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Abstract: The hydraulic support column bears loading and makes reciprocating motion ceaselessly
for extended periods, so its service life is far shorter than that of the overall hydraulic support. This
paper offers a comparative study on the surface coating of hydraulic support columns with hard
chrome plating and high-velocity oxygen fuel (HVOF) thermal spraying refabricating to analyze the
impact of different refabricating processes on the microstructure, hardness, corrosion resistance, and
wear resistance of the coating (plating). The result shows that the structure of the HVOF coating
is uniformly compact, and the HVOF WC10Co4Cr coating has better wear resistance, more than
four times that of hard chrome plating. In the neutral salt spray test, the HVOF Ni60 coating shows
rustiness at 720 h of the test, which suggests its corrosion resistance is nearly five times that of hard
chrome plating. Hence, under the harsh corrosive wear environment, the refabricating HVOF Ni60 is
a more suitable replacement for the hydraulic support column coating than the hard chrome plating.
Thus, the HVOF Ni60 coating could be an effective replacement for hard chrome plating.

Keywords: hydraulic support column; electroplating hard chromium; HVOF; corrosion resistance;
wear resistance

1. Introduction

The hydraulic support is a core device of a fully mechanized coal face. It could effec-
tively support and control the roof of the working coal face [1]. It is essential supporting
equipment for coal mine underground operation, featuring the advantages of convenient
support, quick withdrawal, forceful initial support, uniform supporting force, and trans-
verse resistance [2]. In addition, the hydraulic support could isolate the empty area of
mining to improve the efficiency of fully mechanized coal mining equipment and release
the labor intensity of workers to maximally protect the life safety of workers [3]. The
working environment of hydraulic support is damp with the presence of SO2, H2S, Cl−,
SO4

2− and other corrosive media [4], which causes severe corrosion and wearing; thus,
there is a higher resistance to wear and corrosion requirement for the hydraulic support [5].
The hydraulic support column performs a long-term bearing and ceaseless reciprocating
motion, so its service life is far shorter than that of overall hydraulic support and may,
therefore, greatly affect the safety, reliability, and service life of the entire hydraulic support.
Thus, refabricating the technology of the hydraulic support column could potentially create
high economic and social value.

The refabricating technology of the hydraulic support column could significantly
improve the wear and corrosion resistance of the workpiece surface [6], and protecting
the terminal with a coating (plating) is one of the most economical and effective passive
control methods [7]. By far, the refabricating of the hydraulic support column is based
on hard chrome plating, but the service life of the column is shorter after processing [8].
There is a penetrating microcrack on the plating surface, so the corrosion of the basal body
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would be accelerated in the damp environment once there was damage in the partial part
of the plating [9]. What is more, the plating would have rust stains, and they would extend
along the interface of plating and the basal body to cause blistering and peeling of the
plating [10]. Hence, the service life of the hydraulic support column should be extended by
a refabricating process.

This paper describes one recent thermal spray process, namely the HVOF thermal-
spray technology, and presents a survey of the studies on the use of this technique to
provide protection against corrosion and erosion-corrosion of high-temperature alloys,
with a particular emphasis on boiler steels.

Along with the strict requirement of environmental protection, WC-10Ni coating by
the high-velocity HVOF has significant strength in terms of wear resistance [11], corrosion
resistance [12], and fatigue resistance of the coating as a cleaning technology of the modern
industrial development [13]. Compared with others, the HVOF coating exhibits high
binding strength [14,15], high hardness [16], and low porosity [17,18] and, thus, could
effectively resolve the wear and corrosion problems on the surface of the hydraulic support
column [19]. The process has been the focus of scientific research and industrial application
in the past several years [20].

To provide reference and guidance for the study and application of the HVOF spraying
process in refabricating hydraulic support, the Ni60, WC10Co4Cr, and 316L, the three HVOF
coatings, are applied to the surface of different specimens with GTV K2 HVOF spraying
device. In doing so, we have established a comparison with the hard chrome plating in terms
of microstructure, hardness, wear resistance, and corrosion resistance [21,22].

2. Experimental
2.1. Experimental Materials and Preparation

In the experiment, the Ni60, WC10Co4Cr, and 316L, the three HVOF coatings, are
made on the surface of different specimens with a GTV K2 HVOF spraying device (GTV,
Luckenbach, Germany). The specimen is 45# carbon steel with a scale of 100 × 100 ×
10 mm, and the parameters of powder can be seen in Table 1.

Table 1. Powder parameters.

Powder Name
Element Powder

SpecificationFe Cr Co W Ni

Ni60 18.96 15.19 – – 58.86 −53 + 25 µm
WC10Co4Cr – 3.81 9.88 82.25 – −45 + 15 µm

316L 64.99 20.53 – – 10.06 −53 + 25 µm

Before spraying with HVOF on the surface of the specimens, cleaning and sand-
blast pretreatment should be performed. The regular fused alumina and professional
sandblasting equipment (Shanghai Kunhang Machinery, ShangHai, China) are used for
sandblasting coarsening on the surface of the specimens. The roughness of the surface
after the sandblasting should not be lower than Rz10 µm. The purpose of cleaning before
spraying is to remove the residual oil stain from the metal surface for corrosion prevention.
Moreover, sandblasting could make the surface rough to improve the bonding ability of
coating on the basal body surface. Then, the coatings are prepared with the GTV K2 HVOF
spraying device. The HVOF spraying device heats the input spray powder material with
aviation kerosene and oxygen mixed after combustion [23]. The powders are accelerated to
a supersonic state through nitrogen, and through an extended jet nozzle are sprayed into
the matrix basic body after the spraying material is heated to the molten or semi-molten
state. Table 2 shows the main parameters of the HVOF spraying process [24], and Figure 1
is a schematic diagram of HVOF spraying [25].
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Table 2. HVOF Spraying process parameters.

Parameter Value

Kerosene flow rate/(L·h−1) 32
Oxygen flow rate/(L·min−1) 800

Spray distance/mm 350
Nozzle length/mm 150

Feeding speed/(g·min−1) 70
Spray gun moving speed/(mm·s−1) 500

Scan the steps/mm 5
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Figure 1. Schematic diagram of HVOF spraying.

After the spraying process, a sealing treatment for the coating of the specimen surface,
with WFT#1532 organic resin, is applied to enhance the sealing effect and improve the
wear and corrosion resistance of the specimen surface [26]. Finally, grinding and polishing
on the specimens is carried out after the sealing treatment; the surface roughness of the
polished hydraulic support column should be Ra ≤ 0.2 µm.

Before the hard chrome plating, the surface of the specimen should be cleaned with
trichloroethylene to remove oil, and then 15%–20% dilute sulfuric acid solution is used to
remove the rustiness on the surface. The composition and process conditions of plating bath
are as follow: the concentration degree of CrO3 is 240–260 g/L; the concentration degree of
H2SO4 is 2.4–3.0 g/L; the concentration degree of Cr3+ is 2.2–2.8 g/L; the concentration
degree of LHCRH31 is 20 mL/L; temperature is 50–55 ◦C; the cathode current density is
25–35 A/dm2; the S cathode area: S cathode area is 1:2.5–3. In addition, the workpiece
should be fully heated in the bath in advance. During the plating process, the temperature
change should be controlled within the scope of ±2 ◦C, and the chrome-plated parts should
not be less than 50 mm away from the liquid level when entering the bath.

2.2. Characterization Methods

The wear resistance and corrosion resistance are the key indexes for the service life of
the hydraulic support column, so microhardness and wear resistance should be tested, as
well as the salt spray test on the coatings (plating) [27]. The JSM-6510LV scanning electron
microscope (JEOL, Tokyo, Japan) equipped with an energy dispersive X-ray spectrometer
(EDS) detector is adopted to observe the micromorphology of the coatings (plating), and the
TMVS-1 Vickers hardness tester is selected to have a test of cross-section microhardness on
the coatings (plating). According to the standard ISO6507.1-1997 [28], the loading load and
loading time are set to be 100 g and 15 s, respectively, and the hardness values of 10 points
in different areas of the specimen are measured to gain the average value. According to the
evidence of neutral salt spray of the coating, ISO9227-2006 [29], the plate specimen with
the scale of 100 × 75 × 10 mm is cleaned with absolute ethanol and then put into a salt
spray test chamber.(Q-Lab, Cleveland, OH, USA) The testing temperature is 35 ◦C, and the
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solution is pH 7.0. The testing result is based on the observation of corrosion in the non-
edge area of the sample with the record of the test duration in case of corrosion. According
to the standard ASTMG65-2004(2010) [30], the wear test of abrasive particles on the coating
is undertaken in the self-made NM-200 rubber wheel testing machine. The diameter of the
rubber wheel is 228 mm, the rotating speed is 200 rpm, the load is 1.74 kg, the abrasive
is −60 + 80 mesh quartz sand, and the sand flow rate is 190 g/min. The three groups of
specimens are weighted after the pregrinding with 50 rotations and marked as the initial
weights; they are weighed again after the grinding with 100 rotations and 200 rotations,
and the weight loss of specimens is calculated. A white light confocal microscope (CM,
Sciences et Techniques Industrielles de la Lumière, Aix en Provence, France) was used to
study the worn morphology and roughness of the specimens. Figure 2 is the self-made
wear tester of abrasive particles.
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3. Results and Discussion
3.1. Microstructure and Hardness

The quality of HVOF coating is decided by the state of particle deposition, which
would be affected by the diameter size of the particle and the flame flow characteristics
during the flying [31]. During the HVOF spraying process, the processing parameters
directly or indirectly affect the coating features, and the process is divided into variable and
particle states. The process variable includes the powder particle size, flame temperature,
and flame flow velocity. The particle state is a direct factor that affects the feature of coating.
The higher speed of the particle is, the higher the kinetic energy to hit the basal body and
the higher the binding strength of the coating; thus, the binding strength with the basal
body would be higher. Therefore, the process variable of HVOF spraying imposes an
indirect impact on the coating features by affecting the particle state, while the particle state
would directly affect the coating features. Figure 3 is the schematic diagram of particle
deposition.

The sections of hard chrome plating and HVOF coating after the polishing are placed
under the metallurgical microscope, and the micromorphology is shown in Figure 4. There
is a penetrating crack in the plating, and the plating thickness is in the range of 26–28 µm.
The microhardness is 778.6 ± 25.4 Hv300. The HVOF coating is layered by multiple coats
of spraying, and the coating thickness is in the range of 420–450 µm. The measurement
evidence is ISO 2064-1996 [32]. The microstructure and EDS of hard chrome plating and
HVOF coatings are shown in Figure 5. The structure of the HVOF coating is uniformly
compact without obvious cracks or pores. We can infer that Ni60 coating and 316L coating
oxides are involved in Fe, Cr, Ni, and Si composite oxides. However, the WC10Co4Cr
coating oxide contains Fe, Cr, and Co composite oxides. A number of unmelted particles are
found in Ni60 coating and 316L coating, resulting from an insufficient flame temperature or
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insufficient flame flow rate. The bonding interface between the coating and basal body is a
wavy, uneven interface. The interface binding is closely combined and embedded through
the mechanical occlusion. The HVOF spraying process could add the spray powder to the
supersonic speed to reach the basal body with high kinetic energy and enthalpy. With such
a strong impact, the HVOF would have a tight binding with the basal body, resulting in
improved low porosity, high hardness, and high binding strength in the micro aspect.
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The measurement result of the microhardness of the coatings is shown in Figure 6.
The microhardness of HVOF coatings ranked from high to low is WC10Co4Cr coating,
Ni60 coating, and 316L coating; the values are 1163.6 ± 12.4 Hv300, 817.5 ± 18.3 Hv300,
and 476.4 ± 29.7 Hv300, respectively. During the HVOF spraying process, the temperature
of the basal body is lower than 150 ◦C, so as to not affect the mechanical properties and
shape of the basal body. The difference in hardness of the coatings is mainly related to the
material components. The WC10Co4Cr coating is a metal-ceramic coating. The WC phase
and metal CoCr are in well binding, and they are distributed evenly. The dispersed WC
hardness ensures the high hardness of the coating. The hardness of Ni60 coating is a little
higher than that of hard chrome plating because the silicon-nickel-chromium solid solution
in the Ni60 coating works as a solution strengthening with the dispersion strengthening
effect of dispersed fine point carbides and borides. In addition, the hardness of Ni60
coating prepared by the HVOF spraying process is higher than that of the Ni60 coating
with plasma spray welding (700 Hv300 approximately). The main reason is that the biding
mechanism of HVOF spraying is the mechanical one, so the coating and basal material
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maintain independence. The plasma spray welding achieves the metallurgical bonding
between coating and substrate by local heating to form a molten pool, and the partially
molten composition of basal material penetrates the welding materials (a process called
the “dilution”). The basal material is relatively soft, so the welding hardness is reduced
accordingly. Therefore, maintaining the original components and hardness of the material
is also a feature of HVOF spraying. The microstructure of 316L is mainly the Austenite
structure with lower hardness, so the hardness is lower.
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3.2. Neutral Salt Spray Test

Figures 7 and 8 are the results of the neutral salt spray test and corrosion morphology
of the salt spray test of the hard chrome plating and HVOF coating. In the neutral salt
test, the hard chrome plating would have rustiness in 144 h, resulting from the penetrating
microcrack on the plating. The corrosive medium would be penetrated from the surface to
corrode the basal body through the microcrack, so it would accelerate the correlation of
the basal body to cause the rust spots or even peeling appear on the coating surface. In
addition, there is serious hydrogenation in hard chrome plating, which results in higher
porosity and worse corrosion resistance on the plating because the plating layer is in a
tensile state due to tensile stress.
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The WC10Co4Cr coating has a severe rustiness of 120 h, while the Ni60 coating and
316L coating have better corrosion resistance, and they have rustiness in 720 h in the
neutral salt spray test. The corrosion resistance of Ni60 coating and 316L coating is nearly
five times that of hard chrome plating. The neutral salt spray test reflects the impact of
porosity on the performance of coating to some extent. For the porosity test of coating, the
method introduced by the standard of the International Association for Testing Materials,
ASTME2109.1-2014 [33], is common. The metallographic micrograph of coating is captured,
and the color deviation between the completed part of the coating and the pore is observed,
and the porosity could be calculated from the proportion of the area of the pore in the
image area. The pore is a defect structure of the coating, and the existence of pore is to
provide a better channel for the diffusion of Cl− in a corrosive medium so that the group
cohesiveness would be weakened. The Cl− gathers in the pore attachment through the
channel to cause the local pitting corrosion. In addition, the existence of pore would create
an uneven microstructure so as to easily make corrosion potential difference in all points of
coating, which is apt to form the micro corrosion battery and accelerate the corrosion of
coating. The particle has a high-speed movement in the HOVF spraying, so there is a short
connection with air to rapidly form a compact coating on the surface of the basal body
with the porosity below 1% [34]. Besides, there is no penetrating pore on the coating and
no linkage among pores, so the diffusion of Cl− is more challenging. The microstructure is
even, so it is difficult to make corrosion potential difference; thus, there is a good salt spray
resistance and corrosion resistance. Besides, the ceramic passivation of Cr2O3 formed by
Cr in coating improves the electrochemical corrosion potential and delays the diffusion
of corrosive medium from the coating to the basal body, providing effective long-term
protection for the basal body.



Coatings 2021, 11, 1457 9 of 12

3.3. Wear Test

The 3D CM images and cross-sectional profiles of hard chrome plating and HVOF
coatings specimens are shown in Figure 9. In the 3D CM images and cross-sectional profiles,
the surface of the hard chromium plating layer is flat, and the surface of the supersonic
coating layer is uneven due to the bombardment of particles. The wear depth in the
coatings’ cross-sectional profile is ranked from high to low is 316L coating, hard chrome
plating, Ni60 coating, and WC10Co4Cr coating, and the average values are 270, 188, 178,
and 25 µm, respectively.
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The result of the wear test of abrasive particles of hard chrome plating and HVOF
coatings are shown in Figure 10. The 3D CM images and cross-sectional profiles are
consistent with the change trend of the wear rate. The weight loss of hard chrome plating
after 200 rotations is three times that of 100 rotations, which means the plating is worn
through, and the wear is accelerated. The hard chrome plating has a better corrosion
resistance because the feature of the chromium element improves the corrosion resistance
of the surface of the specimen. The wear of coating is mainly the result of the cutting
effect caused by the wear of abrasive particles. The weight loss of three coatings after
200 rotations is two times that of 100 rotations, which means the coating is in a stable wear
stage. There is a comparison of the weight loss for the wear among three coatings. The 361 L
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coating has the worst wear resistance, while the wear resistance of Ni60 coating and table
wear stage coating are 12 times and 32 times that of 361 L coating. The hardness creates a
significant impact on the wear resistance of materials, so the abrasive wear resistance of
three coatings is consistent with the measurement of hardness. The WC10Co4Cr coating
with high hardness means a good wear resistance. The wear resistance of WC10Co4Cr
coating is more than four times that of hard chrome plating because the microhardness
of WC10Co4Cr coating prepared by HVOF spraying is higher. The high microhardness
hinders the cutting effect of abrasive particles, and it is suitable for the wear resistance of
the coating. In WC10Co4Cr coating, the WC phase and metal CoCr are binding well and are
distributed evenly. Thus the dispersed WC with high hardness could significantly improve
the microhardness of the coating so that the cutting resistance adds to and ensures the high
wear resistance of the coating. The more hardness phase and even coating distribution
would have better adhesion wear resistance, and abrasive wear resistance would increase.
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4. Conclusions

The paper offered a comparison study on the hydraulic support column refabricated
with hard chrome plating and HVOF coatings in order to assess the impact of different
refabricating processes on the coating (plating) organization hardness, wear resistance, and
corrosion resistance. The followings are the conclusions reached in the paper:

1. There is a microcrack in the plating. The thickness of the plating is 26–28 µm, and
the microhardness is 778.6 ± 25.4 Hv300. The thickness of the HVOF coating is
420–450 µm, and the coating structure is uniformly compact without an obvious
crack or pore in the internal part. The bonding interface between the coating and
basal body is closely combined and embedded with each other, and the binding
method is mechanical occlusion. The microhardness of HVOF coatings ranked from
high to low is WC10Co4Cr coating, Ni60 coating, and 316L coating; the values are
1163.6 ± 12.4 Hv300, 817.5 ± 18.3 Hv300, and 476.4 ± 29.7 Hv300, respectively.

2. In the neutral salt spray test, the hard chrome plating would rust at 144 h, while
the WC10Co4Cr coating would show rustiness at 120 h. The Ni60 coating and 316L
coating have better corrosion resistance since they exhibit rustiness at 720 h during
the test. The corrosion resistance of Ni60 coating and 316L coating is nearly five times
that of hard chrome plating.

3. The hard chrome plating has a better wear resistance performance, comparable to
that of the Ni60 coating. The wear resistance of the 316L coating is much weaker,
while the wear resistance of WC10Co4Cr coating is more than four times that of hard
chrome plating.
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4. Under the harsh corrosive wear environment, the refabricating HVOF Ni60 coating is
a more suitable replacement for the hydraulic support column coating than the hard
chrome plating.
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