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Abstract: Carbon/carbon composites, when used as bone implant materials, do not adhere well
to the bone tissues because of their non-bioactive characteristics. Therefore, we electro-deposited
SiC-hydroxyapatite coatings (with an ultrasound-assisted step) on carbon/carbon composites. We
analyzed how the content and size of the SiC particles affected the structure, morphology, bonding
strength and dissolution of the SiC-hydroxyapatite coatings. The hydroxyapatite coating dissolution
properties were assessed by the released Ca2+ and the weight loss. The SiC-hydroxyapatite coating
on naked carbon/carbon composites showed a more compact microstructure in comparison to the hy-
droxyapatite coating on carbon/carbon composites. The reasons for the changes in the microstructure
and the improvement in the adhesion of the coatings on C/C were discussed. Moreover, the addition
of SiC particles increased the binding strengths of the hydroxyapatite coating on C/C composite, as
well as reduced the dissolution rate of the hydroxyapatite coating.

Keywords: carbon/carbon composites; hydroxyapatite-SiC coatings; microstructure; binding
strengths; dissolution

1. Introduction

The ease of designability, excellent biocompatibility and mechanical properties similar
to natural bones make carbon/carbon (C/C) composites excellent bone implant materi-
als [1,2]. However, C/C composites do not bond strongly to the bone tissues because they
are non-bioactive [3]. Thus, a technology for enhancing the C/C composite bioactivity is
needed. One way to achieve this is to coat C/C composites with bioactive coatings [4,5].

Hydroxyapatite (HA) possesses an excellent bioactivity and is often applied as a
coating to promote the osseointegration of implant materials [6–8]. Wen et al. [9] hydrother-
mally synthesized a hydroxyapatite coating on a medical magnesium alloy surface and
analyzed its corrosion resistance. Lo et al. [10] developed a straightforward hydrothermal
synthesis and used a mixture of calcium hydroxide and sodium tripolyphosphate to obtain
a structurally tunable hydroxyapatite coating on a Ti-6Al-4V surface. A hydroxyapatite
coating was also applied to C/C composites and significantly improved their bioactiv-
ity [11,12]. For example, Xiong et al. [13] prepared adhesive hydroxyapatite coatings on
C/C composites to improve their bioactivity-related properties. Liu et al. [14] synthesized
a SiO2-reinforced hydroxyapatite coating on similar C/C composites by a combination
of hydrothermal electrochemical deposition and hydrothermal treatment. However, hy-
droxyapatite coatings are brittle, which often worsens the mechanical properties of the
corresponding implants. Additionally, hydroxyapatite does not bind well to C/C compos-
ites [15,16]. To solve this problem and to reinforce the hydroxyapatite coating, Li et al. [17]
added TiO2 and observed an improved Young’s modulus, fracture toughness and shear
strength of the resulting TiO2-HA composite coatings prepared using high-velocity oxyfuel
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spraying. Mihailescu et al. [18] reinforced HA by MgF2 and MgO particles and obtained a
material with an excellent adherence and biological performance. Liu et al. [19] improved
the HA coating bonding strength to C/C composites by applying a tree-planting interface
structure. Fu et al. [20] improved the cohesion strength of a hydroxyapatite (HA) coating
on C/C composites by adding SiC nanowires.

The excellent biocompatibility, wear resistance and stability of SiC make it a promising
material for biological applications [21–25]. Particularly, the chemical inertness makes SiC
useful as a material for the bearing surface of implants [3,26]. The incorporation of small
amounts of SiC particles around the implants was proven to be a safe approach, capable of
stimulating the growth of bone tissues [27–30]. SiC-containing coatings were also used on
stents to enhance their hemocompatibility and bonding strength [30]. Vladescu et al. [31]
coated HA coatings with a SiC layer and obtained a material with excellent hardness and
other mechanical properties. Fu et al. [3] reported SiC nanowires which formed pinning
at the HA coating/matrix interface, which in turn enhanced the bonding strength at the
interface and provided a three-dimensional framework. This improved the overall HA
coating cohesion.

This work demonstrated an approach to obtain an improved bonding strength be-
tween the hydroxyapatite coating and the substrate, which was achieved by incorporating
SiC particles using ultrasonic-assisted electrodeposition. This paper discusses how the SiC
particle sizes and contents in the coating affect the bonding strength and solubility of the
HA-based composite material.

2. Materials and Methods

Several pieces (10 mm × 10 mm × 1.5 mm) were cut from a large C/C composite
sheet (obtained using chemical vapor deposition) with a 1.2–1.3 g/cm3 density, polished
using 600 grit SiC paper, cleaned with distilled water, dried at 100 ◦C for 2 h, and then
soaked in H2O2 for 24 h, followed by distilled water rinsing and drying at 150 ◦C for 2h.

To prepare HA coatings, we used Ca(NO3)2 and 3 mmol/L NH4H2PO4 solutions in
amounts taken to maintain the Ca/P mole ratio, equal to 1.67. To prepare SiC-containing
hydroxyapatite, we used commercially purchased SiC (analytically pure), which was
ultrasonically cleaned with ethanol for 30 min and dried at 70 ◦C for 24 h. SiC samples
with 50, 100, and 200 nm particles were used. The contents of SiC added to hydroxyapatite
synthesis were equal to 0.01, 0.1 and 1 g/L.

SiC-hydroxyapatite coatings were deposed onto the substrates electrochemically at
60 ◦C for 1 h under 7 V. The resulting samples were rinsed with distilled water, dried at
150 ◦C and then treated with 0.01 mol/L NaOH solution for 2 h, followed by rinsing and
drying. All preparation steps are shown in Figure 1.
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Figure 1. Experimental flow graph. Figure 1. Experimental flow graph.

The sample crystallinity, morphology, and composition were obtained using X-ray
diffraction (XRD, performed using Bruker D8ADVANCE instrument, Bilerica, Massachusetts,
USA) and scanning electron microscopy (SEM, performed using Hitachi S-4800, Tokyo, Japan;
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Zeiss Sigma 300 setups, Jena, Germany) coupled with the energy dispersive spectroscopy.
For SEM, all samples were coated with a thin layer of Au. Fourier transform infrared (FTIR,
performed using IRAffinity-1s, shimadzu corporation, Kyoto, Japan) spectroscopy performed
using a Shimadzu instrument was used to identify the surface functionality of the coatings.

The binding strength was tested with a scratch tester. The micron grade scratch tests
were tested on micron grade scratch tester (MCT, Swiss CSM Instrument Co., Ltd., Peseux,
Switzerland). For this purpose, four samples were prepared for each combination of SiC
contents/particle size. The final value was reported as an average of four measurements.

The dissolution rates of the SiC-hydroxyapatite coating samples were measured using
physiological saline solution (0.9% NaCl) at 36.5 ◦C. For this purpose, the hydroxyapatite
coating pieces with a known weight were soaked for 1, 3, 5, 7, and 14 days, followed by a
measuring of their Ca ion concentration and weight loss examination. For each coating
composition and duration, four parallel tests were performed. After sampling 5 mL of
the mother solution after 14 days of immersion, an appropriate amount of dilute nitric
acid solution was added to the remaining solution. Additionally, 5 mL was of the mother
solution was taken out again after the precipitates were completely dissolved. The resulting
sample was named “14R”. After the dissolution tests, the Ca2+ content in the saline solution
was detected by the inductively coupled plasma-mass spectrometry (ICP-MS, Thermo
Tisher Scientific, Waltham, MA, USA).

3. Results
3.1. Effect of SiC Particle Sizes on the Hydroxyapatite Coating Properties

To analyze the effect of the SiC particles on the properties of the resulting hydroxyap-
atite coatings, we added 1 g/L SiC particles with average sizes equal to 50, 100, and 200 nm
during the hydroxyapatite coating preparation. The XRD of the resulting samples showed
the presence of the peaks attributed to the carbon matrix, hydroxyapatite coating and SiC
particles (see Figure 2). The XRD peak intensity for the SiC phase gradually increased as
the SiC particle size increased and was strongest for the hydroxyapatite coating containing
200 nm SiC particles. Additionally, as the SiC particle size increased, the intensity of
the hydroxyapatite peaks increased and was the highest for the hydroxyapatite coating
containing 200 nm SiC particles. No other peaks were observed in the XRD spectra of our
SiC–hydroxyapatite samples. Thus, SiC and hydroxyapatite did not react strongly enough
to form additional phases (see Figure 2).
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Figure 2. X-ray diffraction of SiC-hydroxyapatite coatings under different SiC particle sizes. Figure 2. X-ray diffraction of SiC-hydroxyapatite coatings under different SiC particle sizes.

The SEM of the SiC-hydroxyapatite coatings revealed some flaws (see Figure 3a).
The SiC-hydroxyapatite coating containing 50 nm SiC particles contained short rod-like
features and particles with numerous small holes (see Figure 3b). The coatings which con-
tained larger SiC particles possessed a more fibrous morphology. The SiC-hydroxyapatite
coatings containing 200 nm SiC particles possessed an interwoven fibrous morphology
(see Figure 3d) with some lumpy tissues above the fibers.
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Figure 3. Surface morphology and EDS of SiC-hydroxyapatite coatings with different SiC particle sizes: (a) hydroxyapatite;
(b) hydroxyapatite + 50 nm SiC; (c) hydroxyapatite + 100 nm SiC; (d) hydroxyapatite + 200 nm SiC.

The FTIR spectra of the SiC-hydroxyapatite coatings showed peaks at 948 and 1032 cm−1

(see Figure 4), which belonged to PO4
3− vibrations [31]. Additional bands at 556 and 605 cm−1

were attributed to the m4 vibrational mode of the P-O bond in the PO4
3− groups [32]. The band

at 940–960 cm−1 was ascribed to the Si-C stretching bond [33]. The peaks in the 1460–1530 cm−1

range corresponded to the CO3
2− formed due to the atmospheric CO2 dissolution in the solu-

tions during the sample preparation [34]. The bands at 1570–1640 cm−1 and 3440–3450 cm−1

were ascribed to the absorbed water [35,36] while the peak at 3570 cm−1 was ascribed to the
OH vibrations.
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The bonding strengths between the SiC-hydroxyapatite coatings and the C/C com-
posite’s matrix were determined by scratch tests. The analysis of the chemical bonding
strengths between the coatings and the C/C composites matrix showed that the bonding
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strength of the hydroxyapatite coatings significantly increased when SiC was incorporated.
Additionally, the overall bonding strength increased as the SiC particle increased (see
Figure 5). Thus, SiC-hydroxyapatite coatings containing 200 nm SiC particles exhibited the
strongest bond between the hydroxyapatite coatings and the matrix. The bonding strengths
for the SiC-hydroxyapatite coatings containing 50 and 100 nm SiC particles were almost
the same. The pristine hydroxyapatite coating was loose and cracked (see Figure 3a) which
explained its poor mechanical and binding strength. However, the SiC-hydroxyapatite
coatings containing 200 nm SiC particles were uniform and dense (see Figure 3d), which
explained why their binding strength was the highest of all the coatings.
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3.2. Effect of SiC Content on HA Coating Properties

To assess how SiC contents affected the properties of the hydroxyapatite coating
deposited on the C/C substrate, we added 200 nm SiC particles at the 0.01, 0.1 and
1 g/L levels. The XRD of these coatings revealed peaks belonging to the C/C composites
substrate, hydroxyapatite coatings and SiC particles (see Figure 6). As the SiC content
increased, the intensities of these peaks did not change, indicating that the increased SiC
particle content did not affect the structure and phase formation of the SiC-hydroxyapatite
coatings on the C/C composites substrate.
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The SEM of the SiC-hydroxyapatite coatings prepared using 0.01 g/L of 200 nm SiC
particles showed rod-like features with small holes (see Figure 7a). The SEM of the SiC-
hydroxyapatite coating prepared using 0.1 g/L of 200 nm SiC particles revealed flake-like



Coatings 2021, 11, 1166 6 of 12

tissues with large voids between them (see Figure 7b). The SiC-hydroxyapatite coatings
prepared using 1 g/L of 200 nm SiC exhibited interwoven fibrous features (see Figure 7c).

Coatings 2021, 11, x FOR PEER REVIEW 6 of 13 
 

 

particle content did not affect the structure and phase formation of the 

SiC-hydroxyapatite coatings on the C/C composites substrate. 

 

Figure 6. X-ray diffraction of SiC-hydroxyapatite coatings at different SiC particle (200 nm) con-

centrations. 

The SEM of the SiC-hydroxyapatite coatings prepared using 0.01 g/L of 200 nm SiC 

particles showed rod-like features with small holes (see Figure 7a). The SEM of the 

SiC-hydroxyapatite coating prepared using 0.1 g/L of 200 nm SiC particles revealed 

flake-like tissues with large voids between them (see Figure 7b). The SiC-hydroxyapatite 

coatings prepared using 1 g/L of 200 nm SiC exhibited interwoven fibrous features (see 

Figure 7c).  

The cross-section sample was polished using 600 grit SiC paper and 3000 grit SiC 

paper, cleaned with distilled water, then dried at 100 °C for 2 h. The EDS of the 

cross-section of the SiC-hydroxyapatite coatings deposited on the C/C substrate showed 

that the coating was 20–30 µm thick (see Figure 8). The SiC-hydroxyapatite coatings were 

clearly observed on the surface of the C/C composite with SiC particles embedded in 

hydroxyapatite (see Figure 8). The binding strength diagram of the C/C composites sub-

strate and SiC-hydroxyapatite coating showed a tight interface without cracks, with the 

SiC-hydroxyapatite coatings penetrating the pores of the C/C composites substrate. Thus, 

the binding force between the coating and the matrix could be further improved.  

  

Coatings 2021, 11, x FOR PEER REVIEW 7 of 13 
 

 

  

Figure 7. Surface morphology and EDS of SiC-hydroxyapatite coatings at different concentrations 

of SiC particles: (a) 0.01 g/L; (b) 0.1 g/L; (c) 1 g/L. 

 

Figure 8. The cross section of SiC-hydroxyapatite coatings with 200 nm SiC particles. 

Figure 9 shows the binding strength between the C/C composites matrix and 

SiC-hydroxyapatite coatings with the 200 nm SiC particles embedded at different levels. 

The highest binding force was observed when 1 g/L of 200 nm SiC particles was used 

during the preparation of the SiC-hydroxyapatite coating. The lowest binding force was 

observed at the 0.1 g/L level, which confirmed the results described above (in Figure 7). 

The structure of the coatings could explain such a weak binding force; the microstructure 

of hydroxyapatite coating prepared using 0.1 g/L of 200 nm SiC particles was petal-like 

and demonstrated numerous large cracks. A coating with such morphology was intrin-

sically fragile, its cracks propagated more easily, and its active material fell off. All these 

factors contributed to the weak adhesion between SiC-hydroxyapatite coatings and C/C 

composites. 

Figure 7. Surface morphology and EDS of SiC-hydroxyapatite coatings at different concentrations of SiC particles:
(a) 0.01 g/L; (b) 0.1 g/L; (c) 1 g/L.

The cross-section sample was polished using 600 grit SiC paper and 3000 grit SiC
paper, cleaned with distilled water, then dried at 100 ◦C for 2 h. The EDS of the cross-
section of the SiC-hydroxyapatite coatings deposited on the C/C substrate showed that
the coating was 20–30 µm thick (see Figure 8). The SiC-hydroxyapatite coatings were
clearly observed on the surface of the C/C composite with SiC particles embedded in
hydroxyapatite (see Figure 8). The binding strength diagram of the C/C composites
substrate and SiC-hydroxyapatite coating showed a tight interface without cracks, with the
SiC-hydroxyapatite coatings penetrating the pores of the C/C composites substrate. Thus,
the binding force between the coating and the matrix could be further improved.

Figure 9 shows the binding strength between the C/C composites matrix and SiC-
hydroxyapatite coatings with the 200 nm SiC particles embedded at different levels. The
highest binding force was observed when 1 g/L of 200 nm SiC particles was used during the
preparation of the SiC-hydroxyapatite coating. The lowest binding force was observed at
the 0.1 g/L level, which confirmed the results described above (in Figure 7). The structure of
the coatings could explain such a weak binding force; the microstructure of hydroxyapatite
coating prepared using 0.1 g/L of 200 nm SiC particles was petal-like and demonstrated
numerous large cracks. A coating with such morphology was intrinsically fragile, its cracks
propagated more easily, and its active material fell off. All these factors contributed to the
weak adhesion between SiC-hydroxyapatite coatings and C/C composites.
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3.3. Dissolution of SiC-Hydroxyapatite Coatings

Dissolution is controlled by the processes occurring on the crystal surface, including
the ion transport from the surface into the solution [37]. Figures 10 and 11 show the
Ca2+ concentration contents in the leachate after 1–14 days of soaking SiC-hydroxyapatite
coatings in physiological saline solution. As expected, the Ca2+ concentration in the leachate
increased with the immersion time. However, all hydroxyapatite coatings, independently
of their SiC particle sizes and contents, showed similar Ca2+ concentration contents on
days 1–14 (see Figure 10).
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However, the data obtained for our coatings for the 1–14 days of soaking were sig-
nificantly different. The Ca2+ concentration was the highest when the coating contained
no SiC particles. The Ca2+ contents on days 14 and 14R were also very different because
loosening the hydroxyapatite caused large coating pieces to detach. However, they were
still too large to dissolve completely. The concentration of dissolved Ca2+ also did not differ
significantly from day 1 to day 14 for all coatings (see Figure 11). The Ca2+ concentration in
the leachate of the hydroxyapatite coating prepared using 0.1 g/L of 200 nm SiC particles
was the highest (see Figure 11) because the corresponding SiC-hydroxyapatite coatings
were loose with many cracks, which weakened their bonding strength.

The weight losses of the SiC-hydroxyapatite coatings agreed with the results discussed
above on the Ca2+ content in the leachate (see Figures 12 and 13). The pristine hydroxyap-
atite coating lost the most weight (see Figure 12). The Ca2+ concentration content in the
leaching solution was largest after 14 days of soaking in dilute HNO3, which indicated
the presence of large amounts of undisclosed chunks of hydroxyapatite coatings due to
the coating peeling off during the soaking. Our data indicated that SiC presence in the
hydroxyapatite inhibited its dissolution rate. The highest weight loss was observed for the
SiC-hydroxyapatite coatings prepared using 0.1 g/L of 200 nm SiC particles (see Figure 13),
which agreed with the data discussed above on the coating structure and morphology (see
Figure 7b).



Coatings 2021, 11, 1166 9 of 12

Coatings 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

indicated the presence of large amounts of undisclosed chunks of hydroxyapatite coat-

ings due to the coating peeling off during the soaking. Our data indicated that SiC pres-

ence in the hydroxyapatite inhibited its dissolution rate. The highest weight loss was 

observed for the SiC-hydroxyapatite coatings prepared using 0.1 g/L of 200 nm SiC par-

ticles (see Figure 13), which agreed with the data discussed above on the coating struc-

ture and morphology (see Figure 7b). 

 

Figure 11. Calcium concentration of different SiC particle (200 nm) concentrations. 

 

Figure 12. Lost mass of SiC-hydroxyapatite coatings with different SiC particle sizes. 

 

Figure 13. Lost mass of SiC-hydroxyapatite different SiC particle (200 nm) concentrations. 

Figures 14 and 15 show the morphologies of our SiC-hydroxyapatite coatings after 

dissolution tests. Large pieces of hydroxyapatite coating were detached, leaving large 

holes (see Figure 14a) and cracks. These processes contributed to the coating weight 

Figure 12. Lost mass of SiC-hydroxyapatite coatings with different SiC particle sizes.

Coatings 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

indicated the presence of large amounts of undisclosed chunks of hydroxyapatite coat-

ings due to the coating peeling off during the soaking. Our data indicated that SiC pres-

ence in the hydroxyapatite inhibited its dissolution rate. The highest weight loss was 

observed for the SiC-hydroxyapatite coatings prepared using 0.1 g/L of 200 nm SiC par-

ticles (see Figure 13), which agreed with the data discussed above on the coating struc-

ture and morphology (see Figure 7b). 

 

Figure 11. Calcium concentration of different SiC particle (200 nm) concentrations. 

 

Figure 12. Lost mass of SiC-hydroxyapatite coatings with different SiC particle sizes. 

 

Figure 13. Lost mass of SiC-hydroxyapatite different SiC particle (200 nm) concentrations. 

Figures 14 and 15 show the morphologies of our SiC-hydroxyapatite coatings after 

dissolution tests. Large pieces of hydroxyapatite coating were detached, leaving large 

holes (see Figure 14a) and cracks. These processes contributed to the coating weight 

Figure 13. Lost mass of SiC-hydroxyapatite different SiC particle (200 nm) concentrations.

Figures 14 and 15 show the morphologies of our SiC-hydroxyapatite coatings after
dissolution tests. Large pieces of hydroxyapatite coating were detached, leaving large holes
(see Figure 14a) and cracks. These processes contributed to the coating weight losses and
the Ca2+ leaching out. The prolonged dissolution tests resulted in the formation of the
larger holes and shorter rods tapered at both ends (see Figure 14b) as well as honeycomb-
like features (see Figure 14c). As a result, the content of the short bar-like coating features
(shown in Figure 3c) decreased, which implied their dissolution and the formation of
honeycombs from the less soluble coating components. The fiber-like features on the
coating surface also dissolved, leaving the granular tissues (see Figure 14d), and leading to
Ca2+ and weight losses.

Figure 15a also shows numerous holes in the coating as well as an indication that the
rod-like tissue became fibrous as the coatings were soaked in the diluted HNO3. Most
of the petal-like tissues also dissolved, forming more holes (see Figure 15b). Thus, we
concluded that the petal-like structures dissolved very quickly. Figure 15c also shows that
the coatings’ fibrous tissues dissolved, leaving granular tissues. These data confirm that the
solubility of the SiC-hydroxyapatite coatings strongly depended on their microstructure
and morphology, both of which, in turn, were defined by the content and size of the
embedded SiC particles.
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4. Conclusions

Nano-SiC particles were introduced into hydroxyapatite coatings to improve their
binding strengths to the C/C substrates. The structures, morphologies and binding
strengths of the resulting SiC-hydroxyapatite coatings were studied as functions of the
SiC particle contents and sizes. As the sizes of the embedded SiC particles increased, the
hydroxyapatite diffraction peaks of the corresponding SiC-hydroxyapatite coatings also
increased. However, the SiC content did not affect the diffraction peak strength. The
SiC particle presence improved the adhesion of the hydroxyapatite coating to the C/C
substrate. The best bonding strength was obtained for the coating prepared using 1 g/L of
200 nm SiC particles. The addition fo the SiC nanoparticles to the hydroxyapatite coatings
changed their morphologies and microstructures, which, in turn, directly correlated with
the hydroxyapatite coating dissolution.
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