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Abstract: Serious vibration or wear with large friction usually appear when faults occur, which
leads to more serious faults such as the destruction of the oil film, bringing great damages to both
the society and economic sector. Therefore, the accurate diagnosis of a fault in the early stage is
important for the safety operation of machinery. To effectively extract the fault features for diagnosis,
EMD-based methods are widely used. However, these methods spend lots of efforts diagnosing faults
and require plenty of professional knowledge of diagnosis. Although many intelligent classifiers can
be used to automatically diagnose faults such as wear, a broken tooth and imbalance, the combing
EMD-based method, the scarcity of samplings with labels hinder the application of these methods
to engineering. It is because the model of the intelligent classifier must be constructed based on
sufficient samplings with a label. To solve this problem, we propose a novel fault diagnosis method,
which is performed based on the EEMD and statistical distance analysis. In this method, the EEMD is
used to decompose one original signal into several IMFs and then the probability density distribution
of each IMF is calculated. To diagnose the fault of the machinery, the Euclidean distance between the
signal acquired under an unknown fault with the other referenced signals acquired previously under
various fault types is calculated. At last, the fault of the signal is the same with the referenced signal
when the distance is the smallest. To verify the effectiveness of our proposed method, a dataset of
bearings with different faults, and a dataset of 2009 Prognostics and Health Management (PHM)
data challenge, including gear, bearing and shaft faults are used. The result shows that the proposed
method can not only automatically diagnose faults effectively, but also fewer samplings with a label
are used compared with the intelligent methods.

Keywords: fault diagnosis; rotating machinery; EEMD; probability density distribution; statisti-
cal distance

1. Introduction

Rotating machinery is widely used in industry and plays an important role in trans-
mitting force, bearing load, etc. It usually operates under a tough environment and is
subject to failure, which likely leads to significant economic losses or injuries. Therefore,
it is necessary to monitor the health state of machinery and diagnosis defects timely and
the research on fault diagnosis has attracted much attention in recent years. To inspect
the condition of machinery, vibration sensors are always used for acquiring the vibration
signal, which contains the health condition information. Unluckily, the machinery probably
operates under a tough environment, so the useful information is always submerged in
environment noise [1].

To extract the weak and useful information from the vibration signal under a low
signal-to-noise ratio, many signal processing-based approaches have been proposed for
fault diagnosis, such as the wavelet analysis [2], Kurtogram [3], Infogram [4] and singular
value decomposition (SVD) [5]. Among these methods, the empirical mode decomposition
(EMD) is one of the most used methods for fault diagnosis and has been used for gear

Coatings 2021, 11, 1459. https://doi.org/10.3390/coatings11121459 https://www.mdpi.com/journal/coatings

https://www.mdpi.com/journal/coatings
https://www.mdpi.com
https://doi.org/10.3390/coatings11121459
https://doi.org/10.3390/coatings11121459
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/coatings11121459
https://www.mdpi.com/journal/coatings
https://www.mdpi.com/article/10.3390/coatings11121459?type=check_update&version=1


Coatings 2021, 11, 1459 2 of 10

fault diagnoses [6], bearing fault diagnoses [7] and abnormal clearance diagnoses of diesel
engines [8], etc. The characteristics information of the fault can be effectively extracted
using this method, because the EMD is able to decompose the complicated signals into
several intrinsic model functions (IMFs), which represent the intrinsic oscillation modes
embedded in the signal. Subsequently, the envelop spectrum technique can be applied
to process the IMFs for finding the fault frequency. To overcome some shortcomings of
the EMD, including negative frequency values, mode mixing and the lack of a rigorous
mathematical formulation [9], many methods have been proposed. For example, an
ensemble empirical mode decomposition (EEMD) [10], wavelet packet decomposition
(WPD), local feature scale decomposition (LCD) [11], and BS-EMD [12] have also been
proposed to solve the problem of mode mixing.

Although these EMD and EMD-based methods are good at extracting the impulsive
signal generated by a machinery fault, it still spends lots of effort diagnosing the fault
and require plenty of professional knowledge. To make full use of the merits of EMD
and automatically classify the fault, many intelligent methods can be used as the classifier.
Cheng et al. used the singular value decomposition (SVD) to initial feature vector matrices
based on the EMD and then the support vectors machines (SVMs) trained by these features
were used to distinguish the fault patterns of gears and roller bearings [13]. To achieve a
better fault diagnosis performance, a more accurate SVM classifier named the multiclass
transudative support vector machine (TSVM), trained by both time-domain features and
time-frequency features extracted from IMFs, was applied to diagnose the gear faults [14].
Similarly, Zhang and Zhou proposed a novel procedure based on the EMD and optimized
the SVM [15]. The extracted features include two types of features, the EEMD energy
entropy and singular values of the matrix whose rows are IMFs. Yu et al. [16] improved
the fault diagnosis performance of the SVM classifier by introducing the K-means method
for selecting the most sensitive IMFs. The features, including nine time-domain features,
were extracted from the most sensitive IMFs for training the SVM model.

Ali et al. [17] selected the most significant IMFs and then the chosen features, including
the time features and time domain features, were used to train an artificial neural network
(ANN) for classifying bearing defects. Bin et al. [18] combined the wavelet packet decom-
position (WPD) and EMD to extract the fault features, and then these features were input
into the classical three-layer BP neural network model for fault diagnosis. Xiao et al. [19]
used an improved EMD energy entropy as the input of the SVM optimized by particle
swarm optimization (PSO). A new neural network named the probability neural network
(PNN) was also utilized to classify the fault models based on the features extracted from
IMFs decomposed using the variational mode decomposition (VMD). The features consist
of multifractal features extracted by MFDFA, and the generalized Hurst exponents and the
dimension of these features were reduced by the principal component analysis (PCA) [20].
The neuro-fuzzy inference system (ANFIS) has been used as a classier for fault diagnosis
by using a Fuzzy entropy as a feature [21]. Tian et al. [22] used the SVD to compress the
product functions (PFs) decomposed using local mean decomposition (LMD) for obtaining
the feature vectors and then these feature vectors were input into the extreme learning
machine model. According to these references, it can be found that feature extraction
from the decomposed components, such as IMFs or PFs, is a vital and necessary process
for constructing the fault diagnosis model. Moreover, lots of samplings with labels are
needed to train an accuracy model. However, it usually spends much effort extracting
useful features from signals to train models and labeled signals in a practical application
are scarce.

To solve this problem, a new fault diagnosis method is proposed based on the EEMD
and statistic distance analysis. First, the probability density functions of the acquired
signal to be analyzed are calculated. Specifically, in the proposed method, to overcome
the shortcomings of the EMD, the EEMD instead of the EMD is used to decompose the
vibration signal into several IMFs. The probability density function (PDF) of each IMF
can then be calculated. Second, the Euclidean distance between the probability density
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functions (PDF) of the signal and the samplings with different fault labels can be calculated.
The statistical distance (SD) can be evaluated by summing up all the distance. A small
SD indicates the similarity of two signals (also small) and their corresponding machines
are more likely to have the same fault type. Therefore, the fault can be diagnosed and the
machines have the same fault type with the sampling when their similarity is the smallest.
The SD is calculated using the probability density function of the IMFs directly and no
time or time-frequency features are extracted, so it is more easy to realize the method.
Moreover, because the referenced signal of the fault to be diagnosed should be provided,
the number of the sampling with labels just equals the number of fault types which satisfies
the requirement of a practical application. Eventually, the proposed method is more
suitable for fault diagnosis, which is verified using two cases. The main contribution in this
paper is that an EEMD-based method is proposed to diagnose faults more conveniently,
which tries to perform fault diagnosis adaptively and with fewer training samplings than
the intelligent fault diagnosis.

The rest of this paper is structured as follows: Section 2 introduces the proposed
method in detail. Two cases are used to demonstrate the effectiveness of the proposed
method in Section 3. Section 4 concludes the paper.

2. Proposed Diagnosis Model

In this section, the proposed diagnosis model was described. The proposed model
consisted of four steps, including decomposing signals into IMFs using the EEMD, calcu-
lating the probability density distribution of different IMFs, computing the distance of the
similarity between any two sampling, and determining the fault type using the similarity.
The steps are described as follows in detail.

2.1. Decompose Signals into IMFs Using EEMD

First, signals of different types were decomposed into several IMFs using the EEMD,
respectively. As a noise-assisted method, the EEMD could overcome the model mixing of
the EMD.

For one signal x(t) (t= 1, 2, . . . n), the EEMD could be calculated using the following
six steps.

Step 1: Parameters used in the EEMD such as the trial number m and noise amplitude
e were initialized

Step 2: The white noise xm with the predefined amplitude was added to the signal
x(t) (t= 1, 2, . . . n) and the corresponding equation was given as:

xm = x + nm (1)

where xm and nm represent the mth trial noise-assisted signal and added white noise,
respectively.

Step 3: IMFs im fi,m could be obtained by decomposing xm using the EMD algorithm
for the mth trial noise-assisted signal, where i represents the ith IMFs.

Step 4: Steps 2–3 were repeated until m = M, but the white noise series were different
between different repeats.

Step 5: The ensemble mean of the M trails was calculated for ith IMFs and shown as:

emi =
1
M

M

∑
m=1

im fi,m (2)

Step 6: The ensemble mean could be calculated for each IMF and output the ensemble
mean emi(i = 1, . . . I) as the final IMF.
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2.2. Calculate Probability Density Distribution of Different IMFs

Next, the probability density distribution of IMF emi was calculated according to:

fi(x) =
1

Nd

N

∑
j=1

K
( xj − x

d

)
(3)

where d is the bandwidth and d > 0, N represents the whole number of serial points, x
was taken from the corresponding IMF and K(·) denotes the non-negative kernel function
which was selected as the Gaussian function in the proposed method. The Gaussian
function was as follows:

g(x) =
1√
2π

e−
(xi−x)

2d2 (4)

2.3. Compute the SD for Evaluating Similarity between Any Two Samplings

Then, the similarity between any two IMFs (e.g., emi and emj) could be evaluated
by computing the statistical distance of their probability density distributions using the
following equation:

SDIMFs( f1, f2) =
m

∑
i=1

(
n

∑
j=1

( f1
(
xi,j

)
− f2

(
xi,j

)
)

2
)

1/2

(5)

where f1
(

xi,j
)

represents the j th probability density value of ith IMF, m is the total number
of IMFs and n is the total number of serial points in each IMF. Obviously, the similarity
between two signals could be measured by this distance, which considered the difference
of the probability density distribution at different IMFs. In particular, the more similar two
signals were, the smaller the distance was.

2.4. Determine the Fault Type Using the Similarity

Signals generated by machinery with the same fault type has a large similarity. On the
contrary, the similarity of signals generated by machinery with different fault types was
much smaller than the same fault type. According to this rule, the fault could be diagnosed
using the proposed statistical-based distance. Specifically, the SD between one signal with
an unknown fault type and referenced signals with different fault types could be calculated.
Then, the fault type of the signal could be determined using the following equation:

T = argmin
i

DIMFs( fu, fi) (6)

where fu is the probability density function of the signal with an unknown fault type and
fi represents the signal with the ith fault type. The signal had the same fault type with the
referenced signal when their statistical distance was the smallest. It could be found that
only one referenced signal was used, while lots of samples should be acquired to train an
intelligent model. In other words, this proposed method needed much fewer samples than
the intelligent fault diagnosis method. Furthermore, the proposed method was much easier
to apply to the engineering cases, which had fewer parameters to tune than the intelligent
fault diagnosis methods.

3. Experimental Demonstrations

Bears and gears are two critical components used to transfer force and moment in rotary
machinery, and they are easily subject to failure. In this section, data collected from bearings
and gears were used to verify the effectiveness of the proposed method, respectively.

3.1. Rolling Bearing Fault Diagnosis Based on the Proposed Method

The bearing dataset of the western reserve university [23] case was used to verify the
effectiveness of our proposed method. Figure 1 shows the test rig for obtaining data of
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various bearing faults. A 1.49 Kw, three-phase induction motor, was used to provide power,
and ball bearings were installed on the left of the motor to support the motor shaft. An
accelerometer with a sampling of 12 kHz was installed on the house of the motor to collect
vibration signals. In this demonstration, data of various faults under different degrees were
used. Specifically, 12 health conditions included (1) normal ball fault with a fault severity.
Single point faults were introduced to the test bearings using electro-discharge machining
with fault diameters of 7 mils, 14 mils, 21 mils, 28 mils, and 40 mils (1 mil = 0.001 inches).
The fault severity was evaluated by the defect size, including (2) 0.007 inches, (3) 0.014
inches, (4) 0.021 inches, and (5) 0.028 inches, an inner ring fault with a fault severity of
(6) 0.007 inches, (7) 0.014 inches, (8) 0.021 inches, and (9) 0.028 inches, and an outer rolling
fault with a fault severity of (10) 0.007 inches, (11) 0.014 inches, and (12) 0.021 inches.
The vibration signals of each fault were divided into 20 segments and each segment had
5000 sampling points. These segments could be considered as different samples with
different faults.
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These datasets with a total of 240 samples were used to verify the proposed method.
In total, 12 samples with the whole fault types were used as the referenced data. The other
samples were used to test the effectiveness of the proposed method. For example, the SD
between the samples of the third condition (ball fault with a severity of 0.014) and the
12 referenced samples of different types were calculated. For instance, Figure 2 shows the
statistical distance between the probability density distribution of 12 referenced samples
between that of the whole normal samples. The SD of the same fault type was plotted
using the same curve. The curve labeled with the blue cross plotted the SD between the
data of a normal condition and the referenced data of a normal condition. Sample one was
just the referenced sample, so its SD was zero. Furthermore, it can be found that the SD
between the referenced sample with the whole samples had the smallest SD compared
with the other referenced samples, which was plotted using the curve labeled with a blue
cross. As a result, these samples could be classified as the type of the second condition,
which was consistent with the fact. Similarly, the fault types of the other samples could
be distinguished. The corresponding results can be seen from Figure 2j to Figure 2l. The
accuracy of different fault types was calculated and presented in Figure 3. In Figure 2e,
the number of the samples in testing was 20 and we calculated the SD of these samples
with referenced signals of different faults. Obviously, the SD between each sample with
the referenced signal of inner ring fault with a fault severity of 0.007 was the smallest.
According to the proposed method, we could infer that the fault types of these samples
were inner ring faults with a fault severity of 0.007. Obviously, the result was consistent
with the fact, so the accuracy of the proposed method for Figure 2e was 100%. Of course,
in some figures, the result was not very good, for example, Figure 2j, but the result was
still higher than 60%. By calculating all the samples of different types, we could obtain the
mean accuracy. It could be found that the mean accuracy of the whole samples was 87%,
which was a satisfying result when the samples with labels were very scarce.
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(12) outer rolling fault with fault severity of 0.021, and (13) the mean accuracy.

3.2. Fault Diagnosis of Gear Based on the Proposed Method

In this section, the vibration signals of spur gears with different faults were used to
verify the effectiveness of the proposed method further. These data can be found in the
2009 PHM Challenge Competition [24]. Figure 4 shows the experiment setup which mainly
consisted of one electric motor, four gears, six bearings, etc. The rotating frequency of the
input shaft was 34.5 Hz and the tooth numbers of gears was 32, 96, 48, and 80, respectively.
Two accelerometers were installed on both sides of the experiment setup to acquire the
vibration data with a sampling frequency of 100/3 kHz. Different fault models such as NF
(no fault), CH (chipped tooth), BR (broken tooth), ER (error), BS (ball spin fault), IR (inner
race fault), OR (outer race fault), BA (bent axle), SI (shaft imbalance) and BK (bad key) were
provided in this experiment. It was important to diagnose these faults as soon as possible,
and if the equipment operated with faults, seriously vibrations would be generated and
the friction of the surface between different components would become larger. The oil film
would be destructed and more serious faults usually appeared.
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The final obtained dataset consisted of eight fault types. Concretely, these types were
as follows: (1) normal, (2) input gear with CH and Idle 2 with ER, (3) Idle 2 with ER, (4) Idle
2 with ER, output with BR, and bearing one with BS, (5) input gear with CH, Idle 2 with
ER, output with BR, bearing one with IR, bearing two with BS, bearing three with OR,
(6) output with BR, bearing one with IR, bearing two with BS, bearing three with OR, Shafts
input with SI, (7) bearing one with IR, shafts output with BK, and (8) bearing two with BS,
bearing three with OR inputs(shafts) with BA.

Similar to case A, the different samples were obtained by dividing the vibration signals
into different segments, each of which had 5000 segments. Therefore, a total of 320 samples
could be obtained and eight samples with different fault types were considered as the
referenced data in the proposed method. The statistical distance between the diagnosed
samples with various faults and the referenced samples are plotted in Figure 5. The
accuracy of all the diagnosis results was also calculated and the corresponding accuracy of
various types as well as the mean accuracy can be seen in Figure 6. The mean accuracy of
the whole samples was 87%, which also verified the effectiveness of the proposed method
in fault diagnosing.
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2 with BS, bearing 3 with OR inputs(shafts) with BA. 

Figure 5. The SD between various referenced samples and different samples, including (a) normal, (b) input gear with CH
and Idle 2 with ER, (c) Idle 2 with ER, (d) Idle 2 with ER, output with BR, and bearing 1 with BS, (e) input gear with CH,
Idle 2 with ER, output with BR, bearing 1 with IR, bearing 2 with BS, bearing 3 with OR, (f) output with BR, bearing 1 with
IR, bearing 2 with BS, bearing 3 with OR, Shafts input with SI, (g) bearing 1 with IR, shafts output with BK, and (h) bearing
2 with BS, bearing 3 with OR inputs(shafts) with BA.
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4. Conclusions

In this paper, an EMD-based statistic distance was proposed for the fault diagnosis of
machinery. The proposed method made good use of the merit of the EEMD. Furthermore,
a fault could be automatically diagnosed, which needed much fewer samples with labels
than the intelligent method. The similarity of one signal between the referenced samples
collected from the machinery with various faults could be accuracy evaluated. As a
result, the signal had the same type with the referenced sample when they were most
similar. The effectiveness of the proposed method was demonstrated by two real cases,
including a bearing dataset and composite dataset of bearings and gears. It could be found
that satisfying results were obtained even when there were a few samples with labels.
Consequently, the proposed method can be further used in engineering, which will be
considered in our further work.
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