3 PbO CuO ZnO

WFA 22.47 4.46 0.94 / 20.31 9.25 10.24 0.07 0.09 0.09 0.09 0.52
RHA 91.56 0.19 0.17 0.65 1.07 0.47 / / / / / /
OPC 20.86 5.47 3.94 1.73 62.23 2.66 / / / / / /
GGBS 34.06 14.74 0.23 9.73 35.93 0.23 3.51 / / / / /
SF 90 0.2 0.6 0.2 0.4 0 7.4 / / / / /

Table 2. Particle passing percentage of the cementitious materials/%.

Types
Particle Size/µm

0.3 0.6 1 4 8 64 360

WFA 0.13 0.46 2.15 17.21 31.34 97.52 100
RHA 0 0.58 6.84 18.32 32.14 96.32 100
OPC 0 0.33 2.66 15.01 28.77 93.59 100

GGBS 0.025 0.1 3.51 19.63 35.01 97.9 100
SF 31.2 58.3 82.3 100 100 100 100

2.2. Specimen Preparation and Measurement Methods

The samples of RPC with WFA and RHA were prepared according to the mixing
proportions. The solid raw materials were added to the UJZ-15 mortar mixer provided by
Cangzhou Shengkai Instrument Equipment Co., Ltd., Cangzhou, China, and mixed for
1 min. After the mixing, the uniformly mixed mixture of water reducer and water was
added to the raw materials and mixed for another 5 min. After the mixing was finished,
all fresh paste was poured to form the specimens with sizes of 50 mm × 50 mm × 50 mm
and 40 mm × 40 mm × 160 mm. Specimens with a size of 50 mm × 50 mm × 50 mm were
used for the determination of electrical parameters and ultrasonic velocity. Meanwhile, the
specimens with a size of 40 mm × 40 mm × 160 mm were used for the measurement of
mechanical strengths. Table 3 shows the mixing proportions of RPC per 1 cubic meter. All
specimens were manufactured according to Table 3. The dosages of WFA and RHA ranged
from 0% to 25% by the mass ratio of the total binder materials.

Table 3. The mixing proportions of RPC per 1 cubic meter (kg).

Water OPC WFA RHA SF GGBS Quartz Sand Water-Reducer

244.4 740.7 0 0 370.3 111.1 977.9 16.3
244.4 679.6 61.1 0 370.3 111.1 977.9 16.3
244.4 618.5 122.2 0 370.3 111.1 977.9 16.3
244.4 557.4 183.3 0 370.3 111.1 977.9 16.3
244.4 496.3 244.4 0 370.3 111.1 977.9 16.3
244.4 435.2 305.5 0 370.3 111.1 977.9 16.3
244.4 740.7 0 61.1 370.3 111.1 977.9 16.3
244.4 679.6 0 122.2 370.3 111.1 977.9 16.3
244.4 618.5 0 183.3 370.3 111.1 977.9 16.3
244.4 557.4 0 244.4 370.3 111.1 977.9 16.3
244.4 496.3 0 305.5 370.3 111.1 977.9 16.3

The slump flow of fresh RPC paste was determined by GB/T2419-1994 Chinese
standard [28]. The compressive and flexural strengths of specimens were tested by the
YAW-300 microcomputer full-automatic universal with the loading speed of 0.05 KN for the
determination of flexural strength and the loading speed of 2.4 KN for the measurement of
compressive strength. The measurement of mechanical strengths was carried out according
to GB/T17671-1999 Chinese standard [29]. All specimens were cured in the standard curing
environment (temperature of 20 ± 2 ◦C and relative humidity of above 95%) for 28 days.

A plain, round reinforcement with the diameter of 8 mm was fixed to the axis position
of the mold for researching the corrosion resistance of steel bars. A 304 stainless steel
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mesh was imbedded in each specimen and the space between the steel mesh and the axis
position of the round reinforcement of the specimen was 4 cm. Before freeze–thaw cycles
or dry–wet alternate conditioning, the specimens were cured in the standard environment
for 24 days. After curing, all specimens were immersed in 3.0% NaCl solution for 4 days
for the treatment of the experiment of freeze–thaw cycles or dry–wet alternation with 3%
NaCl solution. During the NaCl freeze–thaw experiment, all specimens were immersed
in 3.0% NaCl solution in stainless steel containers and conditioned at temperature from
−18 ◦C to 8 ◦C, in accordance with Chinese Standard GB/T500820-2009 [30]. Additionally,
before each dry–wet alternate cycle, the water on the surface of specimens was wiped and
then they were dried in a vacuum drying oven at 60 ◦C for 36 h. After drying, specimens
were cooled at a temperature of 20 ◦C for 2 h and finally were immersed in NaCl solution
for 10 h. All parameters were measured after 0, 100, and 200 NaCl freeze–thaw cycles
and 10 and 20 NaCl dry–wet alternations. All specimens were wiped and cleaned with a
wrung-dry wet rag before testing.

A ZBL-U51CO ultrasonic detector was applied for the determination of ultrasonic
velocity. The testing method referred to Ref. [31]. Figure 1 shows the measurement of
ultrasonic velocity. The TH2810D LCR digital electric bridge, produced by Changzhou
Tonghui Co., Ltd., Changzhou, China, was chosen for the determination of AC electrical
resistance. The determination of AC electrical resistance is shown in Figure 2.

Figure 1. The schematic diagram of ultrasonic measurement.

Figure 2. The schematic diagram of AC electrical resistance measurement.

The DC power with the maximum voltage of 1 V was provided for the measurement
of electrical resistance time history curves. The DC voltage was collected by an ADAM
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4117 acquisition instrument provided by Nanning Yanhua Electronic Technology Co., Ltd.,
Nanning, China. The electrical signals were collected per second. The electrical resistance
time history curves were determined by reference resistance method. This method can be
described as follows.

The reference resistor and specimen were a series in the circuit, and the electrical
voltages at the ends of the reference resistor and specimen were collected by an ADAM
4117 acquisition instrument. The DC electrical resistance (Rd) of the specimen can be
calculated by Equation (1).

Rd =
VdRr

Vr
(1)

where Rr is the electrical resistance of the reference resistor and Vd and Vr are the electrical
voltages of the specimen and the reference resistor, respectively. The determination of DC
electrical resistance is shown in Figure 3. Six specimens for each group were prepared for
the measurement of electrical performance and ultrasonic velocity, while three specimens
were used for the test of mechanical strengths.

Figure 3. The schematic diagram of DC electrical resistance measurement.

3. Results and Discussion
3.1. Slump Flow of Fresh RPC Paste

Figure 4 shows the slump flow of fresh RPC paste with different dosages of rice husk
ash and waste fly ash. As shown in Figure 4, the slump flow of fresh RPC paste decreased
with the increasing dosages of rice husk ash and waste fly ash. This was attributed to the
fact that the particle diameters of rice husk ash and waste fly ash were smaller than that
of cement particles, thus resulting in increasing the surface area of cementitious material,
leading eventually to adsorbing free water of fresh RPC and decreasing the slump flow.
Moreover, the fresh RPC with rice husk ash showed a lower slump flow than that of fresh
RPC with waste fly ash due to a higher superficial area [32,33].

Figure 4. The slump flow of fresh RPC.
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3.2. The Mechanical Strengths

Figure 5 shows the flexural and compressive strengths of RPC specimens cured for
28 days. As depicted in Figure 5, the mechanical strengths of RPC increased with the
increasing dosage of rice husk ash. Meanwhile, the mechanical strengths of RPC firstly
increased and then decreased with the addition of waste fly ash. This was attributed to the
fact that the rice husk ash and waste fly ash possessed higher activities than the Ordinary
Portland cement, leading to increasing the hydration degree of cement [34,35]. Moreover,
the fineness of RHA and WFA fall between that of SF and that of cement; it is likely that
SF, RHA, WFA, cement, and quartz sand in the mixture with replacement ratio of 2/3
consistently formed the densest packing state. Apart from the filling effect, both pozzolanic
reactivity and the internal curing effect of RHA and WFA contributed to the development
of mechanical strengths [36,37]. However, many internal pores inside the waste fly ash can
result in the defects inside the RPC, thus decreasing the mechanical strengths when the
dosage of waste fly ash ranged from 20% to 25%.

Figure 5. The mechanical strengths of RPC specimens.

3.3. The Corrosion Resistance of Steel Bars in RPC

In this study, the ultrasonic velocity, mass loss, electrical resistance, and electrical
resistance time curves were obtained to investigate the corrosion resistance of steel bars in
RPC.

Figure 6 shows the ultrasonic velocity of RPC and the following rate of ultrasonic
velocity increments by NaCl freeze–thaw cycles. As depicted in Figure 6a, the ultrasonic
velocity increased with the addition of rice husk ash and decreased with the increasing
dosage of waste fly ash and NaCl freeze–thaw cycles. Moreover, it can be observed
from Figure 6b that the decreasing rate of ultrasonic velocity by NaCl freeze–thaw cycles
decreased with the addition of rice husk ash. This was attributed to the fact that the NaCl
freeze–thaw cycles could induce the internal cracks of RPC, thus blocking the ultrasonic
propagation [38,39]. Furthermore, the increasing dosage of waste fly ash led to increasing
the decreasing rate of ultrasonic velocity due to the internal pores of the waste fly ash [40,41].
Besides, the waste fly ash possessed a higher content of metallic elements, thus aggravating
the corrosion of steel bars and leading to increasing the decreasing rate of ultrasonic velocity
by NaCl freeze–thaw cycles [42,43].
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Figure 6. The ultrasonic velocity of RPC and the following increments during NaCl freeze–thaw
cycles. (a) The ultrasonic velocity. (b) The increasing rate of ultrasonic velocity.

Figure 7 shows the ultrasonic velocity and the following increasing rate of RPC under
the environment of NaCl dry–wet alternations. As illustrated in Figure 7, the ultrasonic
velocity and the following increasing rate varied in the similar regulation as that of the
NaCl freeze–thaw environment. It can be obtained from comparing Figures 6 and 7 that
ultrasonic velocity decreased more obviously after 20 NaCl dry–wet alternations than
after 200 NaCl freeze–thaw cycles. Therefore, the RPC with steel bars deteriorated more
seriously after 20 NaCl dry–wet alternations than after 200 NaCl freeze–thaw cycles.

Figure 7. The ultrasonic velocity of RPC and the following increments during NaCl dry–wet alterna-
tions. (a) The ultrasonic velocity. (b) The increasing rate of ultrasonic velocity.

Figures 8 and 9 show the mass loss rate of RPC under the environment of NaCl
freeze-thaw cycles and NaCl dry–wet alternations. As demonstrated in Figures 8 and 9, the
mass loss rates of all RPC specimens increased with the increasing number of NaCl freeze–
thaw cycles and NaCl dry–wet alternations. This was attributed to the frost heaving stress
leading to the spalling on the surfaces of RPC. However, the corrosion of the imbedded steel
bars caused by NaCl freeze–thaw cycles and NaCl dry–wet alternations could induce the
cracking and spalling of RPC and reduce the mass of specimens [44,45]. The relationships
between the mass loss rate and the number of NaCl freeze–thaw cycles or NaCl dry–wet
alternations conformed to the quadratic function. It can be observed from Figures 8 and 9
that the addition of rice husk ash could lead to decreasing the mass loss rate of RPC
specimens; meanwhile, the increasing dosages of waste fly ash could increase the mass loss
rate. This was attributed to the fact that the pozzolanic effect of RHA could promote the
hydration and compactness of RPC, thus increasing the corrosion resistance of the inner
steel bars, leading to decreasing the mass loss rate. However, the metallic elements of WFA
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could accelerate the corrosion of the inner steel bars; the increased rust resulted in the
concrete expansion cracks and spalling. Therefore, the mass loss rate increased with the
addition of WFA. Moreover, the mass of RPC specimens during NaCl freeze–thaw cycles
decreased more slowly than that during the NaCl dry–wet alternations, indicating that the
steel bar corroded more seriously in the environment of NaCl dry–wet alternations. Table
4 shows the fitting results of the relationship between the mass loss rate and the number of
NaCl freeze–thaw cycles and the number of NaCl dry–wet alternations. It can be obtained
from Table 4 that the relationship between mass loss rate of RPC and the numbers of
freeze–thaw cycles and dry–wet alternations with the medium of NaCl solution conformed
to the quadratic function, as expressed in Equation (2).

∆m
m

= aN2 + bN + c (2)

Figure 8. The mass loss rate of RPC during NaCl freeze–thaw cycles. (a) The mass loss of RPC with rice husk ash. (b) The
mass loss of RPC with waste fly ash.

Figure 9. The mass loss rate of RPC during NaCl dry–wet alternations. (a) The mass loss of RPC with rice husk ash. (b) The
mass loss of RPC with waste fly ash.
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Table 4. The fitting results of mass loss rate.

Types Content/% a b c R2

RPC with RHA after NaCl
freeze−thaw cycles

0 −1.33 × 10−5 0.0077 0.032 0.96
5 −8.03 × 10−6 0.0063 0.030 0.97

10 −6.46 × 10−6 0.0057 0.038 0.95
15 −8.86 × 10−6 0.0057 0.033 0.95
20 −7.49 × 10−6 0.0052 0.029 0.96
25 −6.80 × 10−6 0.0046 0.037 0.91

RPC with WFA after NaCl
freeze−thaw cycles

0 −7.09 × 10−6 0.0049 0.038 0.92
5 −8.89 × 10−6 0.0056 0.032 0.95

10 −9.71 × 10−6 0.0060 0.033 0.95
15 −6.71 × 10−6 0.0059 0.037 0.95
20 −9.34 × 10−6 0.0067 0.029 0.97
25 −1.69 × 10−5 0.0086 0.024 0.93

RPC with RHA after NaCl
dry−wet alternations

0 −1.33 × 10−3 0.077 0.032 0.96
5 −8.03 × 10−4 0.063 0.030 0.97

10 −6.46 × 10−4 0.057 0.038 0.95
15 −8.86 × 10−4 0.057 0.033 0.95
20 −7.49 × 10−4 0.052 0.029 0.96
25 −6.80 × 10−4 0.046 0.037 0.91

RPC with WFA after NaCl
dry−wet alternations

0 −7.14 × 10−4 0.070 0.056 0.93
5 −1.34 × 10−3 0.083 0.083 0.86

10 −1.77 × 10−3 0.099 0.069 0.91
15 −2.49 × 10−3 0.12 0.056 0.95
20 −2.77 × 10−3 0.13 0.056 0.96
25 −3.0 × 10−3 0.14 0.066 0.95

As concluded from prior research, higher electrical resistance before the external cor-
rosion effect indicates better corrosion resistance of steel bars in the cement-based materi-
als. Meanwhile, a higher increasing rate of electrical resistance means more severe corro-
sion [46,47]. Figures 10 and 11 show the electrical resistance of RPC under the environment of
NaCl freeze–thaw cycles and NaCl dry–wet alternations. Moreover, the following variation
rate of the electrical resistance due to the NaCl freeze–thaw cycles and NaCl dry–wet alterna-
tions was calculated. As illustrated in Figures 10 and 11, the electrical resistance increased
with the increasing dosage of rice husk ash and decreased with the addition of waste fly ash.
This was attributed to the fact that the addition of rice husk ash could improve the hydration
degree of cement, thus decreasing the free water in the specimens and leading to the reduction
of free ions of pore solution [48,49]. Therefore, the electrical resistance was increased by the
addition of rice husk ash. However, the waste fly ash possessed more metallic elements,
leading to improving the conduction of RPC, thus decreasing the electrical resistance [50]. It
can be obtained from Figures 10 and 11 that the corrosion resistance of RPC with rice husk
ash was better. Furthermore, the electrical resistance increased faster during NaCl dry–wet
alternations than NaCl freeze–thaw cycles, indicating the steel bars corroded more seriously
in the environment of NaCl dry–wet alternations.

Figure 10. The electrical resistance of RPC during NaCl freeze–thaw cycles. (a) The electrical
resistance. (b) The variation rate of electrical.
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Figure 11. The electrical resistance of RPC during NaCl dry–wet alternations. (a) The electrical
resistance. (b) The variation rate of electrical.

As pointed out from prior studies, the DC electrical resistance-time curves of steel
bar-reinforced, cement-based materials can be applied to reflect the corrosion resistance of
steel bars [51]. As depicted in Figure 12, a higher growth rate of the variation rate of DC
electrical resistance during power on time before corrosive action indicates better corrosion
resistance. However, the increasing rate of electrical resistance during NaCl freeze–thaw
cycles and dry–wet alternations indicated more serious corrosion. It can be observed from
Figure 12 that the variation rate of DC electrical resistance before corrosive action increased
with the addition of rice husk ash and decreased with the increasing dosage of waste fly
ash, which means rice husk ash demonstrated a positive effect on the corrosion resistance
of steel bars in RPC and the waste fly ash played a negative role on the corrosion resistance.
However, after the NaCl freeze–thaw cycles and dry—wet alternations, the variation rate
of DC electrical resistance with waste fly ash was higher than that with rice husk ash.
Moreover, NaCl dry–wet alternations induced a higher increment of the DC electrical
resistance than NaCl freeze–thaw cycles. It can be concluded from this research that the
addition of rice husk ash was advantageous to the corrosion resistance of steel bars in RPC.
However, when waste fly ash was added in RPC, the effect was adverse. Furthermore,
as obtained from this study, the NaCl dry–wet alternations contributed a more severe
corrosion effect to the steel bars in RPC than the NaCl freeze–thaw cycles. Comparing with
Refs [11,46,51], the initial electrical resistances of RPC with RHA and WFA were higher
and the following increasing rate of electrical resistances was lower than those of steel
bars-reinforced cement paste or cement mortar with sodium nitrite, which indicated that
the RPC with RHA and WFA showed better corrosion resistance.

Figure 12. Cont.
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Figure 12. DC electrical resistance–time curves of steel bar-reinforced RPC. (a) RPC with rice husk
ash after standard curing for 28 days. (b) RPC with rice husk ash after standard curing for 28 days
after 200 NaCl freeze–thaw cycles. (c) RPC with rice husk ash after 20 NaCl dry–wet alternations.
(d) RPC with waste fly ash after standard curing for 28 days. (e) RPC with waste fly ash after 200 NaCl
freeze–thaw cycles. (f) RPC with waste fly ash after 20 NaCl dry–wet alternations.

4. Conclusions

In this study, the fluidity, mechanical strengths of reactive powder concrete, and the
following corrosion resistance of inner steel bars were investigated. The conclusions can be
drawn as follows.

The addition of RHA and WFA led to decreasing the fluidity of fresh RPC; meanwhile,
the slump flow of fresh RPC with RHA was lower than fresh RPC with WFA. Moreover,
RHA and WFA could effectively improve the mechanical performances of RPC. The de-
creasing rates of mass and ultrasonic velocity were increased by RHA and decreased by
WFA, showing that RHA demonstrated a positive effect on the resistances of NaCl freeze–
thaw cycles and dry–wet alternations. However, when WFA was added, the effect was the
opposite.

The AC electrical resistance and the variation rate of DC electrical resistance before the
corrosive effect of NaCl freeze–thaw cycles or NaCl dry–wet alternations were increased
by the addition of RHA and decreased by the increasing dosage of WFA. After the exter-
nal erosion of NaCl freeze–thaw cycles or NaCl dry–wet alternations, the AC electrical
resistance and the variation rate of DC electrical resistance of all specimens increased. The
increasing rates of AC electrical resistance and DC electrical resistance increased with the
addition of WFA and decreased by increasing the content of RHA.

Finally, as obtained from this research, RHA could effectively improve the corrosion
resistance of steel bars in RPC. However, when WFA was added, the result was the opposite.
Steel bars corroded more seriously when specimens were exposed to the environment of
NaCl dry–wet alternations than the NaCl freeze–thaw cycles.
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