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Abstract: In this work, intumescent coatings were prepared for protection of wood from fire. The
fire-retardant chemical ammonium polyphosphate (APP) is known to have poor resistance to water
and high humidity as it is hygroscopic in nature. To improve the water resistance, durability and fire
resistance of the intumescent coating, APP was modified using a hybrid organic-inorganic polysilox-
ane encapsulation shell prepared by the sol–gel method. The physical and chemical properties of the
intumescent mix containing microencapsulated ammonium polyphosphate (EAPP) particles were
characterized by X-ray fluorescence (XRF), Fourier transform infrared spectroscopy (FTIR), water
absorption, dynamic vapor sorption (DVS) and thermogravimetric analysis (TGA). The EAPP mix
showed 50% reduction in water absorption, 75% reduction in water vapor sorption and increased
thermal stability when compared to the APP mix. The intumescent coatings were applied on wood
samples, and their fire performance was evaluated using a cone calorimeter test. The intumescent
coatings containing EAPP mix showed better fire retarding properties with longer time to ignition,
lower heat release rate and shorter heat release peak when compared to the coating without EAPP
mix. The prepared intumescent coating shows higher resistance to water and moisture, and it has
great potential to be used in bio-based construction industry for enhancing the fire resistance of wood.

Keywords: intumescent; coating; microencapsulation; fire resistance; cone calorimeter

1. Introduction

Wood is an outstanding material that has been widely used in construction due to
its unique properties such as low density, good mechanical and physical properties, en-
vironmental friendliness and natural beauty. Some of the major concerns regarding the
use of wood products are its durability and flammability [1,2]. Treatments with flame
retardant additives have been used for improving the fire resistance properties of wood
and delaying fire propagation through building structures [3,4]. In terms of treatment ap-
plication, coatings are generally preferred over wood impregnation as they are economical,
less time consuming and do not cause swelling or shrinkage of the substrate [5]. Moreover,
coatings provide an insulation barrier isolating the substrate from heat flux and influencing
its ignition, thermal degradation and combustion characteristics [6].

More recently, intumescent fire retardant coatings have been used for protection of
wood and steel in buildings, chemical plants and other facilities [7–9]. Intumescent coatings
are composed of three main fire retardant additives: (i) an acid source (such as ammonium
polyphosphate, APP), which is usually a carbonized accelerator or a dehydrating agent
generating acid compounds in situ; (ii) a blowing agent (such as melamine, MEL), which
is an important ingredient for production of gases when heated; and (iii) a carbon source
(pentaerythritol, PER), which is the char forming agent insulating the underlying substrate
and maintaining structural integrity [10–13]. The three components of the intumescent
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coating are bound together using a polymeric binder (such as polyvinyl acetate-ethylene).
Intumescent coatings have advantages over non-intumescent coatings being more efficient
for protecting wood from fire [14]. Furthermore, intumescent coatings expand when heated
beyond their critical temperature forming a charred multilayer [11].

However, there are concerns related to fire retardant coatings especially when used
outdoors. The coatings tend to lose their performance as fire retardant chemicals can
leach form the wood surface in presence of rain or even high humidity levels leaving the
substrate unprotected from fire. Fire retardant additives in intumescent coatings such as
APP are hygroscopic in nature, and when exposed to high humidity or rain, they tend to
hydrolyze water-soluble components [6,15]. As a result, intumescent coatings have limited
usage in exterior wood sidings as well as in indoor spaces with high relative humidity
levels. Furthermore, typical intumescent coatings are opaque which can compromise the
natural appearance of wood. To address these issues, some of the techniques developed for
protection of fire retardants include surface modification with coupling agents, ultra-fine
modification and microencapsulation [8,16–20].

Microencapsulation has been reported to be an effective strategy to modify the flame
retardant while playing a synergistic role in flame retardancy [21–23]. Many studies have
reported the use of silane coupling agents, bio-based macromolecules, ionic liquids and
melamine-based resins for the modification of flame retardant additives and achieved good
results [24–27].

In previous work, polysiloxane microencapsulation has shown to remarkably improve
hydrophobicity of APP [28]. It was demonstrated earlier that the polysiloxane or silica
microencapsulation of APP significantly improved flame retardancy of polyolefins [13,29].
Moreover, the combination of phosphorus and silicon based compounds has been shown
to improve fire performance, and this synergistic effect is described as phosphorus promot-
ing char formation and silicon forming a smooth layer protecting the formed char from
oxidation [30]. In this study, an intumescent coating is prepared with microencapsulated
APP, which was modified using an organic-inorganic hybrid polysiloxane shell. The in-
tumescent coating containing microencapsulated APP is applied on wood and tested for
its water resistance and flame retardancy. The effect of weathering on the performance of
intumescent coatings applied on wood samples is also investigated.

2. Materials and Methods

The intumescent additives APP (InorFlam APP 201), MEL (InorFlam Melamine
F40) and PER (InorFlam Penta M40) were provided by EMCO-Inortech Chemicals Inc.
(Terrebonne, QC, Canada). The binder (vinyl acetate-ethylene copolymer Eco VAE401)
was supplied by Celanese Ltd. (Dallas, TX, USA); prime pigment (TiO2 Kronos 2310) and
coalescent agent (Glycol ether PM acetate) were supplied by Univar Canada Ltd. (Mon-
treal, QC, Canada). The solvent-free wetting and dispersing additive (BYK2010) and the
VOC-free silicone-containing defoamer (BYK022) were provided by Dempsey (Montreal,
QC, Canada).

The microencapsulated APP (EAPP) used in this study were prepared in accordance
with previous work [28]. Ethanol (150 mL) and water (50 mL) were stirred at 700 rpm for
10 min using a magnetic stirrer. APP (50 g) was added and stirred at 1000 rpm for 15 min.
Ammonia water (17 mL) was added and stirred for 20 min. Tetraethoxysilane (10 mL) was
added dropwise and stirred for 10 min. Finally, methytriethoxysilane (2.5 mL) was added
and stirred at for 4 h at 1000 rpm. The final mixture was filtered and washed with water
and dried at 80 ◦C until constant mass was reached. All of the raw materials were used
without any further purification. The chemical composition and typical characteristics of
the raw materials are detailed in Table 1.
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Table 1. Main characteristics of raw materials used in this study to prepare the formulation.

Component Chemical Composition Average Particle Size (µm) Content Wt.% Solids (%)

Ammonium polyphosphate
(APP)

(NH4PO3)n (n > 1000)
crystalline form II

31% w/w P content
14% w/w N content

≤15 µm 100

Melamine
(MEL) 1,3,5-Triazine-2,4,6-triamine ≤40 µm 100

Pentaerythritol
(PER)

2,2-Bis(hydroxymethyl)1,3-
propanediol ≤40 µm ≥98

Binder ECO VAE401 vinyl acetate-ethylene copolymer 54–58

Prime pigment KRNOS2310 Titanium dioxide ≥0.1 95–100% TiO2
1–5% Al(OH)3

Coalescent agent 2-methoxy-1-methylethyl acetate - >99

Wetting and Dispersing agent
BYK2010

Aqueous emulsion of a structured
acrylate copolymer with
pigment-affinic groups.

- -

Defoaming agentBYK022
Mixture of foam-destroying

polysiloxanes and hydrophobic
solids in polyglycol

- -

Microencapsulated APP
(EAPP) APP encapsulated by polysiloxane 10 ± 2 -

2.1. Materials
2.1.1. Preparation of Intumescent Powder Blend

Two intumescent blends (Table 2) were prepared for this study: (i) APP mix (control
mixture) containing APP, MEL and PER and (ii) EAPP mix containing EAPP, MEL and
PER. The blends were vigorously agitated for 15 min using a mechanical stirrer at room
temperature.

Table 2. List of intumescent blends and coatings used in this study.

Sample Description

APP Mix APP, MEL and PER
EAPP Mix Microencapsulated APP, MEL and PER

APP Coating APP mix + dispersing agent, pigment, defoaming agent, binder, coalescent agent and water
EAPP Coating EAPP mix + dispersing agent, pigment, defoaming agent, binder, coalescent agent and water

APP Coated Wood Wood samples coated with APP Coating
EAPP Coated Wood Wood samples coated with EAPP Coating

Aged APP Coated Wood Wood samples coated with APP Coating after weathering
Aged EAPP Coated Wood Wood samples coated with EAPP Coating after weathering

The APP mix was prepared by mixing the components APP: MEL: PER in the ratio
3:1:1, respectively. The EAPP mix was prepared by substituting the APP with MAPP, al-
though the quantity of APP was kept constant in both intumescent mixtures for comparing
the properties between the two intumescent blends. Therefore, to prepare the EAPP mix
with the equivalent weight of APP in the APP mix, the quantity of APP present in EAPP
was calculated by X-ray fluorescence (XRF) analysis.

From the data shown in Table 3, it was found that for each molecule of EAPP, the
weight percentage of silicon was twice that of phosphorus. This means that the weight of
the polysiloxane encapsulation is roughly twice the weight of APP. From the calculations
using the data in Table 3, it was determined that the weight of EAPP that had to be added
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to the EAPP mix was thrice the weight of APP particles added to the APP mix. Hence, the
EAPP mix contained the components EAPP:MEL:PER in the ratio 9:1:1.

Table 3. Elemental composition of the EAPP particles.

Test Sample
Elemental Composition (%)

Si/P
Si O P

1 20.63 68.48 10.89 1.90

2 21.21 68.40 10.39 2.04

3 21.09 68.42 10.50 2.01

4 21.32 68.38 10.30 2.07

2.1.2. Preparation of Intumescent Waterborne Coating

Two intumescent waterborne coating formulations were prepared using the APP
mix and EAPP mix using the process described in Table 4. The APP Coating formulation
contained the APP mix, dispersing agent, pigment, defoaming agent, binder, coalescent
agent and water. The other EAPP coating formulation contained all the above ingredients
except APP mix which was replaced by EAPP mix. A scheme diagram showing the
deposition of APP and EAPP coating is presented in Figure 1. The optimal mass ratio
of the components was determined through a series of formulation tests. This selected
weight ratio allowed the best solids dispersion. The coating formulations were obtained as
a dispersion using a high-speed disperser (Dissolver Dispermat LC 30, VMA-Getzmann
GmbH, Reichshof, Germany) and speeds ranging from 800 to 2500 rpm.

Due to the high solid content of the intumescent coatings and the difficult dispersion of
the EAPP particles, multiple smaller batches (100 g each) were prepared to ensure maximum
dispersion of the solid particles. Special attention was taken to avoid overheating of the
mixture, since this may cause premature degradation. The prepared intumescent coatings
had a high solid concentration with 60.08% for APP Coating and 69.13% for EAPP Coating.

Table 4. Basic formulation for the intumescent waterborne coatings.

Steps Ingredients
Batch (wt.%)

APP Coating EAPP Coating

Step 1
(10 min, 800 rpm)

Water 20.00 40.91
Dispersing agent (Byk-2010) 1.21 1.83

Step 2
(30 min, 2500 rpm)

TiO2 Pigment 4.00 6.06
Intumescent Blend 44.16 15.39

Water 7.00 -
Defoaming agent (Byk-022) 0.88 1.34

Step 3
(20 min, 1700 rpm)

Binder 20.75 31.44
Coalescent agent 2.00 3.03

- Total 100.00 100.00

2.1.3. Preparation of Water Based Epoxy Primer

A dual component water-based epoxy primer was used to improve the adherence
between wood substrate and the intumescent coating. The primer formulation and ingre-
dients were provided by EMCO-Inortech Chemicals Inc. (Terrebonne, QC, Canada) and
used as received. The system was prepared by mixing the supplied epoxy resin and curing
agent binder with a volume ratio of 3:1, respectively, for 10 min at 1000 rpm. The mixture
was then left for 30 min before its application on the wood substrate.
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2.1.4. Wood Sample Preparation

White spruce (Picea glauca (Moench) Voss) wood panels (100 mm × 100 mm × 16 mm)
were prepared. The samples were conditioned in a climate-controlled room at 20 ◦C and
50% relative humidity (RH) until they reached constant mass. The wooden panels were
disc-sanded on the flat grain using P150 grit paper.

2.1.5. Coating Deposition

The formulated coatings were applied on the wood samples with an automatic film
applicator equipped with a bar coater (BYK-Gardner, Columbia, DC, USA) at a constant
speed of 50 mm/s. For the wood samples, three layers of coatings were applied including
one coat of primer (approx. 200 µm wet thickness) and two layers of intumescent coatings
(approx. 75 µm each of wet film thickness). The thickness of the dry coating was evaluated
with a digital microscope. Two layers of 150 µm each of wet coating were applied on glass
panels. The samples were then left to stabilize at room temperature for at least one week
before conducting the analysis.

2.2. Methods
2.2.1. X-ray Fluorescence (XRF) Analysis

The XRF spectrometry was performed for quantitative determination of the atomic
ratio of phosphorus and silicon, which are the important characteristic elements of APP
and polysiloxane, respectively, in EAPP specimen. The analysis was carried out under
mechanical vacuum in a micro-XRF analyzer (M4 Tornado model from Bruker, Billerica,
MA, USA) equipped with a rhodium X-ray tube and two EDS detectors. The homogenous
powder specimen was placed between two SPEX 3525 Ultralene film (4 µm thickness).
Four analyses were conducted, and the average value was reported.

2.2.2. Dynamic Vapor Sorption Isotherm and Water Uptake

A vapor sorption apparatus, the VTI-SA+ Analyzer (TA Instruments, New Castle,
DE, USA), was used to calculate the sorption isotherms of the intumescent blends and the
water uptake of the coating films. Approximately 10–15 mg of sample was placed in a pan,
combined with a microbalance by a hanging wire. The sample was then exposed to varying
relative humidity (RH) levels, increasing in steps from 0 to 95% and then decreasing the
RH back to 0% in the same manner. Each RH step was programmed to move to the next
step when the change in sample mass was stable for at least 10 min (dm/dt < 0.002%),
which would allow to obtain equilibrium moisture content values as reported earlier. The
maximum time allowed for each RH step was 180 min, and the data were recorded every
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10 s during the experimental run. For the water uptake experiment, the samples were
exposed to maximum RH level for 300 min. The temperature was maintained at 23 ◦C
throughout the experiments. The test was performed in triplicates.

2.2.3. Thermogravimetric and Differential Thermogravimetric Analysis (TG/DTG)

Thermogravimetric analysis was performed for the samples from 25 to 800 ◦C at a
heating rate of 10 ◦C·min−1 in air atmosphere in a thermogravimetric analyzer. The coating
formulations were deposited on glass, allowed to dry and were then detached from the
glass substrate for analysis. The weight of all samples was kept at approximately 5 mg,
and three measurements were taken for each formulation.

2.2.4. Fourier Transform-Infrared (FTIR) Spectroscopy

The presence of characteristic absorption bands was studied by ATR-FTIR spec-
troscopy (Model Spectrum 400 model, Perkin Elmer, Waltham, MA, USA) using a crystal
diamond accessory. Absorption spectra were recorded for a wavelength range from 4000
to 650 cm−1. A total of 32 scans were taken, and the resolution was set to 4 cm−1. Three
analyses were performed for each sample.

2.2.5. Accelerated Aging Tests

In order to compare the water-resistance between APP Coating and EAPP Coating
on wood, the samples were exposed to artificial accelerated weathering test before further
assessing their fire performance test. Tests were performed in a Ci3000+ Weather-Ometer
(Atlas Materials Testing Solutions, Mount Prospect, IL, USA) following the ASTM G155-13
test method “Standard Practice for Operating Xenon Arc Light Apparatus for Exposure of
non-metallic Materials”. This method allows the simulation of the weathering effects that
occur when the materials are exposed to sunlight and moisture. The wood panels exposed
consisted of 7 samples of each intumescent formulation. The samples underwent direct
daylight exposure (Boro-Boro) at an Irradiance rate of 0.35 W/m2/nm and wavelength
of 340 nm. The exposure cycle consisted of two steps. During the first step, the samples
were exposed to light for 102 min at 50% RH and 63 ± 3 ◦C (black panel temperature).
The second step consisted of exposure to light for 18 min under direct water spray. The
exposure time for the accelerated aging test was 2000 h.

2.2.6. Cone Calorimeter Test

An oxygen consumption cone calorimetry (Fire Testing Technology, West Sussex, UK)
was used to carry out measurements on the samples according to the procedure defined
in ISO 5660-1. All data were obtained at heat flux of 20, 35 and 50 kW/m2. The coated
faces of specimens were exposed to the external heat source. A small spark igniter was
placed above the specimen to allow pyrolysis gases to ignite. Before placing each sample
horizontally in the metallic sample holder, the non-exposed area of sample was wrapped
with aluminum foil. A lightweight mineral fiber blanket was used as an insulating between
the non-exposed surface of sample and the metallic sample holder. The test was performed
in triplicates for each sample, and the average reading was reported.

3. Results and Discussion

The water absorption curves of the two intumescent coatings are shown in Figure 2.
The intumescent coating containing silica encapsulated APP (EAPP Coating) clearly shows
a lower water absorption rate when compared to the intumescent coating containing
non encapsulated APP (APP Coating). The water absorption curve of the EAPP Coating
stabilizes after 2 h of exposure to 100% RH level. On the other hand, the APP Coating
continues to absorb water throughout the experiment. At the end of test, the APP Coating
curve shows a steady increase in water absorption predicting that the water saturation is
significantly higher than that for the EAPP Coating.
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The water vapor sorption isotherms of the intumescent powders are shown in Figure 3.
Analyzing the adsorption curves of the mixes, the APP mix tends to adsorb slightly more
water vapor on its surface when compared to microencapsulated powder containing EAPP.
The mass change values of the intumescent powders increase with increasing relative
humidity (RH). At 95% RH level, the mass change peak of the APP mix is prominent,
showing that it is hygroscopic in nature compared to the EAPP particles in its mixture. It
was reported earlier that APP microencapsulation could enhance its hydrophobicity and
compatibility with polymers when used in coatings, thereby improving the dispersibility
in the matrix [31,32].

The hysteresis between the adsorption and the desorption curve is more obvious for
the APP mix meaning that the water molecules hold on to the surface of the APP [33]. In
contrast, the EAPP mix shows almost negligible adsorption of water vapor on the surface
at lower humidity levels. Moreover, the hysteresis between adsorption and desorption
curves is hardly noticeable in the EAPP mix, meaning that microencapsulation has been
able to protect the APP particles and eliminate their hygroscopic property responsible for
their sensitivity to moisture [34].

The thermal stability of the intumescent blends was assessed by TGA. The decomposi-
tion of both samples took place in the range of 200–600 ◦C as seen in Figure 4. The DTG
curves presented in Figure 5 show multiple small peaks and a large peak corresponding
the temperature of maximum weight loss (Tmax). The initial decomposition observed
between 200–400 ◦C in the APP mix corresponds with the release of volatiles from the
APP including NH3 and formation of crosslinked polyphosphoric acids [35]. The main
decomposition process was seen from 450 to 600 ◦C, and Tmax was observed at 539 ◦C
for the APP mix. During this process, it is expected that the polyphosphoric acids may
evaporate or dehydrate forming P4O10 [36,37].
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The EAPP mix shows a similar thermal degradation behavior as the APP mix. The
initial decomposition resulted in the loss of volatiles from APP. However, the initial onset
temperature was slightly lesser when compared to the APP mix which could be linked with
the reaction between polysiloxane and APP and faster depolymerization of APP due to the
silanol [38]. The maximum weight loss of EAPP mix occurred at a similar temperature as
the APP mix although the residual weight at the end was higher for the EAPP mix. Overall
EAPP mix showed better thermal stability and a lower rate of mass loss when compared
to the APP mix indicating that it possessed better heat resistance at higher temperatures.
The reason for this could possibly be linked with the formation of silanol which reacts
with the polyphosphoric acids subsequently cross-linking and forming a three-dimensional
structure. It is also possible that silanol could form a compact silica shell. Both these
scenarios can prevent the degradation of APP [13,39].
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The effect of polysiloxane encapsulation on flame retardant properties of the intu-
mescent coatings was evaluated using cone calorimetry. The main parameters studied
from this test were time to ignition (Tign), heat release rate (HHR), maximum peak of heat
release rate (HRRmax), mass loss rate (MLR), total heat release (THR) and time to maximum
peak of heat release rate (Time HRRmax). The cone calorimetry test was conducted on
both intumescent coatings applied on wood samples (APP coating and EAPP coating)
as well as control wood sample (without any coating). Another set of experiments was
conducted on the intumescent coated wood samples that had undergone aging prior to the
cone calorimetry test. The flame retardant properties for all samples are reported in Table 5.

The wood samples treated with the intumescent coatings showed a delayed Tign when
compared to the control sample. The addition of flame retardants significantly reduced the
HRRmax values which is the main reason for the delay in combustion. Figure 6 shows the
HRR curves of the intumescent coated samples and the control sample with respect to time
elapsed during the test. HRR is a measure of the heat released per unit surface area of the
burning material, and it is believed to have the highest impact on fire hazard [10].

It was observed that the control wood sample burned rapidly after ignition and had
a sharp HRRmax peak of 240 kW/m2 at about 20 s. Comparing with the control wood
sample, the HRRmax peak of the intumescent coated wood samples decreased significantly.
The HRRmax values of APP Coated Wood and EAPP Coated Wood were 54 and 48 kW/m2,
respectively, which correspondingly decreased by 77% and 80% in comparison with the
control wood sample. After aging, the intumescent coated wood samples showed higher
HRRmax values when compared to the non-aged, coated samples as reported in Table 5.
However, from the HRR curves presented in Figure 7, it can be seen that the overall
heat released as well as the HRRmax peak value was lower when compared with the
control sample.

The mass loss curves of the intumescent coated wood samples and the control wood
sample are presented in Figure 8 as a function of combustion time. After burning, the
EAPP Coated Wood sample and the APP Coated Wood sample had residues of 28% and
22%, whereas the control wood sample had 16% residue left. As reported in Table 4, the
control sample had a MLR of 0.064 g/s, and this value decreased to 0.056 and 0.041 g/s
when the wood samples were coated with APP Coating and EAPP Coating, respectively.
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Table 5. Fire properties of the samples from the cone calorimeter test.

Flammability
Traits Control Sample APP Coated Wood EAPP Coated

Wood
Aged APP Coated

Wood
Aged EAPP

Coated Wood

Tign
(s) 10 ± 2 50 ± 5 65 ± 5 10 ± 2 10 ± 2

HRR in 180 s
(kW/m2) 95.64 ± 4.11 28.52 ± 1.46 26.36 ± 0.56 83.35 ± 2.91 85.77 ± 1.33

HRR in 300 s
(kW/m2) 86.90 ± 3.23 30.62 ± 1.18 28.78 ± 0.81 77.46 ± 2.74 76.08 ± 0.62

HRRmax
(kW/m2) 240.01 ± 9.21 54.16 ± 2.27 48.15 ± 2.73 186.19 ± 6.21 187.09 ± 3.45

MLR
(g/s) 0.064 ± 0.004 0.056 ± 0.002 0.041 ± 0.001 0.057 ± 0.003 0.053 ± 0.001

THR
(MJ/m2) 83.59 ± 2.19 60.59 ± 1.91 55.49 ± 0.89 74.81 ± 2.12 68.70 ± 1.56

Time HRRmax
(s) 20 ± 2 115 ± 5 125 ± 5 20 ± 2 20 ± 2
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After the intumescent coated wood samples were exposed to the weathering condi-
tions, an increase in the MLR values was observed, and the residue obtained after burning
was slightly higher when compared to the non-aged samples as seen in Figure 9. The THR
values of all samples are also reported in Table 5. On burning, the control sample released
a total heat of 83 MJ/m2, while the APP Coated Wood and EAPP Coated Wood samples
released 60 and 55 MJ/m2 of heat, respectively. The decrease in THR values by almost
35% for intumescent coated wood samples indicate that the modified fire retardant could
significantly reduce the total heat released and enhance the fire-retardant properties of the
studied samples.
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The organic–inorganic hybrid polysiloxane encapsulation shell has proved to enhance
the water resistance of the intumescent coating. However, in extreme environmental
conditions as simulated during the aging test, the microencapsulation seems to wear off
leaving the fire-retardant chemicals unprotected. Both intumescent coatings have similar
fire performance after undergoing aging. As seen in Table 4, the flame retardant properties
(Tign, HRR, HRRmax THR, MLR and Time HRRmax) of the intumescent coated wood
samples have significantly reduced after aging, although the coatings still provide some
level of fire protection to wood when compared to the non-aged control wood sample.

The FTIR spectra of polysiloxane encapsulation shell and wood samples coated with
the two intumescent coatings are presented in Figure 10a. The peaks corresponding to the
encapsulation shell as listed in Table 6 are seen in FTIR spectra of both, polysiloxane as
well as EAPP Coated Wood sample. On the other hand, the APP coated wood sample did
not show any peaks corresponding to the silica. It was observed that the coatings had a
masking effect, thus lowering the peak signals of OH groups present on the wood surface.
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The FTIR spectra of the binder and the intumescent coatings on wood after aging
are presented in Figure 10b. It was observed that the binder peaks that are present in the
EAPP Coated Wood and APP Coated Wood samples (Figure 10a) were not seen in the
coated wood samples after aging (Figure 10b). This could possibly be interpreted as the
binder being washed off or leached during the weathering experiment which also takes
away most of the intumescent coating along with it [5]. This could be one of the reasons
for the reduction in flame retardant properties after aging as seen in Table 5 which needs
further investigation. It has been reported earlier that waterborne intumescent coatings are
vulnerable to aging and also that their adhesion to substrates can be poor [15,31].
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Table 6. FTIR peaks corresponding to their respective sources.

Wavenumber (cm−1) Vibration Source

~3300 O–H Polysiloxane encapsulation, wood
2930–2950 C–H vibration Binder

1732 C=O stretch in unconjugated ketone, carbonyl and
ester groups Binder

1675 C=C stretch (weak) Lignin in wood
1510 Aromatic skeletal vibrations C=C Lignin in wood
1430 CH2 bending Polysiloxane encapsulation, binder
1373 CH bending Binder
1231 C–O–C Binder
1070 C–O stretching Cellulose, hemicellulose in wood
1050 Si–O–Si Polysiloxane encapsulation
1020 C–C Binder
896 C–O–C glycosidic stretch Polysaccharides in wood
893 Si–OH stretching Polysiloxane encapsulation
798 Si–CH3 stretching Polysiloxane encapsulation

4. Conclusions

The preparation of intumescent waterborne coatings for wood using encapsulated
APP as the fire retardant is reported in this paper. The water absorption, hygroscopicity
and thermal degradation of APP containing intumescent blends were significantly reduced
by surface modification of APP via a polysiloxane encapsulation shell, which was prepared
using the sol–gel process. The effect of the prepared intumescent coatings on the fire-
retardant properties of wood was investigated using cone calorimetry. The wood samples
treated with EAPP Coating possessed enhanced fire resistance showing a higher time to
ignition, 80% reduction in the peak of maximum heat release, and 36% reduction in mass
loss rate when compared to the control wood sample. The encapsulation of APP enhanced
the physical and fire-retardant capabilities of the coating which could be attributed to
the synergistic effect between APP and the polysiloxane shell. However, the coatings
showed some decline in fire retardant properties after undergoing an intensive artificial
accelerated weathering test, which could be due to the leaching effect as interpreted from
the FTIR data. Further work is recommended on improving the durability of this coating
by investigating different binder systems for enhancing its compatibility with wood. The
coating penetration depth and interphase analysis can be studied to better understand the
interaction between the substrate with the intumescent coating.
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