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Abstract: In this study, a resistive humidity sensor for moisture detection at room temperature
is presented. The thin film proposed as a critical sensing element is based on a quaternary hy-
brid nanocomposite CNHox//SnO2/ZnO/PVP (oxidated carbon nanohorns–tin oxide–zinc oxide–
polyvinylpyrrolidone) at the w/w/w/w ratios of 1.5/1/1/1 and 3/1/1/1. The sensing structure
consists of a Si/SiO2 dielectric substrate and interdigitated transducers (IDT) electrodes, while the
sensing film layer is deposited through the drop-casting method. Morphology and composition of
the sensing layers were investigated through scanning electron microscopy with energy-dispersive
X-ray spectroscopy (SEM-EDX), X-ray diffraction, and Raman spectroscopy. Each quaternary hybrid
nanocomposite-based thin film’s relative humidity (RH) sensing capability was analyzed by applying
a direct current with known intensity between two electrodes and measuring the voltage difference
when varying the RH from 0% to 100% in a humid nitrogen atmosphere. While the sensor with
CNHox/SnO2/ZnO/PVP at 1.5/1/1/1 as the sensing layer has the better performance in terms
of sensitivity, the structure employing CNHox//SnO2/ ZnO/PVP at 3/1/1/1 (mass ratio) as the
sensing layer has a better performance in terms of linearity. The contribution of each component
of the quaternary hybrid nanocomposites to the sensing performance is discussed in relation to
their physical and chemical properties. Several alternative sensing mechanisms were taken into
consideration and discussed. Based on the measured sensing results, we presume that the impact of
the p-type semiconductor behavior of CNHox, in conjunction with the swelling of the hydrophilic
polymer, is dominant and leads to the overall increasing resistance of the sensing film.

Keywords: holey carbon nanohorns (CNHox); tin oxide; zinc oxide; polyvinylpyrrolidone (PVP);
resistive humidity sensor; p-type semiconductor; swelling
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1. Introduction

In recent years, relative humidity (RH) sensors have been widely designed and de-
veloped due to their relevance in a large variety of industrial, commercial, and residential
applications such as buildings heating, air conditioning and ventilating (HVAC systems),
handheld devices, medical field (respirators, medical air lines, sterilizers), food processing,
automotive industry (engine testbeds), pharmaceutical processing (storage, packaging,
tablet coating, and compression), agriculture (soil moisture control, crop storage, conserva-
tion of seeds), diagnosis of corrosion and erosion in infrastructures and civil engineering,
environmental and meteorological monitoring, mining industry, robotics and so forth. [1–5].

Apart from the sensing principle, fabrication technologies, and sensor design, the
materials used as sensing elements play a cardinal role in developing an RH sensor with
superior performances [6]. Thus, many different materials have been investigated as
sensing layers within the design of RH sensors [7].

Due to their outstanding features, such as high sensitivity towards moisture, facile and
versatile synthetic methods, low cost and tunable electric properties, as well as the ability
to operate under severe conditions, semiconducting metal oxides (MOXs) have emerged as
a promising choice in the RH sensor field [8]. Among MOXs, SnO2 has received increased
attention in the last decades due to its fast, linear, and high–sensitivity response towards
relative humidity changes [9–13]. Kuang et al. developed a resistive RH sensor using a
SnO2 nanowire as a sensing film [14]. Tin (IV) oxide-based nanowires were synthesized
by chemical vapor deposition using gold nanoparticles as catalysts. Both dynamic and
static experiments emphasized that the manufactured sensor has a fast response and high
sensitivity to RH changes in humid air. Parthibavarman et al. described the fabrication
of a resistor-type humidity sensor using SnO2-based spherical nanoparticles as a sensing
layer [15]. The SnO2 nanoparticles, synthesized by the microwave irradiation method,
exhibit good sensitivity towards RH. The estimated response and recovery times were
found to be of 32 s and 25 s, respectively.

Song et al. proposed an impedance sensor for RH detection at room temperature
using KCl-doped SnO2 nanofibers as a sensing thin film [16]. This RH sensor showed
superior sensing performances, such as fast response time (6 s) and recovery time (7 s),
good reproducibility, linearity, and stability. Furthermore, according to the authors, the
addition of K+ ions led to an increase in the number of active sites for water molecules,
thus improving the device sensitivity.

ZnO is another semiconducting metal oxide, which has been intensively explored
as a sensing layer in designing different types of devices [17–21]. For example, Qui et al.
developed a chemoresistive RH sensor using ZnO nanotetrapods with faceted pores and
large internal surfaces as the sensitive film [22]. This unique morphology of the sensing
layer yields high sensitivity and rapid response and recovery time. Furthermore, Qi et al.
studied an impedance-type humidity sensor based on flower-like ZnO nanorods as sens-
ing elements [23]. The proposed sensor exhibits high sensitivity, the sensor’s impedance
decreasing by about five orders of magnitude with increasing relative humidity (RH) from
11% to 95%.

Tsai et al. investigated ZnO nanosheets as a sensing layer for resistive RH sensing
at room temperature [24]. The surface-to-volume ratio and the porous-like surface are
two features derived from the morphology of the film and were presented by the authors
as the leading cause of the high sensitivity of the structure. In addition, a ZnO/SnO2
cubic structure-based nanocomposite was also studied as a sensing layer for resistive RH
monitoring [25].

Other types of MOXs that were studied as sensing layers in RH sensing include
TiO2 [26,27], CeO2 [28,29], CuO [30,31].

At the same time, in the last two decades, a significant number of studies have explored
the possibility of using carbon-based materials as sensing layers in the manufacturing
of humidity sensors, thanks to the outstanding properties of these materials. Due to
their multiple allotrope forms with different chemical and physical properties, carbon-



Coatings 2021, 11, 1307 3 of 16

based materials can be used as sensing films in a large variety of RH types of sensors. In
addition, carbon-based-materials are of particular interest in RH sensors design due to their
sensing capabilities at room temperature, large specific surface area, and chemical inertness.
Moreover, facile hydrophilization of carbonic film through covalent functionalization
enables modulation of sensitivity towards moisture. [32–34].

Among these types of materials, one can mention, inter alia, graphene oxide [35–37],
carbon nanotubes [38–40], amorphous carbon [41], nanodiamond [42,43], nanocones [44],
fullerenes and their derivatives [45,46], carbon nanocoils [47], holey carbon nanohorns (CN-
Hox) and their nanocomposites [48–55], hydrogenated amorphous carbon [56], oxidized
carbon nanoonions [57–60], carbon quantum dots [61].

Based on the information presented above, semiconducting metal oxides and nanocar-
bonic materials can form promising nanocomposites used as sensing layers for manufactur-
ing high-performance RH sensors. Nanocomposites including SnO2 and reduced graphene
oxide [62], or multiwall carbon nanotubes [63], as well as nanocomposites of ZnO with
graphene oxide [64,65], carbon nanotubes [66,67], or graphene quantum dots [68] may be
included in this category.

Finally, yet importantly, polymers are widely used as sensing layers in designing
RH sensors. Thus, dielectric polymers, such as polyvinyl alcohol [69], polyvinylpyrroli-
done [70], or conductive polymers, such as polyaniline [71], are currently used as sensitive
films in RH sensors with different detection principles.

This paper presents the response of a resistive RH sensor that uses a sensing layer
based on quaternary hybrid nanocomposites CNHox/SnO2/ZnO/PVP at w/w/w/w ratios
of 1.5/1/1/1, and, respectively, 3/1/1/1. The study emphasizes the relative humidity
sensing capabilities of the newly developed quaternary organic–inorganic hybrid nanocom-
posites operating at room temperature.

2. Materials and Methods
Materials

All the materials used in the RH measurements were purchased from Sigma Aldrich
(Redox Lab Supplies Com, Bucharest, Romania). Holey carbon nanohorns (CNHox, with
the structure shown in Figure 1a) are characterized by lengths between 40 nm and 50 nm,
diameters between 2 nm to 5 nm, and a specific surface area of around 1300–1400 m2/g.
According to the supplier, CNHox used in experiments has no metal contamination, and
graphite is their main impurity (around 10% w/w).

The polyvinylpyrrolidone (PVP) used has the structure depicted in Figure 1b and an
average molar weight of 40,000 g mol−1. Both tin (IV) oxide and zinc oxide were nanometric
powders (averaged particle size lower than 100 nm), with a specific surface area of around
10–25 m2/g. Isopropyl alcohol, (CH3)2CHOH, is a solution of 70% w/w in water. All
reagents were used as received without further purification.
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Figure 1. The structure of (a) holey carbon nanohorns—CNHox, (b) PVP.

Preparation of the quaternary organic–inorganic—holeycarbon nanohorns hybrid sens-
ing films and the experimental setup are described in detail in the supplementary material.
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3. Results and Discussions
3.1. Surface Topography

Surface topography of the sensing layers based on the quaternary hybrid nanocom-
posite was investigated by scanning electron microscopy (SEM). For surface inspection, a
field emission gun scanning electron microscope/FEG-SEM-Nova NanoSEM 630 (Thermo
Scientific, Waltham, MA, USA) (FEI), with superior low voltage resolution and high surface
sensitivity imaging, was employed.

At first glance, regions with a discontinuous character of particles’ distribution can
be distinguished in all presented SEM images (Figures 2 and 3). However, the nanoscale
images reveal a broad particle size distribution, from about 10–30 nm to 100 nm. Par-
ticles of much larger sizes (100–200 nm) can also be visualized due to the aggregation
of both nanocarbonic particles and semiconducting metal oxides of different sizes and
crystallographic orientations.
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3.2. Surface Composition

Figure 4 shows the elemental composition on the sensing layers surface (expressed in
both atomic and weight percentages), obtained through EDX spectroscopy coupled with
SEM. The method confirmed the presence of the elements C, Sn and Zn, according to the
chemical design of both of the quaternary hybrid nanocomposites prepared. However,
these numerical evaluations suffer from errors specific to the EDX method, which reach up
to 50%–60% in the case of Sn and Zn atoms, and from errors due to the inhomogeneity of
the distribution of carbon and oxide materials in the sensitive layer. Nevertheless, from
Figure 4a,b, it can be noted that sample “1.5” has a lower amount of carbon than sample
“3”, which is in agreement with the proposed preparation procedure.
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Figure 4. Surface composition of sensitive quaternary layers, depending on the content of nanocarbon material and semiconduc-
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3.3. X-ray Diffraction Results

X-ray diffraction measurements were performed using a 9 kW Rigaku Smart Lab
diffractometer (Osaka, Japan) operated at 40 kV and 75 mA. A PSA 0.5◦ soller slit was
employed to ensure an appropriate divergence of the X-ray beam at the detector. Grazing
incidence X-ray diffraction (GIXRD) patterns were recorded by maintaining the incidence
angle ω at 0.5◦, while the detector scanned in the 2θ range of 5 to 60◦. The peak in-
dexing was made using the ICDD database—International Center for Diffraction Data.
GIXRD patterns are shown in Figure 5a–d for each component of quaternary holey carbon
nanohorn-based hybrid nanocomposite and for the nanohybrid CNHox/SnO2/ ZnO/PVP
at 1.5/1/1/1 mass ratio (Figure 5e).



Coatings 2021, 11, 1307 6 of 16

Coatings 2021, 11, 1307 6 of 17 
 

 

  

(a) (b) 

Figure 4. Surface composition of sensitive quaternary layers, depending on the content of nanocarbon material and semi-
conductor metal oxides obtained by EDX spectroscopy coupled with SEM: (a) Sample ”1.5” Ox-SWCNH/SnO2/ZnO/PVP 
= 1.5/1/1/1, and (b) Sample ”3” Ox-SWCNH/SnO2/ZnO/PVP = 3/1/1/1. 

3.3. X-ray Diffraction Results 
X-ray diffraction measurements were performed using a 9 kW Rigaku Smart Lab dif-

fractometer (Osaka, Japan) operated at 40 kV and 75 mA. A PSA 0.5° soller slit was em-
ployed to ensure an appropriate divergence of the X-ray beam at the detector. Grazing 
incidence X-ray diffraction (GIXRD) patterns were recorded by maintaining the incidence 
angle ω at 0.5°, while the detector scanned in the 2θ range of 5 to 60°. The peak indexing 
was made using the ICDD database—International Center for Diffraction Data. GIXRD 
patterns are shown in Figure 5a–d for each component of quaternary holey carbon nano-
horn-based hybrid nanocomposite and for the nanohybrid CNHox/SnO2/ ZnO/PVP at 
1.5/1/1/1 mass ratio (Figure 5e). 

 

Element Weight % Atomic %
CK 13.15 21.17
OK 37.44 45.24
SiK 48.43 33.34
SnL 0.32 0.05
ZnK 0.65 0.19

Element Weight % Atomic %
CK 22.32 35.33
OK 30.14 35.82
SiK 39.74 26.91
SnL 2.52 0.4
ZnK 5.29 1.54

Figure 5. Diffractogram GIXRD for: (a) CNHox, (b) ZnO, (c) SnO2, (d) PVP, nanocomposite CNHox/SnO2/ZnO/PVP
(e) (1.5/1/1/1 mass ratio) and (f) (3/1/1/1 mass ratio).

In the case of CNHox (Figure 5a), the GIXRD pattern shows three broad diffraction
peaks, characteristic for CNHox, located at 23.86◦, 43.11◦, and 53.26◦, correspondent
with the (002), (100), and (004) facet of CNHs [72]. Further, in Figure 5b,c, one can be
observed that the GIXRD pattern exhibits multiple diffraction peaks, which can be ascribed
unambiguously to wurtzite ZnO and SnO2. First, the zinc oxide phase belongs to the 186:
P63mc spatial group with card no. 079-0208, having the lattice constant: a = b = 0.32 nm and
c = 0.52 nm. Second, tin oxide belongs to the 136: P42/mnm spatial group according to card
no. 210-1853 with the following lattice parameters: a = b = 0.47 nm, c = 0.31 nm. Finally,
for the polymeric component, the GIXRD pattern of polyvinylpyrrolidone (Figure 5d)
exhibited two broad characteristic peaks at 2θ of 11.25◦ and 21.21◦, corresponding to d-
values of 7.96 and 4.18 Å, respectively. These results are in good agreement with reported
literature data [73].

Further, the GIXRD pattern of CNHox/SnO2/ZnO/PVP at 1.5/1/1/1 mass ratio
shows multiple diffraction peaks, assigned as carbon nanohorns, SnO2 and ZnO phases
exhibit different crystallization. The size of the crystalline domains, also called the mean
crystallite size, which represents a measure of the crystal quality, was evaluated with the
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Scherrer formula. This gives a straightforward correlation between the mean crystallite
size (τ) and the Full Width at Half Maximum (β) in the following way [74]:

τ =
kλ

β cos θ
, (1)

where k is a shape factor usually equal to 0.9, θ is the peak angular position, and λ is the
wavelength. The following values for the mean crystallite size were obtained: 2.35 nm for
carbon, 19.7 nm for SnO2, and 39.7 nm for ZnO. Moving forward to higher CNHox concen-
tration (e.g., 3/1/1/1 mass ratio), the characteristic diffraction peaks for ZnO disappear,
while the ones for SnO2 indicate poor crystallization. Our findings suggest that the crystal
quality of the individual components is strongly correlated to the CNHox concentration.

3.4. Raman Spectroscopy

The interaction between the holey carbon nanohorns, metal oxides, and polyvinylpyrroli-
done has been proven using Raman spectroscopy. Raman spectra have been acquired by
Lab Ram HR 800 Raman spectrometer, using a He-Ne laser excitation (633 nm). The Raman
spectra of the quaternary nanocomposites based on CNHox/SnO2/ZnO/PVP highlighted
the complexity of the chemical interactions between the four components.

Thus, Figure 6 shows three Raman spectra recorded in three different film posi-
tions deposited from the quaternary nanocomposite CNHox/ZnO/SnO2/PVP at 3/1/1/1
(w/w/w/w) ratio, plotted in red, green, and blue color, respectively. It can be observed that
three active Raman bands (D, G, 2D) were recorded, at the wavenumbers of 1316.0, 1589.6,
and 2630.8 cm−1 which are characteristic for sp2 defected carbon nanomaterials [48,49].

One can also identify one specific SnO2 band (629.5 cm−1) having a low intensity,
explainable by the small size of the related crystallites, according to the GIXRD results.

Furthermore, Raman signals at 441 cm−1 (E high 2), 575 cm−1 (A1(LO)), and 585 cm−1

(E1(LO)) were observed for ZnO [75].
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3.5. RH Monitoring Capability of the Quaternary Nanocomposite

The relative humidity monitoring capability of each quaternary hybrid nanocomposite-
based thin film was explored by applying a direct current at the two electrodes and
measuring the voltage difference when varying the RH from 0% to 100%. For convenience,
we will use the following abbreviations: sensor “1.5”—an RH resistive sensor using as
sensing layer a quaternary nanohybrid based on CNHox//SnO2/ZnO/PVP at 1.5/1/1/1
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mass ratio; sensor “3”—an RH resistive sensor using as a sensing layer a quaternary
nanohybrid based on CNHox//SnO2/ZnO/PVP at 3/1/1/1 mass ratio. An essential
characteristic of the manufactured RH sensors is their low power consumption, around 2 mW.

The behavior of both manufactured RH sensors is presented below (Figure 7a,b). Accord-
ing to results shown in Figure 7a,b, the resistance of the quaternary hybrid nanocomposite-
based sensing layer increases when RH increases in the range from 0% to 100% RH;
measurements have been performed in steps of 10% RH. In addition, it was observed that
the resistance of the sensitive layer for the RH value “0” increases with the decrease of
the CNHox content in the quaternary nanohybrid. This is an expected behavior caused by
the fact that CNHox is a nanocarbonic material with high conductivity. Increasing their
concentration leads to decreasing the nanocomposite’s electrical resistance. The overall
linearity of both quaternary hybrid nanocomposites-based resistive sensors—in humid
nitrogen, when varying RH from 0% to 100%—is good, as shown in Figure 8.
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The sensor response is defined as:

Response (%) =
∆R

Rdry nitrogen
× 100 =

Rhumid − Rdry nitrogen

Rdry nitrogen
× 100, (2)

where Rhumid and Rdry nitrogen are the measured resistances exposed to humid conditions
and dry nitrogen, respectively. By analyzing the % response of the sensors with the



Coatings 2021, 11, 1307 9 of 16

composite sensing layer when exposed to different RH levels, one can observe that the
humidity sensing response varies with the amount of deposited CNHox, that is, the
calculated response (%) increases for the studied sensing layers with RH, and that sensor
“1.5” has better % response when compared with the sensor “3”.

To compare the sensing performances of the RH resistive sensors with different initial
resistance values, a relative sensitivity (Sr) to relative humidity variations (RH) was defined:

Sr =
Rx − R0

(RH)x
, (3)

where: Rx is the resistance of the sensitive layer measured in the test chamber for the RHx
value indicated by the commercial sensor (measured with ±2% accuracy as the producer
suggests it). R0 is the estimated resistance from the graph calibration line resistance = f
(relative humidity) by extrapolation for the value at RH = 0%.

The newly designed RH resistive sensors were compared with those previously
reported in terms of the value of relative sensitivity. The comparison is summarized in
Table 1. Different hybrids such as metal oxides semiconductor/nanocarbonic materials
could yield heterojunctions beneficial for relative humidity monitoring. The purpose of
the study was to investigate the qualitative effect of metal oxides added in the composite
along with CNHox and PVP. Additionally, the combination ratios chosen are similar to
the previously tested composites based on CNHOx and PVP as presented in Table 1. As
can be seen from Table 1, the CNHox and CNHox/PVP-based sensitive films were proven
suitable for RH resistive monitoring with better sensitivity for the nanocomposite. Thus,
the favorable effect of the hydrophilic and dielectric PVP addition was demonstrated in
terms of swelling effect [48,49].

On the other hand, both quaternary nanohybrids which contain graphene oxide
(Table 1) are superior in terms of sensitivity. Graphene oxide has a pivotal role in the
dispersion of holey carbon nanohorn, increasing surface area and, finally, improving
humidity sensing. Furthermore, the metal oxides added to the mixture resulted in a
better sensitivity for the sensing layer compared with the binary mixture CNHox/PVP
with one order of magnitude. In all situations, the sensing layer showed a decrease of
sensitivity of the sensing layer with the increase of nanocarbonic material content except
the case of mixing graphene oxide along with CNHox and tin oxide in the composite. In
terms of sensitivity, the results presented in Table 1 shows that the quaternary mixture of
CNHox/GO/SnO2/PVP are the most promising materials for resistive sensors.

Table 1. Sensitivity CNHox–SnO2-ZnO–PVP compared with previous tested sensing layers.

Sensing Layer Relative Sensitivity

CNHox [48] 0.013–0.021

CNHox-PVP 1/1 [49] 0.020–0.058

CNHox-PVP 2/1 [49] 0.017–0.025

Graphene-PVP inkjet printed [50] 0.21–0.30

GO-CNHox–PVP 1/1/1 [51] 0.150–0.200

GO-CNHox–PVP 1/2/1 [51] 0.063–0.070

GO-CNHox–PVP 1/3/1 [51] 0.043–0.051

CNHox/GO/SnO2/PVP 0.75/0.75/1/1 [76] 0.548–0.770

CNHox/GO/SnO2/PVP 1/1/1/1 [76] 0.798–0.980

CNHox/SnO2/ZnO/PVP = 1.5/1/1/1-present study 0.320–0.489

CNHox/SnO2/ZnO/PVP = 3/1/1/1-present study 0.105–0.242
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The tested devices were prepared and tested by following the same procedures; from
the preparation of the sensitive layer (where the mild ultrasonication was used), to the
testing protocol, after the sensitive layer was deposited by the same method and using
the same quantity of sensing material. The drop-casting method is a facile and low-cost
technique that does not lead to layers with a very ordered and homogeneous structure,
but the response of the sensitive layer is comparable to the response given by the sensors
whose sensing layer that was obtained by inkjet printing [50].Two essential parameters,
the response and recovery time (in seconds), were calculated for both manufactured RH
resistive sensors.

If R(t) is the response of the device in time, the tr can be evaluated as:

tr = t90 − t10, (4)

where t90 and t10 represent the moments when the response R(t) reaches 90% and 10%,
respectively, from the total variation of the sensor’s resistance due to a change in the RH
value (as in the example presented in Figure 9).
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Figure 9. Calculation of response time between two steps of relative humidity.

The response time varied from 35 to 100 s for both sensors when relative humidity
was changed in the testing chamber (Figure 10). The highest values of response time were
registered when the relative humidity exceeded 70%. A longer response time corresponding
to the high level of RH can be explained by decreasing the number of active sites.
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Water molecules are adsorbed in the hydrophilic sensing layer based on CNHox/SnO2/
ZnO/PVP. At a higher level of RH, besides the adsorption process, a second process will
occur, that is, the condensation around the vicinity of the hydrophilic groups. As a result,
the balance of these two processes is reducing the number of active sites, resulting in a
blockage of the active sites.

Figure 11 presents a recovery pattern for the two resistive sensing layers tested when
the relative humidity from the testing chamber dropped from 100% to 0%. The calculated
recovery times ranged from 65 s to 100 s.
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3.6. Analysis of Sensing Mechanism

Each component of the quaternary organic–inorganic hybrid nanocomposite used for
resistive monitoring of RH has a specific contribution to the sensing performance. Thus,
considering the properties of materials included in quaternary hybrid nanocomposites,
several possible sensing mechanisms are proposed hereafter.

CNHox have outstanding intrinsic properties, such as facile synthesis, high conduc-
tivity (p-type semiconductor), high dispersibility in water and organic solvents (such as
ethanol and isopropyl alcohol), hydrophilicity (their affinity for water molecules could
be attributed to the presence of the oxygen-containing functional groups), high chemical
stability, superior porosity, and a large surface area (1300 to 1400 m2/g). All these features
make CNHox a suitable material for the resistive monitoring of RH at room temperature.

At contact with the surface of the CNHox, the water molecules donate their electrons
pairs to the valence band, decreasing the number of holes and increasing the separation
between the Fermi level and valence band in oxidized carbon nanohorns. Therefore, the
RH sensing layer based on quaternary hybrid nanocomposite becomes more resistive.
Several studies reported in the literature support this hypothesis [77,78].

Related to the CNHox, a second sensing mechanism can be analyzed. The adsorbed
water molecules could dissociate to H+ and OH− ions. In addition, the generated proton
may tunnel from one water molecule to another through hydrogen bonding, decreasing
the overall electrical resistance of the quaternary hybrid-based sensing film [79].

The nanometric tin (IV) oxide (SnO2) powder exhibits good sensitivity towards
relative humidity.

According to the literature data, water molecules can be adsorbed by hydrogen
bonding or physisorption. At higher temperatures (>100 ◦C), water molecules can react
with the Lewis acid sites onto the surface of the SnO2 (according to the Hard Soft Acid
Base (HSAB) theory, Sn4+ is a hard acid and H2O is a hard base) and then release electrons.
Consequently, the RH sensing layer based on quaternary hybrid nanocomposite becomes
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less resistive [80,81]. However, since all the RH sensing experiments were performed at
room temperature, this sensing mechanism can be excluded. However, at sensor operation
temperature, displacement of the pre-adsorbed oxygen located at the surface onto SnO2 by
the water molecules is plausible and could lead to decreased resistance [82].

Moreover, the holey carbon nanohorns have p-type electrical conduction (through
holes), while SnO2 is an n-type metallic oxide semiconductor (through electrons). Therefore,
by adding SnO2 to the CNHox, islands of p-n semiconductor heterojunctions embedded in
the polyvinylpyrrolidone will appear in the nanocomposite that could virtually increase
the sensitivity towards moisture.

ZnO nanopowder is an n-type electrical conductor and exhibits good sensitivity
towards relative humidity. Again, the water dissociation provides protons as charge carriers
of the hopping transport. Consequently, the RH sensing layer based on quaternary hybrid
nanocomposites could become more conductive [83,84].

It is supposed that both metal oxides semiconducting interact differently with the
oxidized carbon nanohorns material, leading to alterations in the pore distribution and
thus increasing the specific surface area.

Last but not least, swelling of the PVP can significantly contribute to the sensing
mechanism. PVP is a dielectric polymer with hydrophilic properties, absorbing up to
25% moisture at RH = 75%. Moisture absorption increases the distance between CNHox
particles, leading to a reduction of electrically percolating pathways.

As a general rule, the free volume of polymer/ inorganic nanohybrid is larger than
that of the pure polymer [85]. Therefore, in comparison with CNHox//SnO2/ZnO/PVP
at 3/1/1/1, CNHox/SnO2/ZnO/PVP at 1.5/1/1/1 nanohybrid should possess a higher
degree of swelling.

According to this analysis, the interaction of the quaternary hybrid-based sensing
layer with water molecules has two opposite effects on resistance. First, without completely
excluding the proton-tunneling mechanism, the interaction of CNHox and PVP tandem
with water plays a cardinal role in the overall decreasing resistance of the sensing layer.

4. Conclusions

The experimentally measured RH sensing response of resistive sensors using sensing
layers based on an organic–inorganic quaternary hybrid nanocomposite of CNHox/SnO2/
ZnO/PVP at 1.5/1/1/1 and 3/1/1/1 mass ratios was reported in this paper. While
the sensor with CNHox//SnO2/ZnO/PVP at 3/1/1/1 as a sensing layer has the better
performance in terms of linearity, the structure employing the CNHox//SnO2/ZnO/PVP
at 1.5/1/1/1 has a better performance in terms of sensitivity. The estimated recovery times
ranged from 65 s to 100 s.

The sensing role of each component of the quaternary hybrid nanocomposite was
explained based on their chemical, physical properties, and mutual interactions. Several
sensing mechanisms were considered and analyzed. Based on the sensing results, it was
concluded that the p-type semiconductor behavior of CNHox, in conjunction with the
swelling of PVP, prevails and leads to the overall increasing resistance of the sensing
films. The low power consumption of the manufactured sensors, below 2 mW, the sensing
performances at room temperature, and the manufacturing simplicity are the essential
benefits of the presented sensors.

The results of the present study highlight that the RH sensitivity of the quaternary
nanohybrid sensing layer is substantially improved compared to the previous results re-
ported by the authors on CNHox and CNHox with PVP. Therefore, the beneficial effect of
SnO2 and ZnO in the composition of the nanohybrids was confirmed. However, these val-
ues are smaller than those associated with the nanohybrid based on CNHox and graphene
oxide (such as CNHox/GO/SnO2/PVP: 0.75/0.75/1/1/ and CNHox/GO/SnO2/PVP:
1/1/1/1). This conclusion does highlight the impact of the GO presence in the nanohy-
brid’s composition to achieve a higher sensitivity; we associate this impact with the “p”
type semiconducting properties of the GO, in conjunction with better hydrophilicity.
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5. Patents

Serban B. C., Buiu O., Cobianu C., Avramescu V., Dumbravescu N., Quaternary
oxidized carbon nanohorns—based nanohybrid for resistive humidity sensors, EPO Appli-
cation, nr. EP20465581.5, 13.11/2020.
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digitated) IDT sensing structure, S2. RH monitoring experimental setup, Figure S2: Experimental
setup employed for RH measurements.
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