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Abstract: The pollution caused by microplastics around the world is an increasingly significant issue
that has to be tackled with different methods and technologies. Here, we report a straightforward
and rapid process combining electrodeposition and electrophoresis to produce a durable superhy-
drophobic coating on an aluminum substrate (UNS A91070) that has a static contact angle (153◦),
sliding angle (1◦), and contact angle hysteresis (1◦). Field emission scanning electron microscopy
and high-resolution transmission electron microscopy showed the presence of a hierarchical struc-
ture with nanolayers that were 70 nm thick. The chemical composition was also analyzed using
attenuated total reflectance-Fourier transform infrared spectroscopy and high-resolution X-ray pho-
toelectron spectroscopy, which revealed that the hierarchical structure was composed of zinc laurate
(Zn(C11H20COO)2) that decreased the surface free energy of the system. Moreover, the coating
showed high durability against abrasion caused by the P1200 SiC paper due to the presence of TiO2

particles in the upper layers as well as the homogeneous chemical composition of the hierarchical
structure. Finally, taking advantage of the superoleophilic properties of superhydrophobic surfaces,
the ability of the coating to remove high-density polyethylene microplastics from water was studied.

Keywords: superhydrophobic; superoleophilic durability; oil/water separation; microplastics

1. Introduction

The presence of solid pollutants such as microplastics (MPs) is a concerning issue
around the globe that will affect the economy, the quality of food and soils, and the health
of animals and the human population. MPs are smaller than 5 mm in size and present
a wide variety of morphologies such as rounded and irregular shapes or fibers. Their
chemical composition also varies and they can be polypropylene (PP), polystyrene (PS),
polyethylene (PE), or copolymers such as nylon. Additionally, MPs can cause several types
of health problems, such as neurotoxicity and disruption of immune functions, and they
have even been reported to translocate to the circulatory system [1–3].

To remove MPs from water and avoid future issues, different technologies have been
used such as electrocoagulation, filtration membranes and air flotation, among others [4,5].
Despite the fact that these methods present high separation efficiencies, they also have
limitations such as fouling of the whole surface or even causing MPs to fragment into
nanoplastics [6,7]. Therefore, it is necessary to study different materials that can remove
MPs without affecting their size and causing surface contamination. In this scenario, and
apart from the previously cited methods, the wettability of MPs should be considered. Due
to the organic nature and presence of carbon-carbon or even carbon-halogen bonds, the
surface free energy of the polymers tends to be low, which decreases the wetting properties.
Therefore, the surface free energy of different materials plays a key role in the removal of
MPs. Superhydrophobic materials are surfaces with extremely high water contact angles
(WCA > 150◦), low sliding angles (SA < 10◦), and low contact angle hysteresis (CAH < 10◦),
thereby showing water repellency [8]. Moreover, it is well known that these materials
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also present superoleophilic properties and underwater superoleophilicity, with oil con-
tact angles (OCA) and underwater oil contact angles (UWOCA) lower than 10◦ [9–11].
Superhydrophobic materials have been used in a wide variety of applications such as in
corrosion resistance [12,13], photodegradation of pollutants [14,15], self-cleaning [16,17],
anti-biofouling [18,19], anti-icing [20,21], distillation [22,23], oil/water separation [24–26],
and ethanol/water separation [27,28]. Despite the fact that these materials can remove
miscible or immiscible pollutants, the separation of solid pollutants from water still remains
a challenge. Additionally, the use of ceramic particles such as SiO2, Al2O3, or TiO2 increases
the roughness of the surface, which is a key point for superhydrophobic surfaces, leading
to the heterogeneous Cassie-Baxter wetting state as well as increasing the durability of the
coating itself [29–31].

Herein, we present a composite superhydrophobic coating made of zinc laurate and
TiO2 particles that was obtained by combining electrodeposition and electrophoresis. The
coating has a WCA of 153◦ and an OCA of 0◦. It also presents excellent durability against
abrasion due to the presence of TiO2 particles. Taking advantage of the water repellency of
the surface and its high affinity for hexane, we observed that MPs migrate from the water
to hexane due to their affinity for the organic phase. As a result, this process promotes the
removal of high-density polyethylene (HDPE) MPs with efficiencies close to 100%. This
application provides a new way of using superhydrophobic surfaces in the removal of
solid pollutants based on their wetting properties.

2. Experimental Procedure
2.1. Fabrication

The following method was used to deposit a superhydrophobic coating onto a pure
aluminum substrate. Cleaned plates of UNS A91070 aluminum (99.999%) were grinded
manually and vertically with P1200 SiC abrasive paper. A solution of 0.1 M lauric acid,
0.05 M ZnCl2 and 1 g/L of TiO2 with a particle diameter of 0.2 ± 0.04 µm (purchased
from Scharlau, Acros Organics and Alfa Aesar, respectively) was prepared in analytical
grade ethanol (purchased from Scharlau), with the corresponding suspension obtained
after stirring. Two aluminum plates acting as electrodes were immersed vertically and
separated 2 cm from each other in the solution. Finally, a current density of 0.02 A/dm2

was applied for 900 s. After that, the samples were removed from the electrolytic solution,
cleaned with ethanol, and dried in air. Samples were obtained as mentioned above and
the experimental conditions such as temperature (25 ◦C), reactant concentrations and the
potential were controlled constantly. A coating was formed on the aluminum substrate,
covering the surface.

2.2. Characterization Techniques

To understand the roles of the reactants and morphology, different characterization
techniques were used to determine morphology and the chemical composition. The sample
surface was characterized on a JEOL J-7100 field emission scanning electron microscope
(FESEM, JEOL Ltd., Tokyo, Japan) to study the morphology in detail. Energy-dispersive
X-ray Spectroscopy (EDS, Oxford Instruments, Oxfordshire, UK) microanalysis was used to
determine the semiquantitative elemental composition of the generated coatings (samples
were carbon sputtered to enhance observation). The study of the surface nanostructure
was performed with a transmission electron microscope. High-resolution transmission
electron microscopy (HRTEM, JEOL Ltd., Tokyo, Japan) was conducted with a JEOL JEM
2100 microscope coupled to an EDS detector and the Selected Area Electron Diffraction
(SAED); the samples were supported on a holy carbon film on a copper grid. The Gatan
1.7 and CaRIne 4.0 software programs were used to determine the interplanar distances
and planes. High-resolution X-ray photoelectron spectroscopy (HR-XPS) was performed
on a PHI ESCA-5500 system (PHI, Chanhassen, MN, USA) using a monochromatic X-ray
source (Kα(Al) = 1486.6 eV and 350 W) to determine the chemical composition of the
system. Infrared spectroscopy was also used to establish the presence of hydrocarbon acid
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and its chemical bonds. For this purpose, attenuated total reflectance-Fourier transform
infrared spectroscopy (ATR-FTIR) in the range of 4000–525 cm−1 at a resolution of 4 cm−1

was performed on an ABB Bomem FTLA spectrometer (Québec, QC, Canada). X-ray
diffraction (XRD) was mainly used to determine the structure of the alumina powder, using
a PANalytical X’Pert PRO MPD Alpha1 powder diffractometer (PANalytical, Lelyweg, The
Netherlands) in the Bragg-Brentano θ/2θ geometry with a radius of 240 mm and Cu Kα1
radiation (λ = 1.5406 Å). Images of the static WCA, CAH and SA were taken using a sessile
method involving a Levenhuk digital microscope and 3.5 µL of deionized (DI) water at
room temperature. Hexane (purchased from Panreac) was used to measure the OCA. In the
case of HDPE-MPs, the contact angle measurements were performed as follows: MPs were
sprinkled onto a glass slide containing an adhesive before being flattened by another glass
slide to prevent roughness effects, with the excess powder removed. The ImageJ software
version 1.53 m was used to measure all contact angles. The values reported are the average
of three measurements of droplets at different parts on the surface.

2.3. Durability Test

The abrasive grinding paper test was used to determine surface durability in severe
abrasive conditions. The superhydrophobic surface (10 mm × 40 mm × 1 mm) was placed
in contact with P1200 SiC grinding paper and moved 10 cm across it for 10 cycles while a
constant load of 5 kPa was applied. After each cycle, the surface was cleaned with forced air
to remove the TiO2 powder before measuring the WCA and SA to determine the robustness
of the surface.

2.4. Microplastics

To remove MPs from water, 3.5 wt% NaCl aqueous solution in DI water (pH 7) was
prepared with 30 mg of HDPE-MP measuring 133 ± 34 µm (purchased from Abifor) in
30 mL of aqueous solution. Hexane (up to 150 µL) was carefully poured under constant
stirring until the MPs moved to the organic phase. After that, the superhydrophobic surface
was moved towards the hexane droplet containing the MPs. This process was repeated
with the same sample until the MPs were no longer observable and had all been removed.
The superhydrophobic surface was then cleaned with ethanol to remove the pollutants. To
quantify the number of MPs removed, the mass of MPs on the superhydrophobic surface
was weighed on a laboratory balance. A Zeiss Axiovert 100A Inverted Microscope with
white light was used to study the size distribution of the MPs by measuring the size
of 200 MPs from different images and determining their sizes with ImageJ. Oil Red O
(Scharlab) was used to dye the organic solvent.

3. Results and Discussion
3.1. Morphology

The coating surface morphology was studied by FESEM and is shown in Figure 1a–c
after 900 s of the electrodeposition-electrophoresis process. As can be seen, the coating
displayed a flower-like structure, with the TiO2 particles located at the inner parts of the
micro-flowers and also partially covering their surface (Figure 1a). Moreover, a closer
look at the structure revealed a group of randomly-organized layers (Figure 1b) with a
thickness of 70 nm (Figure 1c). EDS microanalysis was used to determine the elemental
composition of the micro-flower particles. As shown in Figure 1d, the micro-flowers
contained Zn (Kα = 8.630 eV and Lα = 1.012 eV) and O (Kα = 0.525 eV). The Al signal
(Kα = 1.484 eV) corresponded to the aluminum substrate and there was also a signal
corresponding to the presence of Ti (Kα = 4.508 eV and Lα = 0.452 eV). Additionally, the
high C peak (Kα = 0.277 eV) was due to the carbon sputtering of the samples and the lauric
acid. HRTEM enabled the observation of the structure at the nanometer scale. The structure
observed corresponded to a unit (petal) of the flower-like morphology and was composed
of thin layers overlapping one another (Figure 1e).
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Figure 1. FESEM images of the superhydrophobic coating after 900 s of the electrodeposition -electrophoresis process at
different magnifications showing (a) TiO2 particles accumulated at the top of the flower-like structure, (b) TiO2 particles
and intercalation between the petals, and (c) the corresponding nanostructured petal. (d) EDS analysis of the flower-like
structure, (e) an HRTEM micrograph of the petals from the flower-like structure, and (f) the SAED pattern showing weak
rings from the petal.

Electron microscopy characterization revealed that the surface was composed of
a microstructure, corresponding to the flower-like structure with the presence of TiO2
particles, and a nanostructure of the same flower-like structure, corresponding to thin layers
overlapping one another. This combined morphology and their level of structure produced
a hierarchical structure that is a key point in the superhydrophobic properties of the coating.
In fact, the method used to obtain the superhydrophobic coating involved two different
processes: electrodeposition (EDP), also known as electroplating, and electrophoresis
(EPD) [32]. EDP is based on the Faradaic process where ionic species from the ethanol
solution consisting of ZnCl2 deposits under certain voltages. Meanwhile, during EPD, TiO2
particles in suspension migrate from the solution to the aluminum (acting as a cathode) via
electrophoresis and convective diffusion.

3.2. Chemical Composition

To determine the chemical composition of the coating and the main chemical com-
pound that decreases the surface free energy of the system, three different characterization
techniques were used: XRD to identify the phases present in the surface, and ATR-FTIR
and HR-XPS to reveal the surface chemistry of the coating.

XRD showed the presence of two different phases assigned to the aluminum substrate
(bcc crystal structure), corresponding to the 2θ positions and planes 38.4◦ (111), 45.7◦ (200),
65.1◦ (220), 78.2◦ (311) and 82.4◦ (222), and to the rutile phase of TiO2 in a tetragonal crystal
structure, corresponding to the 2θ positions and planes 27.4◦ (110), 36.0◦ (101), 41.2◦ (111)
and 54.3◦ (211) (Figure 2a). Additionally, a group of peaks between 2θ 10◦ and 30◦ was
observed in the diffractogram (Figure 2b). The most intense one at 27.4◦ was previously
assigned to the TiO2 phase, but there were also five different peaks corresponding to zinc
laurate as a quasi-crystalline phase.
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Figure 2. (a) XRD of the coating after 900 s of EDP, revealing two phases assigned to the Al (*) substrate and TiO2 (†).
(b) Detailed area of the XRD showing the quasi-crystalline phase assigned to zinc laurate.

Figure 3 shows the ATR-FTIR spectra of both the coating produced and pure lauric
acid. Different symbols were used to denote the vibrations, with δ used for bending, σ
for rocking, ν for stretching, and τ for twisting. Pure lauric acid was characterized, with
the most characteristic bands related to the carboxyl group or the carbon chain [33–35].
It is important to note the presence of a broad band between 3000 cm−1 and 2500 cm−1,
which was assigned to the carboxyl group of lauric acid. For the carbonyl group, a band
at ca. 1689 cm−1 was assigned to νC=O and the one at ca. 1298 cm−1 was assigned to
νC–O. For the carbon chain, bands appearing at ca. 2951 cm−1, ca. 2911 cm−1 and ca.
2845 cm−1 corresponded to alkyl chain stretching and were assigned to νasCH3, νasCH2
and νsCH2–CH2, respectively. The bands located at ca. 1298 cm−1 and ca. 1192 cm−1 were
assigned to νO–H. A band at ca. 1082 cm−1 corresponded to σCH3, while the two different
bands found below 1000 cm−1 were identified at ca. 934 cm−1 and were assigned to δO–H.
Finally, the band at ca. 776 cm−1 corresponded to δC-H out of plane. The ATR-FTIR
spectrum of the coating was very similar to that of pure lauric acid [33–37]. However,
the absence of the broad band between 3000 cm−1 and 2500 cm−1 was significant and
indicated the formation of a new bond given the absence of the carboxylic group. There
were three strong bands in the spectrum for the coating, such as that for lauric acid, located
at ca. 2951 cm−1, ca. 2914 cm−1 and ca. 2846 cm−1 that corresponded to νasCH3, νasCH2
and νsCH2–CH2, respectively. A weak band at ca. 1584 cm−1 was attributed to νasCOO,
a strong band at ca. 1533 cm−1 was associated with νasCOO and a band with medium
intensity at ca. 1400 cm−1 was assigned to νsCOO. A strong band at ca. 1455 cm−1 was
attributed to δCH2. A medium band at ca. 1081 cm−1 was related to τCH3, while another
one at ca. 716 cm−1 was assigned to δCH2. An important difference between the spectrum
for the superhydrophobic coating and that for lauric acid was the presence of the broad
band with low transmittance at ca. 3460 cm−1 that were assigned to the –OH and H–O–H
bonds [38]. Moreover, a group of bands between ca. 1000 cm−1 and ca. 525 cm−1 was
assigned to the presence of TiO2. The band at ca. 1081 cm−1 was assigned to Ti–O–H
deformation, while the broad band at ca. 600 cm−1 was assigned to the O–Ti–O bond in
the TiO2 lattice [39,40].
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Figure 3. ATR-FTIR spectra of pure lauric acid (dotted line) and the coating (solid line) revealing the
presence of a carboxylate functional group assigned to zinc laurate.

HR-XPS was applied to determine the chemical composition of the coating at the
surface level, considering the five different elements present in the sample. Al-2p revealed
the presence of two deconvolutions at 74 eV and 81 eV that were assigned to Al-O bonds
from the thick alumina layer from the aluminum substrate (Figure 4a) [41]. For C-1s, there
were three deconvolutions: one at 284 eV corresponding to the C–C bond, one at 285 eV
assigned to the carbonyl group (C=O) and one at 288 eV assigned to the carboxylate group
(COO−) (Figure 4c) [42]. In the case of Ti-2p, there were two deconvolutions at 458 eV
and 464 eV assigned to the Ti–O bond from TiO2 and its satellite Ti 2p1/2, respectively
(Figure 4d) [43]. For the O-1s signal, there were three deconvolutions: one at 529 eV
from the Zn–O bond, one at 530 eV from TiO2 and one at 531 eV assigned to COO–Zn
(Figure 4e) [44,45]. Finally, for Zn-2p, there was only one deconvolution at 1021 eV assigned
to Zn (II) combined with an OH group, as in Zn(OH)2 (Figure 4f) [44].

XRD, ATR-FTIR, and HR-XPS allowed us to identify the chemical composition achieved
after the EDP/EPD processes. XRD showed that the coating was made of TiO2 parti-
cles that covered the upper layers of the surface and it also revealed the presence of a
quasi-crystalline phase. ATR-FTIR and HR-XPS revealed and confirmed that zinc laurate
(Zn(C11H20COO)2) was the main compound of the surface that contributes to decreasing
the surface free energy of the coating due to the presence of the alkyl chain. This, combined
with the hierarchical structure that increases the roughness of the system, endows the
coating with superhydrophobic properties.
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(e) O-1s, and (f) Zn-2p, revealing the presence of zinc laurate as the main compound of the coating as well as the presence
of TiO2.

3.3. Wetting Properties

Wettability is a key parameter for defining superhydrophobic properties. Therefore,
it is necessary to measure the WCA, CAH, SA, and OCA. The UNS A91070 aluminum
substrate showed a WCA of 92 ± 3◦, corresponding to a hydrophobic state (Figure 5a). After
900 s of EDP, the coating obtained had a WCA of 153 ± 1◦, a CAH of 1 ± 1◦ and an SA of
1 ± 1◦, indicating superhydrophobicity (Figure 5b) and self-cleaning properties, with both
occurring as a consequence of the Cassie-Baxter wetting state [46]. Moreover, to determine
the ability to separate oil from water for the removal of MPs from the aqueous phase, the
OCA was also measured, which showed a value of 0◦, revealing superoleophilicity due to
the instant sorption of hexane throughout the whole structure (Figure 5c). Additionally,
the WCA and OCA of the HDPE-MP were measured as these are also defining parameters
in the ability of superhydrophobic materials to remove solid pollutants. The WCA of
the HDPE-MP was 136 ± 1◦ (Figure 5d) and the OCA was 0◦, with instant oil sorption
(Figure 5e).

The WCA and OCA values showed that the coating presented extremely high water
repellency and a higher affinity for hexane compared to water, while the MPs presented
hydrophobic characteristics and a higher affinity for hexane than for water. Based on this
affinity of the HDPE-MPs and the superhydrophobic coating for the oleophilic state, the
system was used to separate MPs.
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3.4. Durability

The robustness of superhydrophobic materials have to be studied to determine and
understand the mechanisms that decrease their wettable properties and to establish the
different ways of improving their resistance to abrasive environments. We carried out the
abrasive paper test to determine the durability of the superhydrophobic coating obtained
in this study. Figure 6a depicts how the WCA and SA changed slightly after 10 cycles
(100 cm) of the abrasive test under 5 kPa. Before the test, the WCA was 152◦ and decreased
to 150◦, while the SA increased from 1◦ to nearly 6◦, revealing that despite the abrasion, the
surface also presented self-cleaning and low adhesion properties. In fact, in the first cycle
of the abrasion test, TiO2 particles were found on the sandpaper. Despite this, the surface
was still superhydrophobic after subsequent cycles. As depicted in Figure 6b, superficial
TiO2 particles were no longer observed due to their detachment from the upper layers
of the coating, but they remained present between the petals of the flower-like structure
and also in the lower parts of the coating that were not in contact with the abrasive paper.
Moreover, the nanostructures were still present throughout the coating.
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Figure 6. Durability test using P1200 SiC abrasive paper, which revealed that the surface was still superhydrophobic after
10 cycles: (a) the WCA remains higher than 150◦ and the SA is lower than 10◦; (b) FESEM image of the surface after the test
showing the presence of TiO2 as well as the flower-like structure and (c) EDS showing the presence of TiO2.

These results could be explained by considering two different mechanisms. Firstly,
as the coating remained superhydrophobic after the test, this revealed that there were no
pinning sites introduced during the abrasion. Thus, the superhydrophobic coating was
remarkably homogeneous in its chemical composition and the zinc laurate was not severely
affected by the abrasion. Secondly, TiO2 particles from the upper layers of the coating
were removed first, leading to increased durability and the retention of superhydrophobic
properties after each abrasive cycle. Despite the fact that the WCA remained more or less
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constant during the whole test, the SA changed, indicating an increase in water droplet
adherence to the surface. The changes in the SA can be divided into four steps: those
observed in the first cycle, then from the second to the fourth cycle, then up to the seventh
cycle and finally up to the 10th cycle. The first cycle was characterized by the removal of the
upper layers of the superhydrophobic coating, which were the TiO2 particles, explaining
the increase in the SA from 1◦ to 3◦. In the second cycle, the SA remained at a slight plateau
since the layers underneath the TiO2 were chemically homogeneous and presented a low
surface free energy, which led to the maintenance of its low adherence properties. Then,
in the third cycle, the SA increased to 5.5◦ since the chemically homogenous structure
that was the flower-like structure had become slightly damaged by the abrasive paper.
Finally, in the fourth cycle, the SA again plateaued due to the presence of a chemically
homogenous structure.

The durability of the superhydrophobic coating and the absence of pinning sites after
the abrasive paper test were due to the presence of TiO2 particles as well as the hierar-
chical structure [47–49]. The TiO2 particles prevented the degradation of the hierarchical
structures during the early stages. After their removal by the abrasive paper, the flower-
like structure was highly homogenous in its chemical composition, promoting low water
adherence to the coating itself and maintaining its superhydrophobic properties.

3.5. Microplastics

It is well known that superhydrophobic materials and surfaces can separate oil from
water as well as their stabilized emulsions (o/w) [50–52]. Taking advantage of this ability,
we used the superhydrophobic material obtained in this study to remove MPs from water.
In this section, we report how MPs move from the aqueous phase to the organic one and are
captured and removed by the superhydrophobic surface. Samples of the superhydrophobic
surface were used to remove MPs from water. Hexane was used as the oil phase due to
its density (0.659 g/mL at 25 ◦C). As shown before, HDPE-MPs present an OCA of 0◦,
indicating a greater affinity for hexane than for water (WCA = 136◦). Moreover, oil droplets
containing the MPs will float due to the low density of hexane. Firstly, the aqueous solution
contained 30 mg of HDPE-MP (Figure 7a). In the first removal step, the superhydrophobic
surface was able to capture 15 mg of the HDPE-MP from the oil droplet over 10 s (Figure 7b).
After that, there were still some MPs present in the oil droplet. Thus, the superhydrophobic
surface was used again to capture the remaining MPs, removing 8 mg of HDPE-MP after
6 s. However, there were still a few MPs present; therefore, the process was repeated for
a third time and 7 mg were removed over 2 s, leaving a clear aqueous solution behind
without any evidence of MPs and with the hexane completely removed (Figure 7c). After
each removal step, the oil droplet decreased in volume since the surface also adsorbed
some of the hexane due to its superhydrophobic/superoleophilic properties. At the end of
each step, a water droplet could easily slide over the whole surface, removing the adhering
MPs due to its self-cleaning properties that prevented surface fouling. The removal process
was repeated up to 12 times without the surface losing its superhydrophobic properties,
repeatedly allowing the removal of MPs. These results demonstrated the strong ability of
the surface to remove MPs from water and also its reusability. Additionally, the MP removal
ability of the superhydrophobic coating was compared with that of the bare aluminum
substrate, which was not able to remove MPs. This can be explained by the fact that the
bare aluminum substrate is hydrophobic (WCA = 93◦), whereas the superhydrophobic
surface can adsorb oil. Thus, it is necessary to modify the surface free energy, which
was achieved in this study with zinc laurate that conferred superhydrophobicity and
underwater superoleophilicity. The MP removal ability of the superhydrophobic surface
was also compared with that of a control sample where no hexane was used. Due to the
extreme water repellency of the surface, the MPs did not move from the aqueous phase
to the surface, revealing that an organic phase such as an oil is necessary to remove solid
pollutants such as MPs.
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Figure 7. Three different steps to completely remove the MPs from water, with the insets showing the HDPE-MP powder:
(a) aqueous solution containing 30 mg of HDPE-MP; (b) after stirring, the MPs migrated to the organic phase (in red,
Oil Red O); (c) the solution without any MP or hexane; (d) the superhydrophobic coating removing the organic phase
containing the HDPE-MP powder; (e) HDPE-MPs before the removal process; and (f) after the process, with no changes in
their morphology and size.

The removal efficiency of the process can be calculated as follows (Equation (1)):

ξ % = MMP/M0,MP × 100 (1)

where M0,MP and MMP are the mass of the HDPE-MPs before and after the removal process,
respectively. Thus, the overall removal efficiency was higher than 99%, with 0.2 mg/µL
of HDPE-MPs removed per volume of hexane. Additionally, the HDPE-MP size was not
affected by the removal process as its sizes were 133 ± 34 µm and 133 ± 33 µm before
and after each removal step, respectively (Figure 7d,e). Furthermore, HDPE-MPs did not
dissolve or swell. These characteristics are especially important since some treatment
methods, such as those using membranes, usually lead to MPs breaking down into smaller
particles under the water pressure, which limits their application.

As shown before, superhydrophobic surfaces can remove MPs from water as a result
of their superwettable properties. As the contact angle measurements revealed, MPs
present a higher affinity for hexane (OCA = 0◦) than for water (WCA = 136◦), while the
superhydrophobic surface behaves in slightly the same manner, presenting more affinity
for hexane (OCA = 0◦) than for water (WCA = 153◦).

Considering the results, it is of interest to determine the mechanism of MP removal.
As shown above, the MPs were initially randomly distributed in the aqueous phase. Under
stirring conditions and due to the low affinity for water, they were displaced to the center
of the stirring vortex, into which 150 µL of hexane were added. Herein, the MPs migrated
from the water to hexane due to the repellency to water and their higher affinity for hexane.
The oil containing the MPs was then adsorbed by the superhydrophobic surface when it
was moved towards the pollutants due to the superoleophilic properties of the surface.

Herein, we show that superhydrophobic coatings can also be used in an innovative
way to address the increasingly significant issue of pollution caused by MPs [53]. The
coating obtained in this study confirmed that the wetting properties of superhydrophobic
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surfaces combined with the properties of MPs can be used to remove these pollutants [54].
Further research is needed to clearly determine the physico-chemical mechanisms that
lead to MPs migrating from water to oil, as well as the effects of the oil used and the
different morphologies and systems in the removal of MPs from oceans, rivers and water
treatment plants.

4. Conclusions

A superhydrophobic coating with a static WCA of 153◦, an SA of 1, and a CAH of 1◦

was achieved by combining electrodeposition and electrophoresis. Its chemical composi-
tion consisted of zinc laurate hierarchical structures as well as TiO2 particles. Additionally,
its durability was studied in an abrasive paper test. After 100 cm of abrasion with the
P1200 SiC abrasive paper, the surface was still superhydrophobic, indicating that the
surface was chemically homogeneous and enhanced by the presence of TiO2 particles
located at the upper layers of the coating. Finally, taking advantage of its superhydropho-
bic/superoleophilic properties, the coating was used to remove HDPE-MPs by moving
it towards the oil droplet containing the MPs. This method had an efficiency higher than
99% and did not lead to the MPs breaking down. The migration of MPs from water to
the organic phase combined with the superwettable properties of the surface allowed the
removal of these solid pollutants from water. Therefore, a simple and straightforward
method to remove MPs using superhydrophobic surfaces was carried out, providing a new
way of studying and understanding superhydrophobic materials in the removal of solid
pollutants in water treatment plants and their environmental applications.
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