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Abstract: Potentiostatic electrodeposition was used to obtain CoCrFeMnNi high-entropy alloy (HEA)
thin films on copper substrate. An electrolyte based on a DMSO (dimethyl sulfoxide)-CH3CN
(acetonitrile) organic compound was used for the HEA deposition. The microstructure of the high-
entropy deposits before and after corrosion in artificial seawater was investigated by scanning
electron microscopy (SEM) and energy dispersive spectrometry (EDS) investigation. SEM analysis
revealed that compact and uniform film consists of compact and uniform 50 nm–5 µm particles
that form the HEA films. The successful co-deposition of all five elements was highlighted by the
energy dispersive spectrometry investigation (EDS). Electrochemical measurements carried out in an
aerated artificial seawater solution under ambient conditions demonstrated the promising potential
for application in the field of anti-corrosion protection, due to the protective behavior of the HEA
thin films.

Keywords: electrodeposition; high-entropy alloy; thin films; surface analysis; corrosion protection

1. Introduction

HEAs are considered a new class of alloys based on an innovative approach. Unlike
traditional alloys, these HEAs are based on equiatomic mixtures of five or more elements
and do not have a main component. HEAs microstructure consists of a number of in-
termetallic compounds according to classical metallurgical theory. Due to large mixing
entropy, simple structures with a solid solution or a single-phase crystalline structure can
be formed on HEAs. Sluggish diffusion and severe lattice distortions characterize the
HEAs. This represents a significant influence on their microstructures and properties. The
materials science and engineering community has been greatly attracted to the research of
HEA alloys [1–3].

Extensive research conducted to study different HEA alloy systems with special prop-
erties (high corrosion and softening resistance, high hardness, wear resistance, good elec-
tromagnetic properties, and the ability to maintain their properties at high temperatures)
has revealed that these alloys can be applied as functional and structural materials [4–8].

The most common method of preparing HEAs is by using the melting–casting route
(arc and induction furnace melting) [9,10]. For obtaining bulk materials, other synthesis
processes used are mechanical alloying and rapid solidification [11,12]. Various deposition
methods, such as magnetron sputtering and laser cladding, were used for producing
HEA coatings [13–17]. Compared with other technologies for the synthesis of HEA thin
films with low cost, electrodeposition is considered a good alternative. Electrodeposition is
considered a good and cheap alternative because it does not require expensive and complex
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equipment and, at the same time, uses raw materials easily accessible. The possibility of
obtaining at low processing temperatures and with low energy consumption thin films on
substrates with a varied and complex geometry makes this method of electrodeposition to
be achieved with simple control of the morphology, chemical composition, and thickness
of HEA films by simple variation in the submission parameters.

Due to their special characteristics (good chemical and thermal stability, high electrical
conductivity, wide working temperature range, wide electrochemical windows, lack of
hydrogen release, and hydroxide generation), non-aqueous electrolytes are considered an
optimal alternative for electrodeposition of metals and alloys [18–20].

Few efforts are known in the available literature, until now, for preparing HEAs
by electrodeposition. Li et al. [21–24] prepared BiFeCoNiMn, MgMnFeCoNiGd, and
TmFeCoNiMn “multi-component HEA thin films by electrodeposition in the DMF (or
dimethyl sulfoxide-DMSO) and CH3CN system. These alloys presented potential for
application as magnetic, photo-electronic, thermoelectric and fuel cell materials”.

Our group “investigated AlCrFeMnNi and AlCrCuFeMnNi high-entropy alloy thin
films prepared by potentiostatic electrodeposition in an electrolyte based on a DMF
(N,N-dimethylformamide)-CH3CN (acetonitrile) organic compound” [25]. For corrosion
protection, these new HEA alloys have a promising potential [26].

Recently, other studies have focused on the pulse electrodeposition method to obtain
HEA for various applications [27,28].

The present study demonstrates the possibility of electrodeposition synthesis of thin
films of alloys with high-entropy CoCrFeMnNi. It also shows the behavior of these alloys
to corrosion compared with the copper support. As no reports of a similar study have been
made so far, we were not able to compare the obtained results and consider them to be new.

2. Materials and Methods

HEA electrodeposition and corrosion studies were performed at 298 K. Electroplating
was performed on a copper support (2 cm2 thin plates) with a Princeton Applied Re-
search 263A potentiostat/galvanostat (AMETEK Princeton Applied Research, Oak Ridge,
TN, USA). The electrolyte used for potentiodynamic electrodeposition consisted of an
organic medium consisting of 4:1 volume fraction of DMSO-CH3CN, to which were added
LiClO4, Co(NO3)2, CrCl3, FeCl2, MnCl2, and NiCl2. Table 1 presents the composition of
the used electrolyte.

Table 1. Chemical composition of the electrolyte.

Co(NO3)2
mol/L

CrCl3
mol/L

FeCl2
mol/L

MnCl2
mol/L

NiCl2
mol/L

0.014 0.016 0.012 0.012 0.012

The electrochemical cell used was a classic one with three electrodes: the counter elec-
trode was a Pt plate (2 cm2), the reference electrode was a calomel electrode saturated with
KCl (SCE, +0.241 V), and the working electrode was Cu for electrodeposition and Cu with
HEA coatings for corrosion measurements. Prior to electrodeposition, the Cu substrates
were thoroughly prepared by polishing with abrasive paper of various sizes, washing with
a 67% HNO3 solution, and finally rinsing with double-distilled water.

SEM images and EDS spectra were obtained by using Quanta 3D FEG D9399 equip-
ment (FEI Company, Hillsboro, OR, USA) (gallium ion source). Those experiments were
used to analyze surfaces and to obtain the chemical composition of the HEA thin films.

Atomic force microscopy (AFM) measurements were performed in non-contact mode
with XE-100 from Park Systems (Park Systems Corp., Suwon, Korea), equipped with flexure-
guided, crosstalk eliminated scanners. For sharp tips, PPP-NCLR from NanosensorsTM

(NanosensorsTM, Lady’s Island, SC, USA), having less than 10 nm radius of curvature,
~225 mm length, ~38 mm width, ~48 N/m force constant, and ~190 kHz resonance fre-
quency was used to record the AFM images. XEI program (v 1.8.0-Park Systems) was used
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for displaying purpose and roughness evaluation of images. The “enhanced contrast” view
mode was used to improve the topographic details. AFM 2D images show representative
line scans. These represent in detail the surface profile of the scanned samples.

The corrosion tests were performed on Voltalab 80 PGZ 402 equipment (Radiometer
Analytical SAS, Lyon, France) with a special Corr. soft. In order to prevent electrical
interferences, the cell assembly was placed in a Faraday cage.

3. Results and Discussion

Figure 1 shows the EDS analysis and Table 1 shows the chemical compositions of the
HEA alloys studied at different deposition times. These results confirm that all the studied
deposits contain all five elements.
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Figure 1. EDS spectra for the CoCrFeMnNi alloy deposited at −2.5 V for different periods of time:
(a) 30 min; (b) 60 min; (c) 90 min.

The depth profile of the EDS spectrum suggests that the chemical composition of the
deposit is relatively constant from the bottom to the top of the sample.

The maximum value of the atomic percentage of Co (40.13%) from the studied alloys
is found for HEA obtained at a deposition time of 60 min and at −2.1 V. The increase in the
deposition time is caused by the reduction in the Co and Fe content, followed at the same
time by the increase in the content of the other elements from the HEA alloy.
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Electrolyte composition and processing parameters during electrodeposition are deter-
minants of alloy composition However, in this case, the chemical composition is determined
by the anomalous deposition behavior of Mn, which is among the elements of this HEA sys-
tem. Standard reduction potentials of the five metals in the present HEA system follow the
order Ni > Co > Fe > Cr > Mn. However, preferential deposition of higher amounts of Mn
is observed, rather than Ni. The easy formation of metal hydrate ions, hydroxide/ligands
(ligands form as a result of complexing agents), and its quick dissociation in the reduction
process, in addition to multiple reduction sequences at the cathode surface, can be the
explanation for this behavior.

Figures 2–4 present the SEM images of the CoCrFeMnNi alloy thin films deposited
at −2.5 and −2.1 V for 30, 60, and 90 min. The HEA thin films deposited consist of
particles with sizes ranging from 5 µm to ~50 nm (Figures 2b and 4b). The shapes of these
particles are spherical, grain shaped, and conglomerates. The HEA thin films obtained at
an electrodeposition potential of −2.5 V (Figure 2) are homogenous and present visible
microcracks. Less visible cracks but with uniform and homogenous distribution of spherical
particles are observed for the HEA thin films obtained at −2.1 V for 60 min. Increasing
the deposition time to 90 min leads to the formation of grain-shaped particles with lower
mean size. It may be said that a longer processing duration determines a refinement
of thin-film morphology.
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Figure 4. SEM morphology of the CoCrFeMnNi film electrodeposited at −2.1 V for 90 min: (a) ×1200; (b) ×80,000.

From these SEMs, one can observe that the number of the wheat grain formations
increases with the decrease in the deposition potential and increase in the process dura-
tion. The particles that form the high-entropy alloy film are functions of the variation
in the electrodeposition potential and deposition time. The optimal value for the elec-
trodeposition potential is −2.1 V. This is concluded from the SEM images and chemical
compositions in Table 2.

Table 2. HEA thin films chemical composition for electrodeposition at different potentials for 30, 60,
and 90 min.

Deposition Time
min

Potential
V

Chemical Percentage
at. %

Co Cr Fe Mn Ni

60 −2.1
40.1 6.8 32.9 16.8 3.4

90 26.2 8.6 23.7 27.2 14.3
30 −2.5 33.2 2.7 19.7 32.7 11.7

Electrochemical measurements for the uncoated/coated copper samples were per-
formed in an aerated artificial seawater solution under ambient conditions.

Polarization curves of uncoated copper and HEA-coated copper are presented in
Figure 5. It can be observed from Figure 5 that both cathodic and anodic polarization
curves denote lower current density in the presence of HEA coating. This behavior reveals
that the HEA coating has a significant effect on the cathodic and anodic reactions of the
electrochemical process. The Tafel plot is presented in Figure 5, while Table 3 presents the
measured open-circuit potential (OCP), corrosion potential (Ecorr), and corrosion current
density (icorr), as well as the calculated corrosion parameters—polarization resistance
(Rp), corrosion rate (CR), and penetration index (PI). The results show a good corrosion
resistance for the HEA thin film in artificial seawater. It is obvious that the HEA coating
impedes the attack of the aggressive ions (Cl−) on the electrode surface.



Coatings 2021, 11, 1367 6 of 13

Coatings 2021, 11, x FOR PEER REVIEW 6 of 14 
 

 

curves denote lower current density in the presence of HEA coating. This behavior re-
veals that the HEA coating has a significant effect on the cathodic and anodic reactions of 
the electrochemical process. The Tafel plot is presented in Figure 5, while Table 3 pre-
sents the measured open-circuit potential (OCP), corrosion potential (Ecorr), and corrosion 
current density (icorr), as well as the calculated corrosion parameters—polarization re-
sistance (Rp), corrosion rate (CR), and penetration index (PI). The results show a good 
corrosion resistance for the HEA thin film in artificial seawater. It is obvious that the HEA 
coating impedes the attack of the aggressive ions (Cl−) on the electrode surface. 

 
Figure 5. Polarization curves of uncoated Cu and HEA-coated copper in artificial seawater at 25 C. 

Table 3. The corrosion parameters of the Cu and Cu/HEA in artificial seawater at 25 C. 

Sample 
EOCP 
mV 

Rp 
Ω cm2 

Ecorr 
V 

icorr 
μAcm−2 

CR 
mpy 

PI 
mm y−1 

Cu −212 1780 −260 7.814 3.65 0.092 
Cu/HEA −180 5040 −236 3.303 2.011 0.051 

EOCP = potential at zero current; Rp = polarization resistance; Ecorr = corrosion potential; icorr = corro-
sion current density; CR = corrosion rate; PI = penetration index. 

The corrosion behavior, corrosion mechanisms, and adsorption phenomena of the 
films formed on the surface of the CoCrFeMnNi alloy coating sample in artificial sea-
water solution were studied by electrochemical impedance spectroscopy (EIS). The EIS 
measurements were carried out over a frequency range of 100 kHz–40 mHz at 
open-circuit potential (OCP) after 60 min immersion in seawater, with a sinusoidal AC 
voltage waveform of ±10 mV (peak-to-peak). The results show the electrochemical prop-
erties of the copper/alloy/electrolyte interface. 

The Nyquist diagrams for uncoated Cu and HEA-coated copper electrodes in artifi-
cial seawater are presented in Figure 6. EIS data were examined utilizing equivalent 
electrical circuits, as shown in Figure 7. 

It can be seen from Figure 6 that the impedance plot of uncoated Cu can be depict-
ed by two time constants. The first time constant at a high-frequency interval is associ-
ated with the presence of corrosion film established on the copper surface, where Rf is 
the resistance of the corrosion film, and CPE1 is the capacitance of the corrosion film. 
The second time constant, at middle and low frequencies, constitutes charge transfer re-
sistance (Rct) and capacitance of the double layer (CPE2) in series with Warburg imped-
ance (W). The element Warburg indicates a diffusion process throughout immersion of 
the Cu electrode in the artificial seawater. It is difficult to evaluate the EIS data for Cu 
electrodes, as results are subject to various interpretations. However, the linear aspect of 
the Nyquist plot suggests a semi-infinite diffusion type for the Cu electrode [29]. The 
Warburg impedance considers the diffusion of oxygen and diffusion of corrosive species 

Figure 5. Polarization curves of uncoated Cu and HEA-coated copper in artificial seawater at 25 ◦C.

Table 3. The corrosion parameters of the Cu and Cu/HEA in artificial seawater at 25 ◦C.

Sample EOCP
mV

Rp
Ω cm2

Ecorr
V

icorr
µAcm−2

CR
mpy

PI
mm y−1

Cu −212 1780 −260 7.814 3.65 0.092

Cu/HEA −180 5040 −236 3.303 2.011 0.051
EOCP = potential at zero current; Rp = polarization resistance; Ecorr = corrosion potential; icorr = corrosion current
density; CR = corrosion rate; PI = penetration index.

The corrosion behavior, corrosion mechanisms, and adsorption phenomena of the
films formed on the surface of the CoCrFeMnNi alloy coating sample in artificial seawater
solution were studied by electrochemical impedance spectroscopy (EIS). The EIS mea-
surements were carried out over a frequency range of 100 kHz–40 mHz at open-circuit
potential (OCP) after 60 min immersion in seawater, with a sinusoidal AC voltage wave-
form of ±10 mV (peak-to-peak). The results show the electrochemical properties of the
copper/alloy/electrolyte interface.

The Nyquist diagrams for uncoated Cu and HEA-coated copper electrodes in artificial
seawater are presented in Figure 6. EIS data were examined utilizing equivalent electrical
circuits, as shown in Figure 7.
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It can be seen from Figure 6 that the impedance plot of uncoated Cu can be depicted by
two time constants. The first time constant at a high-frequency interval is associated with
the presence of corrosion film established on the copper surface, where Rf is the resistance
of the corrosion film, and CPE1 is the capacitance of the corrosion film. The second time
constant, at middle and low frequencies, constitutes charge transfer resistance (Rct) and
capacitance of the double layer (CPE2) in series with Warburg impedance (W). The element
Warburg indicates a diffusion process throughout immersion of the Cu electrode in the
artificial seawater. It is difficult to evaluate the EIS data for Cu electrodes, as results are
subject to various interpretations. However, the linear aspect of the Nyquist plot suggests
a semi-infinite diffusion type for the Cu electrode [29]. The Warburg impedance considers
the diffusion of oxygen and diffusion of corrosive species (as Cl−) to the copper surface
and/or diffusion process of soluble copper compounds (CuCl2−) from the surface into the
solution [29–33]. The appearance of diffusion is also considered in the Bode diagram (phase
angle vs. log f), where the phase angle amounts around (−45◦)/(−50◦). Therefore, the EIS
response for the Cu–seawater interface is depicted by the electrical equivalent circuit (EEC)
with two time constants (Figure 7a).

The Nyquist plot of HEA coating is shaped by utilizing approximately the same
equivalent circuit exhibited in Figure 7. In addition, the parameter values with very good
fit to the impedance plots are meaningfully distinct in comparison to those acquired for
uncoated copper. In this occurrence, the first capacitive loop was assigned to the features
HEA coating/electrolyte interface, and it is distinguished by the coating resistance (Rc) and
coating capacitance CPE1. The second one in the middle- and low-frequency interval was
ascribed to the HEA–Cu interface and the processes occurring underneath the coating; it is
characterized by the charge transfer resistance (Rct) and double-layer capacitance (CPE2).
It is clear from the Nyquist plots that the impedance response of copper is significantly
modified by the deposition of the HEA coating, which means a protective film is achieved,
as evinced by the presence of HEA.

Evidently, a very good fit with this model is realized as regards all experimental
impedance data, which is in good agreement with data obtained from the potentiodynamic
polarization measurements.

Furthermore, the greater values of Rct and lesser values of Cdl denote the best corrosion
protection performance of the HEA-coated copper electrode in artificial seawater. The
parameters achieved by fitting the equivalent circuit of the uncoated Cu and HEA coating
are presented in Table 4. Therefore, in the studied frequency range, an equivalent circuit
model (Figure 7) was proposed, resulting from the fitting and analysis of EIS experimental
data. In this case, the phase element constant CPE was introduced into the circuit instead
of a pure double-layer capacitor (Cdl) to provide a more accurate fit.

Cdl = Y0 (ωmax)n−1 (1)
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Table 4. The EIS parameters of the Cu and Cu/HEA in artificial sea water.

Sample
Rs

ohm·cm2

CPE1
R *

ohm·cm2

CPE2
Rct

ohm·cm2
W

S·s−1/2·cm−2 χ2
Rp

ohm·cm2 E%Q-Yo
S·s-n·cm−2 Q-n Q-Yo

S·s-n·cm−2 Q-n

Cu 16.95 1.143 × 10−4 0.705 232 1.642 × 10−4 0.622 1843 0.002246 6.176 × 10−4 2075 -
Cu/HEA 41.54 7.485 × 10−6 0.755 48.2 7.717 × 10−5 0.635 7339 - 6.852 × 10−5 7387 72

* R for Cu is Rf—the corrosion film resistance; * R for Cu/HEA is Rc—the coating resistance.

CPE was used to describe the deformation of the capacitive semicircle, which corre-
sponds to the heterogeneity of the surface due to roughness and impurities.

The CPE impedance can be defined as:

ZCPE = Y0
−1 (jω)−n (2)

whereω is the angular frequency (ω = 2πf), j is the imaginary number (j2 = −1), Y0 is the
amplitude comparable to capacitance, and n is a phase change. The value of n provides
details about the degree of inhomogeneity of the metal surface. A higher value of n is
associated with a lower surface roughness (a reduced inhomogeneity).

The phase element constant can be set as a resistance (when n = 0, Y0 = R), a capacitance
when (n = 1, Y0 = C), an inductance (when n = −1, Y0 = 1/L), or a Warburg impedance
(n= 0.5, Y0 = W), depending on the value of n.

An increased value of the charge transfer resistance (Rct) may be attributed to the
formation of the protective film at the metal–solution interface and a small value for the
double-layer capacity (Cdl) may be due to the decrease in the local dielectric constant
or the increase in the electric double-layer thickness, indicating a protective behavior of
the HEA surface. The values of polarization resistance and related percentage protec-
tion efficacy values were determined from EIS data and are presented in Table 4. The
anti-corrosion protection efficiency was calculated from polarization resistance using the
following relation:

%Efficiency = (Rpc − Rp/Rpc) × 100 (3)

where polarization resistance Rp from EIS measurements can be calculated as Rp = Rct + Rf
(polarization resistance for copper) and Rpc = Rct + Rc (polarization resistance for HEA-
modified copper). The percentage efficiency calculated from EIS data is found to be 72%.
This is in agreement with the potentiodynamic polarization results.

It can be inferred that the higher values of Rp for HEA coating are attributed to the
efficacious protection of HEA, and the lower value of CPE for HEA coating assures support
for the anti-corrosion protection of copper by coating HEA in artificial seawater.

It can be observed that the diameter of the electrochemical impedance loop for
Cu/HEA is greater than that for uncoated copper, which points to better anti-corrosion
properties of the HEA-modified copper electrode, compared with the unprotected copper.

The Bode diagrams shown in Figure 8 are consistent with the Nyquist plot, and it can
be observed that a higher value of the impedance modulus (Zmod) at low-frequency values
describes a better protective efficiency of the surface against corrosion.

From Figure 8 (Bode diagrams), it can be observed that the presence of HEA–Cu on
the graph-phase angle against the frequency logarithm, presents a maximum very well
established at a phase angle of approximate −50◦ for HEA; hence, this event indicates the
presence of microdefects (microcracks) in the coating structure. The Nyquist and Bode
diagrams suggest that the film on the surface of HEA hinders the corrosion process and
acts as an impediment for the charge transfer phenomenon. Additionally, the EIS data
are in good agreement with the potentiodynamic polarization results. In this study, we
analyzed the behavior of the obtained HEA thin film at corrosion state, as described above.
Results from this study show a good protection efficiency of HEA coating deposited on the
surface of copper electrodes in seawater. Research for improving anti-corrosive protective
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properties of thin-film HEA will continue, seeking to investigate and observe the results
over a longer period of time.
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The protective behavior of the HEA coating is illustrated by the AFM images.
In order to obtain information about the morphology of the samples and their rough-

ness, AFM investigations were performed on the CoCrFeMnNi coating sample before
(1) and after corrosion (2) in artificial seawater. Figure 9 comparatively presents 2D-AFM
and 3D-AFM images at the scale of (4 µm × 8 µm) for Sample 1 (HEA initial) and Sample 2
(HEA corroded), together with random plotted line scans.

As can be seen from Figure 9a, Sample 1 (HEA initial) exhibits hills-like surface
features mainly located in a vertical domain from −100 to +100 nm, as can be observed
from the corresponding line scan presented below the 2D AFM image, and random pits
(see the yellow arrows), which are about 200 nm deep. The scanned area (4 µm × 8 µm) is
57.9 nm (59.4 nm RMS roughness along the red line), while the peak-to-valley parameter
(Rpv) is 483.5 nm (317.0 nm along the red line).

Due to the corrosion process, Sample 2 (HEA corroded) exhibits a curved profile,
with surface features mainly located in z axis from −0.25 to +0.25 µm, as visible in the
line scan presented below the AFM image (it can be assumed that due to the corrosion
process, the corrugated profile visible in Figure 9b is filled with the corroded materials,
which leads to a less spiky but curved surface profile). The global RMS roughness of the
scanned area is 306.6 nm (287.6 nm RMS roughness along the red line) for Sample 2, while
the peak-to-valley parameter (Rpv) is 1.74 µm (1.40 µm along the red line). However, both
2D and 3D AFM images of Sample 2 suggest that the corrosion process is continuous, with
a thickness in the micrometer range.

A better view of the morphology was obtained at the scale of (3 µm × 3 µm), as
presented in Figure 10. The surface of Sample 1 is corrugated, but the presence of small
grains of about 50 nm in diameter is observed, as indicated by the particle selected between
the two red arrows. The characteristic line scan plotted below the 2D AFM image, indicates
spiky hills and some valleys in between, located in a vertical height of ~160 nm (from
−80 to 80 nm). The RMS roughness of Sample 1 is 32.7 nm, while the peak-to-valley
parameter is 273.8 nm.

Sample 2 suggests the formation of corrosion materials during the corrosion process,
so that globular large clusters of >150 nm are visible on the surface (see the selected
globular-shaped deposit with 164 nm diameter). The RMS roughness of sample 2 is 44.54,
and the peak-to-valley parameter is 325.7, which are larger than the values of the “parental”
surface (Sample 1), due to the corrosion products formed by the corrosion process.

Finally, on the same sample (presented in the initial state in Figure 4) subjected to
corrosion in synthetic seawater and AFM measurements, SEM micrography was performed
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(Figure 11). SEM images of the HEA-corroded sample proved by AFM measurements that
the corrosion process does not considerably change the morphology (Figure 11a). At higher
magnifications (Figure 11b), the initial grain-shaped particles modifies to globular ones,
which means that the surface has more roughness.
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Figure 11. SEM morphology of the CoCrFeMnNi (film electrodeposited at −2.1 V for 90 min) corroded in artificial seawater:
(a) ×1000; (b) ×50,000.
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4. Conclusions

CoCrFeMnNi high-entropy alloys were prepared by potentiostatic electrodeposition
at various potentials in the DMF-CH3CN organic system with LiClO4 additive.

The presence of all elements in the HEA coating is highlighted by the EDS results. SEM
surface analysis reveals that HEA thin films consist of three types of particles (spherical,
grain shaped, and clusters), with sizes ranging from ~50 nm to 5 µm. It is also revealed
that the HEA thin films deposited at a potential of −2.1 V exhibit better growth and more
homogeneous distribution of the particles compared with the samples deposited at −2.5 V.

Combining SEM and EDS results, we can conclude that by the variation in the deposi-
tion potential and time, we can control the surface morphology and chemical composition
of HEA alloy.

The corrosion and AFM studies prove that the deposited CoCrFeMnNi high-entropy
alloy electrode has a good corrosion behavior in artificial seawater.

These studies demonstrate that the electrodeposition in organic media can be used for
the synthesis of HEA multi-element alloys with good surface morphology and corrosion
behavior.

In this study, we analyzed the behavior of the obtained HEA thin film at corrosion state,
as described above. The HEA film provides additional protection to the copper electrode
during immersion in artificial seawater (corrosion efficiency of 72%), but imperfections
present in the film structure could influence the corrosion behavior during a long period of
immersion in this aggressive electrolyte. These imperfections might become wider with
more aggressive ions/molecules and could penetrate inside the film, and consequently, the
HEA anti-corrosion protection would change, but this conclusion could be demonstrated
only by long-term corrosion studies. Consequently, in order to improve the deposition
method and corrosive protection properties of HEA films, future studies are planned.
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