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Abstract: Active edible films and coatings incorporating antimicrobial agents such as essential oils
are studied to improve the shelf-life of fresh foods. The aim of this work was to study a mixture of
sodium caseinate-chitosan (SC:CH), added with mesoporous silica nanoparticles filled with oregano
essential oil (MSN-OEO), to produce an active edible coating for Panela cheese and to evaluate its
properties during refrigerated storage for 15 days. The OEO was extracted by hydrodistillation and
was incorporated into the MSN. Films based on SC:CH of 4:1 and 8:1 ratios with and without MSN-
OEO were produced and the mechanical, barrier, physicochemical and microbiological properties of
the films were evaluated. The SC:CH 8:1 ratio (w/w) with MSN-OEO showed reduced mean particle
size (764.8 ± 23.3 nm), and a stable solution (zeta potential = 29.9 ± 1.1 mV). The thickness and
solubility were influenced by the incorporation of MSN-OEO making it thinner and less soluble.
Panela cheese samples were coated by the spray method using the SC:CH 8:1 containing MSN-OEO
film forming solution. The final pH of the control cheese was 0.5 units lower than that of the coated
cheese, whereas final moisture loss of the control cheese was 4.2 times that of the coated cheese.
The mesophilic aerobic bacteria and of molds and yeasts populations achieved a reduction of about
2 Log10 UFC/g after 15 days of storage. Due to microbial growth delay, and little moisture loss, this
active coating may improve the quality and safety of Panela cheese.

Keywords: edible coating; sodium caseinate; chitosan; oregano essential oil; Panela cheese

1. Introduction

In the last few years, advances in the production of edible coatings and films using
different compounds from renewable sources has been provided. In fact, it is well known
that barrier, mechanical and optical properties of films and coatings depend on both the
chemical-physical properties of utilized compounds and their specific interactions [1,2].
Chitosan, derived from chitin deacetylation is one of the most widely studied and used
biopolymers for the preparation of edible films and coatings due to its excellent film forming
ability, biodegradability and antimicrobial properties [3]. Sodium caseinate is soluble
casein obtained through the acidic precipitation of milk with subsequent solubilization
in sodium hydroxide [4]. Sodium caseinate shows good film-forming and thermoplastic
properties due to its random coil structure, and its ability to form weak intermolecular
interactions [5,6]. However, it does not confer antimicrobial properties.

Panela cheese is a type of fresh cheese made from pasteurized cow’s milk very popular
in Mexico, where its production accounted for 418,560 tons in 2018 [7]. In addition, it is
the most popular Hispanic-style cheese consumed in the USA [8]. It is white, with a
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porous, soft and fluffy texture with low fat content. The shelf life of fresh cheeses is about
15–18 days, due to its high moisture content and nutrients availability [9].

Cheese packaging is practiced to minimize weight loss due to moisture loss, and
to prevent microbial contamination and spoilage without affecting the cheese composi-
tion [10,11]. Edible coatings are applied directly to the surface of the food, where a thin
layer forms after drying, while the films dry separately to form a material that is then used
to cover the food.

Essential oils (EOs) are concentrated oily liquids obtained from plant materials such
as flowers, buds, leaves and bark, which contain a mixture of volatile aromatic compounds
including terpenes, terpenoids (oxygenated terpenes) and phenols [12,13]. EOs have
shown antimicrobial properties against foodborne pathogens, i.e., bacteria, molds and
their associated toxins [14]. The antimicrobial activity of essential oils may be regulated
by more than one mechanism of action, including changes in the fatty acid profile of
the cell membrane, damage of the cytoplasmic membrane and disruption of the proton-
motive force [13,15]. However, due to the high volatility and diffusivity of essential
oils in foods, the development of strategies able to increase their retention and release
control, are the main challenges that need to be solved. EOs encapsulation is a promising
technique that offers numerous advantages, such as ease of handling, stability, protection
against oxidation, improved distribution, solubility, controlled release, with little or no
effect on the organoleptic properties of foods to which they are applied with improved
bioavailability [1,16].

Mesoporous silica nanoparticles (MSNs) are a good system for encapsulating essential
oils due to their porous structure, chemical stability, biocompatibility, adjustable pore size
and porosity, simple and low-cost synthesis, and possible expansion for industrial use.
Furthermore, silica is biologically inert, and can break down into relatively harmless silicic
acid by-products [17,18].

The aim of this study was to evaluate the physicochemical, mechanical and barrier
properties of sodium caseinate and chitosan films, added with mesoporous silica particles
filled with oregano essential oil (OEO). In addition, this formulation was tested as coating of
fresh Panela cheese and the microbiological and physicochemical changes were evaluated
throughout 15-days storage period.

2. Materials and Methods
2.1. Materials

Sodium caseinate was purchased from Fonterra Group (Auckland, the Netherland),
Chitosan Powder (90% deacetylation; viscosity 50–800 mPa·s) was obtained from Chem-
savers (Bluefield, VA, USA). Anhydrous glycerol was purchased from J.T. Baker (Radnor,
PA, USA); lactic acid (85%), cetyltrimethylammonium bromide (CTAB) and tetraethyl
orthosilicate (98%) (TeOS) were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Fresh oregano leaves (Lippia graveolens Kunth) were collected in Cerrito Parado, Tolimán
(Querétaro, México). A voucher specimen was authenticated and deposited in the Ethno-
botanical Collection of the Herbarium of Querétaro “Dr. Jerzy Rzedowski” (QMEX), located
at the Faculty of Natural Sciences, University of Querétaro, Mexico (voucher specimen: E.
Hernández-Hernández No. 1). Potato dextrose agar, plate count agar and casein peptone
were acquired from BD Bioxon (Estado de Mexico, México).

All bacteria tested were obtained from the microbial collection of the Food Biotech-
nology Laboratory, DIPA, Universidad Autónoma de Querétaro (Mexico). Selected bac-
teria were those relevant in microbial contamination of fresh cheese, Listeria innocua and
Salmonella Saintpaul. The strains were stored at −60 ◦C in sterile glycerol. The bacteria were
activated in nutrient broth (Bioxon) at 37 ◦C for 24 h.

2.2. Extraction of Oregano Essential Oil (OEO)

The oregano leaves were air-dried at room temperature for 3 days in a dark chamber.
The dry material was stored in black polyethylene bags until use [19]. Dry oregano leaves
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(700 g) were suspended in 5 L of distilled water and subjected to hydrodistillation for
2 h, using a Clevenger-type apparatus (Cristalab, CDMX, México). The obtained OEO
was dried with anhydrous sodium sulfate, sterilized by filtration using a Swinnex unit of
0.45 µm pore size polyvinylidene fluoride (PVDF) membrane (Millipore, Burlington, MA,
USA), and then stored in sealed vials protected from light at 4 ◦C for later use [20].

2.3. MSN-OEO Preparation

The MSN were synthesized, as previously reported [21], with modifications. In a
solution of 240 mL of distilled water and 1.75 mL of 2 N NaOH, 0.5 g of CTAB was dispersed
by using an ultrasonic bath at room temperature. The sample was heated up to 80 ◦C
under constant stirring and then 2.5 mL of TeOS was added drop by drop during 5 min,
and vigorously stirred for 2 h at 80 ◦C. The solid product was obtained by filtration, then
washed with ethanol, and finally calcined at 500 ◦C for 5 h to remove the surfactant. The
obtained MSNs (0.1 g) were dispersed into 2 mL of ethanol containing 0.1 g of the OEO.
The final mixture was stirred overnight in a fume cupboard at room temperature to remove
the ethanol.

The amount of OEO in the MSN-OEO particles was determined by suspending 5.0 mg
of the samples in 10 mL of ethyl acetate, followed by centrifugation (IKA, Wilmington, NC,
USA) at 10,000× g for 10 min. The supernatant containing the released OEO was quantified
from a calibration curve constructed with different OEO concentrations in ethyl acetate,
and measuring absorbance at 270 nm using a spectrophotometer (UV-1800 Shimadzu,
Kioto, Japan) [22]. The released OEO was subtracted from the total OEO to obtain the
amount of OEO in the MSN.

2.4. Preparation of SC:CH Film Forming Solution (FFS)

The SC solution was prepared at 0.90% (w/v) in distilled water and stirred at 40 ◦C
for 30 min, then the pH was adjusted to 5.3. The solution of chitosan 1% (w/v) in lactic
acid (1% v/v) was stirred for 60 min at 80 ◦C, once dissolved, the pH was adjusted to 5.8;
each solution was kept under stirring until complete dissolution. To produce the FFS, SC
(360 mg) was added to the CH at 4:1 and 8:1 (SC:CH w/w) ratios, under stirring at 700 rpm.
The MSN-OEO was suspended in distilled water (20 mg/mL) at pH = 10 and added to the
FFS (3% relative to the total mass of SC plus CH, w/w). Glycerol was added as plasticizer
at 30% of SC (w/w), and the mixture was adjusted to pH 5.3, followed by gently stirring
for 20 min. Finally, the FFS was homogenized using an Ultra-Turrax (IKA T25, Staufen,
Germany) at 9500 rpm for 2 min.

2.5. Characterization of the FFSs and Films
2.5.1. ζ-Potential and Particle Size Measurement

One ml of each FFS was analyzed for ζ-potential and particle size by using a Zetasizer
Nano-ZSP (Malvern Instrument, Worcestershire, UK). ζ-potential was calculated through
the electrophoretic mobility by applying a voltage of 200 mV and using the Helmholtz-
Smoluchowski equation. Hydrodynamic size was obtained from dynamic ligh scattering
by using a He–Ne laser (wavelength of 633 nm) and a detector angle of 173◦.

2.5.2. Film Preparation

Films were prepared by the casting method. Each FFS (45 mL) was poured into 8 cm
diameter polyester Petri dishes and dried at 38 ◦C and 50% relative humidity (RH) in an
environmental chamber (Binder, KBF 115, Tuttlingen, Germany), for 18 h. Film thickness
was measured with a digital micrometer (Mitutoyo, 293–185, Kawasaki, Japan) at five
random points over the film, and the mean ± standard deviation (SD) of five replicates
was reported.
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2.5.3. Mechanical Properties

Film tensile strength (TS), elongation at break (EB) and Young’s modulus (YM) were
measured by using an Universal testing instrument (Instron Engineering, model No. 5543A,
Norwood, MA, USA) as previously described [23]. Film samples were cut, using a sharp
razor blade, into 10 mm wide and 40 mm length strips equilibrated overnight at 50% ± 5%
RH and 23 ± 2 ◦C in an environmental chamber. Five samples of each film type were tested.

2.5.4. Barrier Properties

Film permeabilities to gas (O2 and CO2) and water vapor (WV) were determined by
using a MultiPerm apparatus (Extrasolution s.r.l., Pisa, Italy). Duplicate samples of each
film were conditioned for 2 days at 50% RH before measurement. Aluminum masks were
used to reduce the film test area to 5 cm2, whereas the testing was performed at 25 ◦C
under 50% RH.

2.5.5. Solubility

The solubility of films was determined according to Vahedikia et al. [24]. The initial
dry matter of samples was determined by placing the films in a desiccator containing
calcium sulfate at 25 ◦C and 0% relative humidity (RH) for 24 h. The films were then
immersed in 50 mL distilled water and then placed in a shaker incubator at 25 ◦C and
stirred for 24 h at 250 rpm. The film solubility (%) was calculated using Equation (1):

Solubility (%) =
Initial dry weight − Final dry weight

Initial dry weight
× 100 (1)

2.5.6. Scanning Electron Microscopy (SEM)

Microstructural analysis of cross-sections of the films was carried out by using SEM,
in a JEOL JSM-5410 (Tokyo, Japan) electron microscope. Pieces of 5 mm × 5 mm were cut
from films and mounted on copper stubs. Films were fixed on the support using double
side adhesive tape. Samples were gold coated and observed using an accelerating voltage
of 10 kV.

2.5.7. Color and Transparency

The color of the films was evaluated according to the CIELAB method, using a Minolta
CR400 colorimeter (Minolta, Osaka, Japan) with the parameters L* = lightness, a* = green to
red color component and b* = blue to yellow color component. The color was standardized
using a white reference plate.

The transparency of films was determined according to Lin et al. [6], with modifica-
tions. The edible film was cut into strips (1 cm × 4 cm), and the top and bottom edges of
the specimen were fixed on the surface of a quartz cuvette with adhesive tape, and the
transmittance at 600 nm was measured using a spectrophotometer. The transparency was
calculated using Equation (2):

T =
A600

δ
(2)

where: T = transparency; A = absorbance; δ = thickness.

2.5.8. Atomic Force Microscopy (AFM)

The surface roughness of the coating used on Panela cheese (SC:CH, 1:8 with and with-
out SMN.OEO) was estimated by atomic force microscopy (AFM), according to Escamilla-
García et al. [25], by means of an atomic force microscope (di Multimode V, Veeco, Plainview,
NY, USA) in contact mode. Film pieces of 0.5 cm × 0.5 cm were used, and the resonance
frequency of scanning was 286–362 kHz with a spring constant of 20–80 N/m, scanning
speed of 1 Hz and resolution of 256 × 256 pixels. The results were analyzed using the
Gwyddion Version 2.53 software (Okružní, Czech Republic). The roughness was obtained
by evaluating the square root of the deviation from an average plane of the peaks and
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surface valleys (Rq) (Equation (3). The mean absolute value of surface height deviations
from the middle plane (Ra), was estimated from Equation (4).

Rq =

√
∑ Z2

i
N

(3)

Ra =
1
N

N

∑
j=1

Zj (4)

where Ra and Rq indicate the roughness (nm), Zi and Zj are the height difference of i and j
relative to the heights average, and N is the number of points on the image.

2.5.9. Antimicrobial Activity

Antimicrobial activity was evaluated following Hernández-Hernández et al. [20].
Briefly, 10 mL of trypticase soy agar (0.8% w/v (Bioxon) was inoculated with 200 µL of
L. innocua solution (107 CFU/mL) or 100 µL of S. Saintpaul (107 CFU/mL), subsequently
poured onto plates containing solidified agar (1.5% w/v).

Disks were prepared from films of SC:CH at 8:1 ratio (w/w) with and without MSN-
OEO of 25 mm in diameter. Additionally, PVDF membrane disks of 25 mm in diameter
(Darmstadt, Germany) were impregnated with 8 mg of MSN-OEO or 75 µL of OEO diluted
at 25% (w/v) with Tween 80 at 10% (v/v). One disk of each was gently placed on top of the
soft agar layer and OEO were allowed to diffuse for 2 h, at 4 ◦C and then incubated at 37 ◦C
for 48 h. The growth inhibition zone, which included the disk diameter, was measured
using Vernier callipers.

2.6. Application as a Coating on Panela Cheese

The coating was applied on samples of Panela cheese using a spray gun (Husky,
Lincoln, NE, USA) the samples were sprayed 2 times at 2 min interval. After the coating
process, all samples were drained on stainless steel screens and air-dried in a laminar
flow cabinet for 20 min, and then were put into plastic “clam-shell” containers (Industry
standard, 9756Z, Pactiv Corp., Zapopan, México) and stored at 4 ◦C. The cheese was
subjected to physicochemical and microbiological analyses at 0 day, 5 days, 10 days and
15 days of storage. Uncoated cheeses were used as control, and were stored and analyzed
at the same times.

2.6.1. Moisture Content, pH and Titratable Acidity

The moisture content (MC) in Panela cheese was analyzed by moisture analyzer XM50
(Precisa Gravimetrics AG, Dietikon, Switzerland) by using 1 g of homogenized cheese, and
moisture was expressed as weight %. Titratable acidity and pH were evaluated following
the Mexican standard NOM-243-SSA1 [26]. The pH was detected by using 1 g of cheese
homogenized in 10 mL of distilled water, and from each sample, 3 pH measurements were
taken using a calibrated potentiometer Orion (Star A211, Thermo Scientific, Waltham, MA,
EUA). Titratable acidity was evaluated using 18 g of homogenized cheese in 36 mL of
distilled water, followed by titration with 0.1 N NaOH until the appearance of a pink color
for at least 30 s. The results are expressed as% lactic acid (w/w).

2.6.2. Microbiological Analysis

Molds and yeast, and mesophilic aerobic bacteria were quantified according to the
Mexican standard [26]. Panela cheese with and without coating at 0 day, 5 days, 10 days
and 15 days of storage were analyzed in triplicate.

Molds and Yeasts

For the population of molds and yeasts the cheese was homogenized followed by
serial decimal dilutions; then 1 mL of each dilution was poured into potato dextrose agar
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(Bioxon), previously adjusted to pH = 3.5 ± 0.1 by using 10% tartaric acid (J.T. Baker), and
incubated at 25 ± 1 ◦C. Colonies (CFU/g) were evaluated after 3 days of incubation, and
results were reported as Log10 CFU/g.

Mesophilic Aerobic Bacteria

The population of mesophilic aerobic bacteria of the cheese samples was performed
using plate count agar, pouring 1 mL of decimal dilutions and incubating for 48 h at 35 ◦C.
Results were reported as Log10 CFU/g.

2.7. Statistical Analysis

Experiments were made in triplicate, and analysis of variance (ANOVA) was per-
formed using the JMP software 13.0 (SAS Institute, Cary, NC, USA). Tukey’s multiple range
test was used, differences at p < 0.05 were considered significant and are indicated with
different letters.

3. Results and Discussion
3.1. SEM of MSN and MSN-OEO

The MSNs before the addition of OEO exhibited large aggregates with size about
360 nm, possibly due to the interaction of microaggregates (Figure 1A). When OEO was
added to the MSNs, a more homogeneous surface was observed indicating better particles
dispersion, leading to a decreased particle size of about 250 nm (Figure 1B). This is probably
associated to OEO encapsulation within the MSNs pores and over the particles surface
counteracting their coalescence.
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3.2. FFSs Stability

It is well known that ζ-potential can be correlated with the stability of dispersions that
can be classified according to their absolute values as follows: 0–10 mV highly unstable,
10–20 mV relatively stable, 20–30 mV moderately stable and >30 mV as highly stable [27].

Preliminary experiments on the mixing of SC (pI = 4.5) and CH (pKa = 6.0) demon-
strated that to produce stable complexes, the pH of the stock solutions must be pH 5.3
for SC and pH 5.8 for CH, to counteract clotting and phase separation. These conditions
are useful to keep the biopolymers weakly charged and with opposite charges to facilitate
low electrostatic interactions aiming to stabilize the complexes formed, while avoiding
phase separation. In fact, according to Anal et al. [28] the SC:CH complexes precipitated
at pH range 4–4.5, and pH > 6, whereas the polymers tended to dissociate between pH
3 and 3.8 due to similar charges. On the other hand, stable complexes were formed at
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pH 5–6, which was attributed to the interaction of positive charge density and linear
structure of CH, in addition to the negative charge of SC [29]. Therefore, after preliminary
experiments, the mixtures were made at pH 5.3 to produce stable complexes, in agreement
with Volpe et al. [30]. By comparing the ζ-potential of the SC:CH dispersions obtained
at different ratios and at pH 5.3, it is possible to observe a greater stability at 4:1 ratio
(34.77 mV) compared to 8:1 (29.33 mV) even if the hydrodynamic radius is greater using
the 4:1 ratio than 8:1 (Table 1). It is known that proteins have both positive and negative
charges on the surface that can interact with each other, generating protein aggregates
with a hydrodynamic radius of 1800.16 nm. At the higher chitosan concentration (4:1),
the positive charge density and linear structure of the CH destabilizes the protein-protein
interactions by generating protein-chitosan complexes. Furthermore, the excess of CH
can produce different complexes through the residual negative charges on the proteins,
producing aggregates of about 1010.64 nm. This effect increases the residual positive
charges of both CH and proteins increasing the ζ-potential. Conversely, a lower CH Con-
tent (SC:CH 8:1) favors the formation of isolated protein-chitosan aggregates in which the
CH envelops the proteins giving rise to smaller particles (781.33 nm). Furthermore, the
negative surface charge of the protein aggregates partially counteracts the positive charge
of the complexes leading to decreased average ζ-potential. Further experiments are needed
to verify this hypothesis.

Table 1. ζ Potential, particle size and polydispersity index of the SC:CH FFSs at different ratios containing or not MSN-OEO.

SC:CH Ratio pH MSN-OEO Particle Size (nm) Z Potential (mV) Polydispersity Index

0:1 5.8 - 1238.27 ± 25.9 d 31.07 ± 0.8 c 0.72 ± 0.1 c

1:0 5.3 - 1800.16 ±10.2 e 27.77 ± 0.8 d 0.53 ± 0.1 a

4:1 5.3 - 1010.64 ± 8.1 a 34.77 ± 1.2 a 0.54 ± 0.0 a

4:1 5.3 + 1008.00 ± 4.5 a 36.93 ± 1.2 a 0.39 ± 0.1 b

8:1 5.3 - 781.33 ± 11.7 b 29.33 ± 1.3 b 0.53 ± 0.0 a

8:1 5.3 + 764.80 ± 23.3 c 29.93 ± 1.1 b 0.50 ± 0.0 a

Results are reported as the mean ± standard deviation (n = 3). Equal letters indicate that there is no significant difference (p < 0.05).

The stability of the FFSs (4:1 or 8:1 ratios) is not affected by the addition of MSN-OEO
after the biopolymer complexation; in fact, no significant differences on the ζ−potential
values were observed (Table 1). Fernandez-Bats et al. [21] reported that in film-forming
solutions of bitter vetch protein, MSNs higher than 3% by weight destabilize the FFSs.

Similar to the effect on the particle size reduction observed by Navarro et al. [31],
during the addition of different oil encapsulating agents in the film-forming solutions,
the MSN-OEO significantly reduced the hydrodynamic size of the 8:1 SC:CH complex.
Moreover, the samples showing PDI values < 0.6 indicate a Gaussian particle size distri-
bution [32]. This result was attributed to decrease of the interfacial tension between the
oil and the aqueous phases by the encapsulating agent, because it reduces the free energy
required to deform and interrupt the drops, resulting in smaller particles.

3.3. Characteristics of the SC:CH Films
3.3.1. Microstructural Properties of Films

The final microstructure of the films resulted from the components interactions and the
destabilizing phenomena taking place during the drying stage. The addition of MSN-OEO
particles to films of 8:1 SC:CH ratio, resulted in different surface patterns (Figure 2). The
film without MSN-OEO showed a smooth and homogeneous microstructure (Figure 2A),
whereas the surface of films containing the MSN-OEO (Figure 2B) reveal a less continuous
structure with the particles already embedded on the surface of the film. The cross section
of the SC:CH 8:1 MSN-OEO film shows that the OEO was incorporated with partly un-
even distribution in the polymers matrix, displaying some micro-sized cracks and holes
(Figure 2C2). Magnification of the cross section revealed that the dispersion of the MSN-
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OEO phase was well distributed throughout the films, showing layers of the MSN-OEO
phase (Figure 2C1). A similar behavior was reported by Fabra et al. [33], with SC films
containing mixtures of oleic acid and beeswax. Here, addition of the hydrophobic material
changed the films microstructure from homogeneous and smooth surface to one showing
the lipid mass embedded in the matrix of the film.
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In conclusion, the structural differences are clearly visible due to the addition of
MSN-OEO, probably due to different drying behavior, which resulted in the exposure of
the MSN-OEO particles between layers of the complex SC:CH.

3.3.2. Thickness

The produced edible films were transparent and flexible, and their thickness is an
important factor in creating a modified atmosphere able to delay food spoilage. Films
thickness varied between 57.5 ± 5.1 and 69.2 ± 4.7 µm (Figure 3). Pereda et al. [34], obtained
similar results for films made with ratio 8:1 (SC:CH) ratio with thickness ranging 50–90 µm.
Addition of MSN-OEO to the FFS produced slightly decreased films thickness, with lower
value for the SC:CH (8:1 ratio) attributed to high protein concentration, producing increased
interactions with the MSN-OEO, and avoiding particles agglomeration. However, we could
not find any significant thickness difference among the different films.
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3.3.3. Solubility of the Films

The solubility of the films produced in this work ranged from 34.6% ± 1.3% to
36.8% ± 1.2%. (w/v). Films containing MSN-OEO showed slightly decreased solubility,
whereas films having more SC content were more water soluble. The solubility in edible
films and coatings is an important parameter for fresh cheese due to syneresis or liquid
leakage, causing packaging biopolymers to dissolve. Vahedikia et al. [24], reported zein
protein films solubility of 40.1%, which slightly decreased by addition of chitosan-cinnamon
EO to 39.1%. The addition of nanocomposites shows a more hydrophobic pattern, mainly
due to the interaction of the EO components with side chain groups of the amino acids of
the protein matrix.

3.3.4. Optical Properties of the Films

The addition of the MSN into the films did not exhibit significant difference in the
L* parameter (Table 2). The films presented high L* values, whereas a* and b* values
are close to the L* axis, indicating low saturation (i.e., dull color), essentially gray. The
SC:CH films prepared with MSN-OEO revealed a transparency of 0.82 ± 0.0, whereas
addition of MSN-OEO to the FFS resulted in significantly improved films transparency,
which may permit consumers a clearer appreciation of the food surface. Transparency
may affect appearance, merchandising and applications, and greater values in edible films
and coatings can confer better food visibility. The optical properties of edible packaging
depend on the characteristics of the compounds and the film preparation conditions: pH,
homogenization and drying. Lin et al. [6], presented good transparency for SC films
(0.97 ± 0.3), but addition of 1.5 mg of the cross-linking agent genipin, it increased to
3.69 ± 0.4. The transparency values obtained in this work compared favorably to those of
synthetic films, such as low-density polyethylene, directional polypropylene and polyvinyl
chloride that were 3.05, 1.67 and 4.58, respectively [35]. The transparency of the edible
SC:CH films significantly increased by adding the MSN-OEO.
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Table 2. Color analysis and transparency of SC:CH films with MSN-OEO.

SC:CH Ratio MSN-OEO L* a* b* Transparency

4:1 + 91.62 ± 0.2 a 0.33 ± 0.0 a,b −1.16 ± 0.2 a 0.89 ± 0.0 a

4:1 - 92.00 ± 0.1 a 0.34 ± 0.0 a,b −1.39 ± 0.1 a 1.14 ± 0.1 b,c

8:1 + 92.01 ± 0.3 a 0.29 ± 0.0 b −1.18 ± 0.4 a 0.82 ± 0.0 c

8:1 - 92.19 ± 0.1 a 0.39 ± 0.0 a −1.79 ± 0.0 a 1.03 ± 0.0 a,b

SC: sodium caseinate, CH: chitosan, MSN-OEO: mesoporous silica nanoparticles filled with oregano essential oil.
Results are reported as the mean ± standard deviation (n = 3). Equal letters indicate that there is no significant
difference (p < 0.05).

3.4. Surface Roughness of the Films

From the three-dimensional image of the films surfaces (Figure 4), those based on
SC:CH (4:1) show significantly larger surface roughness than those using the 8:1 ratio
(Table 3), probably associated to the protein supper-aggregation due to higher protein con-
tent. However, addition of MSN-OEO causes an increase in surface roughness, especially
for the SC:CH (8:1) film (Figure 4). This film also shows some isolated microparticles that
in the presence of MSN-OEO are less visible, but with more evident peaks and valleys
leading to significantly higher Ra and Rq values (Table 3); additionally, the presence of
MSN-OEO produces films showing similar roughness for both SC:CH ratios.

Figure 4. AFM micrographs of SC:CH films with and without MSN-OEO. (A) SC:CH 8:1 (w/w);
(B) SC:CH 8:1 (w/w) MSN-OEO; (C) SC:CH 4:1 (w/w): (D) SC:CH 4:1 (w/w) MSN-OEO.

Table 3. Roughness parameters obtained from AFM analysis of films based on SC:CH, with and
without MSN-OEO.

Treatment Rq (nm) Ra (nm)

SC:CH 8:1 3.20 ± 1.0 a 1.05 ± 0.2 a

SC:CH 8:1 MSN-OEO 5.04 ± 0.6 b 3.89 ± 0.5 b

SC:CH 4:1 3.76 ± 0.9 b 2.88 ± 0.6 b

SC:CH 4:1 MSN-OEO 4.50 ± 0.3 b 3.44 ± 0.2 b

Rq: square root of the deviation from an average plane of the peaks and surface valleys, Ra: mean absolute
value of surface height deviations from the middle plane. Results are mean values ± standard deviation (n = 3).
Different letters indicate significant difference (p < 0.05).

In the SC-CH films micrographs, the observed agglomerations are attributed to re-
duction of electrostatic repulsions of the protein, due to close proximity to its isoelectric
point. The agglomerations are larger in the 8:1 ratio than in the 4:1 ratio, in agreement with
Anal et al. [28], who observed that increased CH concentration in the SC:CH complexes
produced a slight increase in particle size, attributed to fewer aggregations. The SC:CH
4:1 MSN-OEO film surface presented better dispersion of the MSN, due to decreased
-OH groups. According to Lu et al. [36], as the amount of MSN:OEO increases the pores
diameter decrease and become denser, thus favoring their dispersion.

3.5. Mechanical Properties of the Films

Mechanical properties expressed as tensile strength (TS), elongation at break (EB) and
Young’s modulus (YM) of the SC:CH films are shown in Table 4. The samples containing
MSN-OEO presented significantly higher TS (p > 0.05), and slightly decreased EB values
compared to those without MSN-OEO. According to Giosafatto et al. [37], the mechanical
properties can be associated to a great extent with the distribution and density of biopoly-
mer molecular interactions that determine the films network. In addition, the mechanical
properties of packaging materials arise from the intramolecular and intermolecular inter-
actions of the biopolymers, and this depends entirely on the nature of their components.
Lin et al. [6], reported similar results in relation to TS and EB for SC films crosslinked
with genipin.



Coatings 2021, 11, 1212 11 of 17

Table 4. Mechanical properties of SC:CH films with MSN-OEO.

SC:CH Ratio MSN-OEO Tensile Stress at
Break (MPa)

Elongation at
Break (%)

Young’s
Modulus (MPa)

4:1 - 7.06 ± 0.9 a,b 103.24 ± 2.4 a 12.48 ± 1.4 a

4:1 + 8.71 ± 1.6 a 99.52 ± 1.3 a,b 15.71 ± 1.4 a

8:1 - 4.59 ± 0.6 b 97.81 ± 0.3 b 7.60 ± 3.0 b

8:1 + 9.11 ± 1.9 a 94.12 ± 2.2 c 13.70 ± 2.3 a

Results are reported as the mean ± standard deviation (n = 3). Equal letters indicate
that there is no significant difference (p < 0.05). Tensile strength (TS) significantly, increased
when MSN-OEO was incorporated for both 4:1 and 8:1 SC:CH ratios (p > 0.05), but the
latter increased twice the value without MSN-OEO. This could be primarily explained
by the reinforcement effect of the nanoparticles on the network structure, and to a strong
interaction between the biopolymers and the MSN-OEO surface through the remaining free
side chain groups of SC and amino groups of CH that are not involved in electrostatic in-
teractions during complexation. According to Ojagh et al. [38] this effect leads to decreased
free volume and molecular mobility of the biopolymers with a consequent increase in TS
and decrease in EB. This effect is observed significantly (p > 0.05) in the SC:CH 8:1 films
values, indicating a greater number of these interactions within the biopolymers network.

Several studies have shown that the SC-CH films structure depends on their propor-
tion and concentration. The mechanical properties of SC-CH films are affected by the
number of cross-links formed between the CH and SC, and increasing the SC proportion
stimulates the crosslinking, forming a three-dimensional network that allows a structure
with greater resistance [30].

Finally, a significant increase in YM was observed for the SC:CH 8:1 when adding
MSN-OEO, whereas the 4:1 SC:CH ratio showed a moderate increase only. It is well
known that the increase of interactions among polymer chains decreases their mobility
increasing the stiffness, leading to increased YM values. Thus, this effect is in line with
previous reports on the presence of higher number of crosslinks in the SC:CH 8:1 ratio
films, containing MSN-OEO (Table 4)

3.6. Barrier Properties

The samples without MSN-OEO showed larger permeability to CO2, especially signif-
icant for the SC:CH (4:1) film (Table 5). Upon the incorporation of MSN-OEO, the films
demonstrated a positive effect because the permeability to CO2 and WV decreased.

Table 5. Permeability to gases of the SC:CH films with and without MSN-OEO.

Material
O2 CO2 WVP

cm3·mm/(m2·24 h)

4:1 SC:CH 0.260 ± 0.0 a,b 3.659 ± 0.3 a 0.0806 ± 0.0 a

4:1 SC:CH MSN-OEO 0.218 ± 0.0 b 0.214 ± 0.0 b 0.0144 ± 0.0 b

8:1 SC:CH 0.217 ± 0.0 b 0.514 ± 0.0 b 0.0735 ± 0.0 a

8:1 SC:CH MSN-OEO 0.328 ± 0.0 a 0.340 ± 0.0 b 0.0321 ± 0.0 b

Mater-BI * 22.69 ± 0.1 8.35 ± 0.2 15.68 ± 0.1
Low-density polyethylene ** 7 1 0.2
High-density polyethylene ** 1 0.03 0.04

WVP = WV permeability. Results are reported as the mean ± standard deviation (n = 3). Equal letters indicate
that there is no significant difference (p < 0.05). * (Di Pierro et al. [39]. ** Low- and high-density polyethylene
(Di Pierro et al. [40]).

The hydrophilic nature of proteins and polysaccharides-based films or coatings makes
them sensitive to moisture transfer, affecting their WV barrier properties. However, the
OEO incorporated within the films provides a hydrophobic character resulting in lower
WV permeability. Fernandez-Bats et al. [21], reported a reduction in permeability to
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O2 and CO2 when adding NSM in films made with pea protein and pea protein with
chitosan, respectively. The low O2 permeability of the films with and without MSN-OEO is
remarkable, being 70 times lower than Mater BI, a commercially available film; and 20 times
less than low-density polyethylene. Oxygen permeability is of vital importance since its
presence in certain foods causes microbial growth and oxidation reactions that affect the
taste, quality and acceptability of food. Similarly, the low WV permeability of films with
and without MSN-OEO is significantly less than Mater BI and low-density polyethylene,
and slightly less than that of high-density polyethylene. WV permeability is important in
coatings because they help to reduce water transfer between the food and its environment,
causing less deterioration of the food and extending its storage life.

3.7. Antimicrobial Activity

The inhibition halos exhibited by OEO, MSN-OEO, SC:CH and these films incorpo-
rated with MSN-OEO indicated antimicrobial activity (Table 6). The greatest effect was
observed against L. innocua (Gram +), whereas S. Saintpaul (Gram −) was not inhibited by
the plain SC:CH films. Carmagnini et al. [41], showed inhibition zone of 5 mm for 25%
OEO concentration against L. monocytogenes and S. enteritidis. Iturriaga et al. [42], showed
antimicrobial effect of different EOs against L. innocua, and observed higher inhibition
at lower temperature (4 ◦C). The decreased antimicrobial activity of MSN-OEO was at-
tributed to the screening effect of other compounds present in the FFS that reduces their
diffusion [43].

Table 6. Inhibition zone of oregano essential oil (OEO) in the SC:CH films.

Microorganisms
Inhibition Zone Diameter (mm)

OEO MSN-OEO 8:1 SC:CH 8:1 SC:CH MSN-OEO

25% 8 mg 0 mg 8 mg

L. innocua 24.8 ± 2.4 a 6.0 ± 0.2 a 0.2 ± 0.0 a 3.5 ± 0.5 a

S. Saintpaul 8.3 ± 2.5 b 2.7 ± 1.5 b ND 2.2 ± 1.0 a

Results are reported as the mean ± standard deviation (n = 3). Equal letters indicate that there is no significant
difference (p < 0.05).

3.8. Application of FFS on Panela Cheese
3.8.1. Moisture Content

The FFS of SC:CH 8:1 with and without MSN-OEO was chosen to coat Panela cheese
because of better physicochemical and antimicrobial properties. The effect of the different
edible coatings used here on the evolution of Panela cheese moisture content, during the
15 days of refrigerated storage is shown in Figure 5. Control samples showed the highest
moisture losses (54.5% ± 2%), whereas those coated with MSN-OEO (13% ± 1%) and
without MSN-OEO (22% ± 1%) showed lower moisture loss after 15 days of storage.

Visual evaluation confirmed that uncoated cheeses suffered severe water loss com-
pared to coated cheeses after 15 days of storage (results not shown). In addition, the
uncoated Panela cheese showed cracks attributed to water migration to the surface, which
was not observed in coated cheeses with and without MSN-OEO. Moisture content changes
are expected, because of whey losses due to syneresis occurring throughout the storage of
fresh cheeses.

Cheese fat causes a yellowish color appearing when the surface dries out together
with a leathery crust, unpleasant for most consumers [44]. In a study by Zhong et al. [45],
Mozzarella cheese moisture loss was higher in coated (about 25%) than in uncoated cheese,
but it must be considered that the initial moisture of the coated cheeses was significantly
higher than that of the uncoated cheeses, essentially due to the water present in the
coating itself.



Coatings 2021, 11, 1212 13 of 17

Coatings 2021, 11, x FOR PEER REVIEW 13 of 18 
 

 

lower temperature (4 °C). The decreased antimicrobial activity of MSN-OEO was at-453 
tributed to the screening effect of other compounds present in the FFS that reduces their 454 
diffusion [43]. 455 

Table 6. Inhibition zone of oregano essential oil (OEO) in the SC:CH films. 456 

Microorganisms 
Inhibition Zone Diameter (mm) 

OEO MSN-OEO 8:1 SC:CH 8:1 SC:CH MSN-OEO 
25% 8 mg 0 mg 8 mg 

L. innocua 24.8 ± 2.4 a 6.0 ± 0.2 a 0.2 ± 0.0 a 3.5 ± 0.5 a 
S. Saintpaul 8.3 ± 2.5 b 2.7 ± 1.5 b ND 2.2 ± 1.0 a 

Results are reported as the mean ± standard deviation (n = 3). Equal letters indicate that there is no 457 
significant difference (p < 0.05). 458 

3.8. Application of FFS on Panela Cheese 459 

3.8.1. Moisture Content 460 

The FFS of SC:CH 8:1 with and without MSN-OEO was chosen to coat Panela cheese 461 
because of better physicochemical and antimicrobial properties. The effect of the different 462 
edible coatings used here on the evolution of Panela cheese moisture content, during the 463 
15 days of refrigerated storage is shown in Figure 5. Control samples showed the highest 464 
moisture losses (54.5% ± 2%), whereas those coated with MSN-OEO (13% ± 1%) and with-465 
out MSN-OEO (22% ± 1%) showed lower moisture loss after 15 days of storage. 466 

Visual evaluation confirmed that uncoated cheeses suffered severe water loss com-467 
pared to coated cheeses after 15 days of storage (results not shown). In addition, the un-468 
coated Panela cheese showed cracks attributed to water migration to the surface, which 469 
was not observed in coated cheeses with and without MSN-OEO. Moisture content 470 
changes are expected, because of whey losses due to syneresis occurring throughout the 471 
storage of fresh cheeses. 472 

0 5 10 15
15
20
25
30
35
40
45
50
55
60 Control SC:CH SC:CH MSN-OEO

a
a

aa
c

d
d

e

b

Time (days)

%
 M

oi
st

ur
e 

co
nt

en
t

 473 

Figure 5. Moisture content of Panela cheese uncoated (control) and coated with SC:CH (8:1), and 474 
SC:CH (8;1) MSN-OEO. Different letters indicate significant differences (p < 0.05) for moisture con-475 
tent of each day. 476 

Cheese fat causes a yellowish color appearing when the surface dries out together 477 
with a leathery crust, unpleasant for most consumers [44]. In a study by Zhong et al. [45], 478 
Mozzarella cheese moisture loss was higher in coated (about 25%) than in uncoated 479 
cheese, but it must be considered that the initial moisture of the coated cheeses was sig-480 
nificantly higher than that of the uncoated cheeses, essentially due to the water present in 481 
the coating itself. 482 

 

Figure 5. Moisture content of Panela cheese uncoated (control) and coated with SC:CH (8:1), and
SC:CH (8:1) MSN-OEO. Different letters indicate significant differences (p < 0.05) for moisture content
of each day.

3.8.2. pH and Titratable Acidity (TA)

Along the storage period of Panela cheese, the TA increased until day 5, then moder-
ately increased between days 5 and 10. Afterwards, a steep increase occurred from day
10 to the end of the storage time, achieving about 0.85% lactic acid for coated cheese with
and without MSN-OEO, whereas the control cheese showed about 60% higher lactic acid
content. Coated Panela cheese exhibited significantly (p < 0.05) lower TA than the uncoated
cheese (Figure 6) during the whole storage period. A similar behavior was reported for
Ricotta cheese covered with a film of milk protein and chitosan observing that the TA of
the samples varied between 1.10% and 2.82% (w/w) [46]. The increase in TA is attributed
to the production of organic acids, mainly lactic acid produced by the bacterial population
that increased during storage. The coated cheeses, irrespective of the EO used, showed a
moderate decrease in TA, probably due to the partial inhibition of lactic acid bacteria.
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The pH of the stored cheese showed a decreasing trend over time for coated and
uncoated cheeses (Figure 7). The final pH of the cheeses was 5.70 ± 0.1 for the control
cheese, 6.0 ± 0.0 for coated cheese, and 6.2 ± 0.1 for that coated with SC:CH MSN-OEO.
All values recorded for each day are significantly different (p < 0.05).
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3.8.3. Microbiological Analysis

The application of the SC:CH coating to control microbial populations was effective.
The total count of mesophilic aerobic bacteria, and yeasts and molds were lower in coated
than in uncoated cheeses on days 5 and 15 (Figure 8). The population of mesophilic aerobic
bacteria and yeasts increased over time as a result of decreased pH and increased TA
probably due to microbial growth.
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Figure 8. Antimicrobial activity of Panela cheese with and without edible coating. (A) mesophilic aerobic bacteria. (B) molds
and yeasts. Different letters indicate significant differences (p < 0.05) for microbial population of each day.

Initially, all cheeses showed a total count of molds and yeasts below the specified
Mexican standard limit (500 CFU/g), but the population of uncoated cheese showed a
quick growth to reach 5 Log10 CFU/g after 5 d. The coating with MSN-OEO showed the
lowest population, since after 15 days it exhibited a reduction of 2 Log10 CFU/g compared
to the control. On the other hand, the aerobic mesophilic bacterial population showed
significant difference between the control and the coated cheeses over the storage time.
Mei et al. [47], working with coated Mongolian cheese with a mixture of starch-chitosan,
reported that after 15 days coated cheese revealed lower total count of aerobic mesophilic
microorganisms and fungi compared to uncoated cheese.

The cheese coated with the SC:CH MSN-OEO showed a decrease of 1.75 Log10 CFU/g
of mesophilic aerobic bacteria compared to the uncoated one after 15 days of storage. It
must be noted that coating protects the microbial contamination from the cheese surface,
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whereas microbial growth is also occurring inside the cheese. It may be possible to delay
microbial growth by storing the cheeses under vacuum, to avoid contact with the air from
the environment.

It was decided to store the cheese samples in clamshell containers, because many
fresh cheeses are stored in Mexico in this way. Artiga-Artigas et al. [48] used a coating of
sodium alginate and mandarin fiber with 2% (w/w) OEO on low-fat cheese bars, placed
in polyethylene trays heat sealed using a film made of polyamide and polyethylene. This
procedure effectively protected the cheese from fungus and yeast after 13 days of storage.

4. Conclusions

SC:CH has good film-forming properties and coating capabilities, with high stability
of the film forming solution. Tensile strength, elongation and barrier properties were
positively influenced by the addition MSN-OEO. In addition, the thickness and reduction
of water solubility of SC:CH films were improved. The films showed inhibition of Gram (+)
and Gram (−) bacteria. The coating on Panela cheese delayed acidification and moisture
loss. Microbial population over the 15 days storage period was reduced in coated Panela
cheese compared to the uncoated one. Therefore, this SC:CH coating added with MSN-OEO
may be successfully used to increase Panela cheese shelf life.
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