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Abstract: Fouling is a ubiquitous and longstanding challenge that causes both economic and envi-
ronmental problems, especially for underwater detection equipment, as fouling directly limits the
normal services and functions of such equipment. Therefore, it is necessary to develop coatings
with high transparency and good antifouling performance. Herein, a novel zwitterion compound
was synthesized, and an antifouling coating with excellent comprehensive properties was prepared
by integrating 3-[[3-(triethoxysilyl)-propyl] amino] propane-1-sulfonic acid (TPAPS) into polyvinyl
butyral (PVB) polymer, which possesses excellent mechanical properties and transparency. The
physical and chemical, mechanical, and antifouling properties, and the light transmittance of the
coating were characterized by the SEM, FT-IR, XPS, UV-VIS. The results show that the coating had
good mechanical properties and adhesion to the substrate, and the strong hydration ability of TPAPS
endowed the coating with excellent resistance to oil stains and biofouling. More importantly, the
structure of the coating was homogenous and its surface roughness was very little, which imparted
the coating with high transmittance. This research provides a facile approach for synthesizing
high-transparency materials with excellent antifouling and mechanical properties.

Keywords: anti-oil stain; antibiofouling; transparent coating; hydrophilic surface; PVB coating

1. Introduction

Marine biofouling is a major problem shared among all maritime sectors employing
submerged surfaces [1], and is especially serious for maritime detection equipment, such
as sensors, detection windows and optical instruments [2–4]. When detection equipment
is immersed in seawater for a long time, oil stain and biological contaminants adhere to
its surfaces, leading to substantially lowered operational lifespans, and loss of function
if poorly addressed [5,6]. Therefore, there is a growing need for the development of
antifouling technology in the exploitation of marine resources in recent decades [7,8].

Due to the toxic effect of organotin on marine ecosystems, the International Maritime
Organization (IMO) completely prohibited their extensive use in the marine antifouling
coatings in 2008 [9,10]; thus, marine antifouling research has been developed toward to
environmentally friendly and nontoxic technologies, and antifouling coatings that are free
of biocides have been extensively explored due their many advantages (unique fouling
resistance, appropriate mechanical properties and other functional applications) in antifoul-
ing fields [11,12]. Among of these coatings, hydrophilic coatings have aroused intensive
interesting for the feasibility of their preparation and the wide application for their strong
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antifouling properties [13–15]. Hydrophilic coatings’ strong antifouling capacity is mainly
attributed to their high hydration entropy, which can effectively inhibit hydration exchange
between biomass and substrate, and so prevent the adhesion of polysaccharides, proteins
and other biomasses without biocides. Therefore, polymers with high hydration, such as
hydrophilic polymer brush and hydrogen gel, are widely applied to fabricate antifouling
materials [16–18]. Especially, zwitterionic polymers have attracted numerous attentions for
their super hydration ability and charge effect [19–21]. A durable antifouling silicone elas-
tomer, modified with zwitterionic silane, was fabricated by the Huang group [22], similarly,
Zheng et al. prepared a homogeneous antifouling coating with functional silatrane on glass
and silicon wafers [23], achieving surface modification with zwitterionic polymer. Zhou
et al. prepared a series of semi-interpenetrating polymer networks to study the contribution
of their charges to marine antifouling [24]. However, their poor mechanical properties,
loss of light transmittance and difficulty in large-scale preparation seriously limits the
application of hydrophilic materials in maritime inspection. To meet the requirements of
displays and underwater sensors, these aspects must be greatly improved. Among them,
light transmittance is a very critical property for aquatic detection, wherein a value above
than 90% is acceptable [25,26]. Modifying suitable polymers is a promising alternative for
solving the above problems, due to their unique compositions and properties.

The modification of a universal polymer ideally combines the desired performances
of both materials without sacrificing functionality (high transparency, suitability for a
biosensor, anticorrosion) gained by the heterogeneous structures of traditional amphiphilic
materials [27]. Zhou [28] synthesized a new zwitterionic precursor and designed an
antifouling coating by crosslinking it with PDMS, which can generate zwitterion in-situ
under ambient environment, addressing the poor miscibility between the hydrophobic and
hydrophilic ingredients of zwitterion. Zhang [29] fabricated a foldable, transparent hybrid
antifouling coating with superior mechanical properties by blending amine-terminated
hyperbranched polysiloxane with epoxy–zirconium particles with a zwitterionic group.
These interesting studies indicate that the specific functions of a coating can be achieved
by the tailoring thereto of its precursor materials. This almost infinitely modular design
concept has led to the industrial application of coatings for transparent plastics, glasses,
and metals for preventing mechanical abrasion, permeation, biofouling, corrosion or other
adverse effects [30].

Herein, a zwitterionic precursor was designed and synthesized, and was then in-
corporated into polyvinyl butyral (PVB), through the facile condensation of a siloxane
group, to prepare a highly transparent coating with low adhesion to oil stain, and superior
fouling resistance, in which the presence of the zwitterionic group endowed the coating
with excellent oil repellency and fouling resistance. PVB was adopted due to its wide
application in various fields for its excellent mechanical properties and excellent optical
clarity [31]. The modified PVB coating has strong adhesion to substrate, strong water
resistance and good antifouling performance, and therefore has great potential application
for marine detection equipment.

2. Materials and Methods
2.1. Materials and Chemical Reagents

Butvar B-76 polyvinyl butyral (PVB, chemical pure, Mw = 90,000–120,000 g·mol−1)
and ethylene glycol butyl ether (EGBE, analytically pure) were provided by Meryer Chemi-
cal Technology Co., Ltd. (Shanghai, China). The PVB was comprised of vinyl butyral, vinyl
alcohol, and vinyl acetate, about 88%, 11–13% and around 1%, respectively (molar ratio).
1.3-propanesultone (analytically pure) was purchased from Energy Chemical Reagent
Co., Ltd. (Shanghai, China), and 3-triethoxysilyl-1-propanamine (KH-550, analytically
pure) and 3-glycidoxypropyltrim ethoxysilane (KH560, analytically pure) were obtained
from J&K Chemical Ltd. (Shanghai, China). Acetonitrile (CH3CN, analytically pure) was
purchased from Lian-Long Bohua (Tianjin) Pharmaceutical Chemical Co., Ltd. (Tianjin,
China). Fluorescein isothiocyanate labeled bovine serum protein (FITC-BSA) was pur-
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chased from Beijing Solarbio Science & Technology Co., Ltd. (Beijing, China), and PBS
powder (PH = 7.4, chemical pure) was from Shanghai McLean Biochemical Technology
Co., Ltd. (Shanghai, China). Porphyridium sp., Navicula sp., and their respective culture
media, Kock and Erdschreiber, were supported by Freshwater Algae Culture Collection at
the Institute of Hydrobiology. Unless otherwise specified, the chemicals were used without
further purification. The deionized water was prepared in the laboratory.

2.2. Preparation of Hybrid Zwitterionic Precursor

The precursor 3-[[3-(triethoxysilyl)-propyl] amino] propane-1-sulfonic acid (TPAPS)
with antifouling activity was synthesized according to the procedure in reference [32].
Briefly, 0.01 mol KH-550 was dissolved using 60 mL anhydrous CH3CN in a three-neck
flask, and stirred under an inert atmosphere for 15 min to remove oxygen. Subsequently,
an equivalent molar 1,3-propanesultone was added during 30 min, and the mixture reacted
for one hour under room temperature. Then, the system was refluxed for an additional 24 h
under 88 ◦C to obtain a milk-white suspension. Notably, the mixture was stirred constantly
over the entire reaction. The suspension was subjected to centrifugation, and washed with
acetonitrile three times to remove any remaining reactant. Importantly, it was necessary
to control the anhydrous environment during the entire preparation process of TPAPS.
Finally, the precipitate was dried under vacuum at 40 ◦C for 24 h, and a white powder was
obtained. The NMR information of the product was as follows: 1H NMR (400 MHz, D2O):
δ(ppm): 4.00–3.81 (m, 2H), 3.65 (q, J = 7.10 Hz, 2H), 3.44–3.30 (m, 1H), 3.27–3.14 (m, 3H),
3.12–3.05 (m, 2H), 3.02 (t, J = 7.30 Hz, 3H), 2.15 (m, 2H), 1.88–1.54 (m, 3H), 1.33–1.21 (m,
3H), 1.18 (t, J = 7.10 Hz, 3H), 0.76–0.62 (m, 2H); 13C NMR (400 MHz, D2O): δ(ppm):57.37,
49.77, 47.83, 46.08, 21.26, 19.44, 16.75, 8.68. The characteristic chemical shifts of TPAPS
were assigned in the NMR spectroscopy in Figure 1, and a distinct characteristic peak of
(m+Na)/z is shown in the high-resolution mass spectrum (Figure S1).

Figure 1. The molecular structure of the designed hybrid precursor (TPAPS) and its corresponding
1H NMR spectrum; D2O was used as the solvent for the NMR characterization, and tetramethylsilane
was used as an internal standard.

2.3. Preparation of the Zwitterionic Component Embedded in PVB Coating

The PVB-TPAPS coatings were prepared as shown in Scheme 1. First, 0.3 g PVB
and 25 g EGBE were mixed in a beaker and magnetically stirred for 30 min to obtain a
transparent polymer solution, labeled component A. Afterwards, 0.1 g of zwitterionic
precursor was dissolved in 10 g deionized water to obtain component B. Then, components
A and B were mixed according to the specific proportion in Table 1, and some acetic
acid was added to adjust the pH to 5–6. The mixture system was then stirred for 6 h at
room temperature to promote the hydrolysis of TPAPS’ triethoxy group to obtain silanol.
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Subsequently, the silanol group can condense with various of active groups, such as the
hydroxyl group of the PVB chain, the epoxy group and the amino group on the surface of
the substrate, as well as itself to form a cross-linking network [33–35]. Before the coating
preparation, a layer of KH560 was assembled on the glass substrate to improve the adhesion
of the coating to the substrate (Scheme 1a). Finally, the prepared reaction solution was
cast and leveled on the glass sheet (0.15 g/cm2), curing at 40 ◦C for 4 h and 80 ◦C for 6 h,
respectively, to fabricate the transparent antifouling coating. For convenience, the coating
was named as PVB-X% TPAPS, according to the mass ratio of the zwitterionic precursor to
PVB, where X was 10, 20, and 30 in different coatings.

Scheme 1. A schematic illustration of the preparation of transparent coating with fouling resistance.
(a) The assembly process of the KH560 molecular layer, (b) the procedure of preparing the PVB-
X%TPAPS coatings, (c) the molecular formulas of PVB, TPAPS and the schematic diagram of the
condensation reaction between them.

Table 1. The composition formulas of different samples.

Sample Component A/g Component B/g

PVB 10 N/A
PVB-10%TPAPS 10 1
PVB-20%TPAPS 10 2
PVB-30%TPAPS 10 3

2.4. Characteristics of the Physicochemical Properties of the Coatings

Using a DSA-100 optical contact angle meter (Kruss Company, Ltd., Hamburg, Ger-
many), the surface wettability of the coating was characterized by the contact angle (CA)
of water droplets (5 µL) at 25 ◦C in the atmosphere, three CAs from random regions
of each sample were tested, and the average the angles was taken as the result. The
surface chemical composition was characterized by Fourier transform infrared spectrome-
ter (FTIR, Nicolet iS10, Thermo Scientific, Waltham, MA, USA) and X-ray photoelectron
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spectroscopy (XPS, Thermo Scientific, ESCALAB 250Xi), in which the attenuated total
reflection mode was applied and the infrared spectra were recorded ranging from 4000
to 400 cm−1 with a resolution of 4 cm−1, while a Al Kα radiation was used for the XPS
characterization. The surface morphologies of the coatings were inspected by scanning
electron microscopy (FE-SEM, JSM-6701F) at 10 kV. Surface roughness was measured by
a non-contact three-dimensional profilometer (Dataphysics, SPA25, 10× lens). Each coat-
ing was tested randomly in three different regions. Apparent roughness is expressed as
the root–mean–square of height (Sq). For each scanning area, the software automatically
provides the corresponding Sq value, and the average of three dependent tests was calcu-
lated to express its final roughness. The thermal stability of the coating was analyzed by
Differential Thermogravimetry (DTG, NETZSCH-Gerätebau GmbH, Wittelsbacherstraße,
Germany STA449F3) in the N2 atmosphere with the heating rate 10 K/min, and there was
no preheating treatment before the test. The transmittance of the coating was measured by
UV-VIS spectrophotometer (UV-2600, Shimadzu, Japan). The wavenumber ranged from
200 to 800, and the primitive glass plate was adopted as the control group.

2.5. Characteristics of the Mechanical Properties of the Coatings

As Scheme 1b indicated, the precursor solution was casted in the polytetrafluoroethy-
lene (PTFE) substrate to prepare the PVB-X%TPAPS coating, and the tested samples were
prudently peeled off when the PFPE substrate panel was heated for one hour at 60 ◦C in an
oven. The tensile test was conducted by an electrical universal material testing machine
with a 500 N-load cell (EZ-Test, SHIMADZU). To ensure the sample was broken at the mid-
dle position when stretched, the peeled coating was cut into a standard dumbbell-shaped
strip by a steel cutter. The length of the sample was 12.5 mm, the width was 2 mm, the
thickness was approximately 0.15–0.2 mm, and the moving speed of the upper clamp was
5 mm/min. Strain was calculated from the tensile displacement divided by the gauge
distance, the stress was obtained from load divided by the section area of the sample, and
the elastic modulus was calculated from the slope of linear region (0.5–1.5%) of tensile
stress versus the strain curve. Samples of each coating were tested in triplicate, using three
independent duplicates. Furthermore, a knife-scratch test, based on the ASTM D3359-09
standard, was performed to evaluate the adhesion between the coating and substrate [36].
The coating on the PVC substrate was cut by a knife to form multiple grid shapes, followed
by a quick-stripping experiment using 3M tape to observe the peeling state of the coating
on the small squares, and then determined the adhesion classification according to the
ASTM D3359-09 [37].

2.6. Characteristics of Anti-Oil Adhesion Property of Coating

Testing of the underwater anti-adhesive behavior of the coating was carried out in a
square channel filled with water. The coating was fixed on triangle brackets at an inclination
of 30 degrees, and for visual observation, the coatings were applied to the glass sheet and
white paper was placed as a background. Then, crude oil was dripped evenly onto the
coating and the state of the oil drops on the coating surface was recorded by a camera
(ISO: 200, exposure time: 1/60 s). In addition, to quantitatively measure the adhesion of
oil stain to the coating’s surface, n-hexane was also used as a model stain to evaluate the
adhesion force on these coatings. When testing, the cantilever containing the oil drops was
adjusted to a suitable position, then moved downward by 3 mm at a constant speed, and
finally retuned upward to its original equilibrium position. The mass change of the oil
stain on the cantilever was recorded by the microbalance (DataPhysics Instruments TCAT
11, DataPhysics Instruments GmbH,·Raiffeisenstraße, Filderstadt, Germany) during the
entire process, and droplets wiped from the coating surface was used to express adhesion
to the contact surface.
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2.7. The Resistance for Protein Settlement of Coating

The FITC-BSA was adopted for the protein adsorption test. Prior to testing, these
coatings were cut into 1 × 1 cm2 pieces and immersed in PBS (pH = 7.4) for 4 h to
achieve swelling equilibrium. Subsequently, the coatings were dried with filter paper and
transferred into small vials to which 5 mL FITC-BSA (0.2 mg/mL) solution was added.
The vials were incubated in the dark for 4 h at 37 ◦C to avoid the fluorescence quenching
of FITC-BSA. After adsorption, the samples were rinsed with PBS three times to remove
the non-adhered protein. The adsorption behavior of the proteins was inspected by a laser
scanning confocal microscope (LSCM, Olympus, FV1200, magnification 10×) under the
standard conditions (excitation wavelength, exposure intensity, contrast, brightness). The
average fluorescence intensity emitted by the adsorbed FITC-BSA was calculated by the
software Image J (2 × 2.1.4.6 ud4) according to the literature [38]. In short, all images
were converted into gray-scale images, and the average gray values of the images were
calculated by the software Image J, and the average number of gray values over ten images
was regarded as the amount of protein adsorption.

2.8. The Resistance for Marine Algae of Coating

Testing of the coatings’ anti-biofouling performance was performed by employing
two kinds of marine algae in laboratory conditions. The protocols of this assessment
are shown in our previous research [39]. In short, the algal density of the suspension
was constant, at 5 × 106/cm3. The samples were cut into blocks (area of 1 × 1 cm2) and
placed individually in Petri dishes. Subsequently, 6 mL of algae suspension was poured
into each dish. After 24 h incubation in an incubator, fluorescence images were acquired
by microscope to determine the number of attached algae. Ten fields of view, each at
0.14 mm2, were captured for each sample, and the average densities were regarded as the
algal quantities adhered to the surfaces.

2.9. The Marine Field Test of Coating

Marine are typical fouling environment due to their diversity of fouling organisms
and the biofouling are detrimental to devices in marine, as they cause severe corrosion
due to the changes in temperature, salinity and pH of sea water caused by ocean current
movement. To comprehensively inspect the antifouling capacity and the mechanical
stability of the coatings under realistic circumstances, marine field tests were performed at
Daya Bay Marine Biology Research Station, Chinese Academy of Sciences, in April 2021,
for 15 days. The temperature of the seawater ranged 25 ◦C from 28 ◦C, the salinity was
below 35‰, and there was no large fluctuation in temperature or salinity. The samples
(15 cm × 15 cm × 5 mm) were applied to PVC sheets without any pretreatment, and the
edges of the samples were sealed with a mixture of paraffin and rosin (mass ratio 1:1). For
testing, the samples were immersed in seawater at a depth of approximately 2–3 m. After
15 days, the coated panels were retrieved and their antifouling properties assessed, after
washing with seawater.

3. Results and Discussion
3.1. The Physicochemical Properties of the Coatings

Surface wettability is a crucial physicochemical property indicating the interaction
between coating and a surface-contact liquid, and, furthermore, determined the contact
state between the coating and a fouling substance by changing the swelling performance of
its surface in a seawater environment. The wettability of the coating was evaluated using
contact angle (CA), as shown in Figure 2a. After being wetted with dropped water for 5 s,
the CA was captured. The CA of the PVB coating was 88◦, and them of other coatings
was 70◦, 62◦ and 38◦, with the increase of the zwitterionic compound TPAPS. Additionally,
immersion testing of the coatings for different durations was conducted. As Figure S2
shows, the CA of pure PVB was almost unchanged throughout the test. For the PVB-10%
TPAPS and PVB-20% TPAPS, swelling equilibrium was reached after immersion in water
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for three days, after which CA remained constant. The CA of PVB-30% TPAPS continued
to decrease; after three days, many wrinkles were present and contact angle could not be
measured. These results indicated that the introduction of zwitterions into the PVB chain
effectively improved the wetting ability of the coating and promoted the formation of a
stable hydration layer, indicating a strong antifouling ability due to the hydration entropy
effect. In addition, the quality of the PVB coating, modified by TPAPS, was studied through
its thermal stability, as shown in Figure 2b. The PVB and TPAPS coatings showed only
one peak on their DTG curves, at 394 ◦C and 268 ◦C, respectively. For the PVB-10% TPAPS
coating, there was only one maximum weight-loss rate. For PVB-20% TPAPS and PVB-30%
TPAPS, there were two peaks of weight-loss rate, between 268 ◦C and 394 ◦C. In addition,
the decomposition temperature gradually decreased from 350 ◦C to 300 ◦C along with
the increase in TPAPS, and the corresponding residual mass of the coatings also slightly
increased (Figure S3). These results indicate that TPAPS was successfully integrated into
the PVB matrix.

Figure 2. The surface wettability and thermal stability properties of PVB-X% TPAPS. (a) Water-droplet
contact angles of the coatings; insets are corresponding images. (b) The derivative thermogravimetric
(DTG) curves of the coatings.

As Figure 3a shows, when TPAPS was introduced into the PVB chain, the characteristic
stretching vibration peak at 3540 cm−1 of its hydroxyl group disappeared and a stretching
vibration peak at 3450 cm−1 and a bending vibration peak at 1630 cm−1 of its amino group
could be observed. Meanwhile, with the increase of TPAPS, the characteristic absorption
peaks (1170 cm−1, 1040 cm−1) of the S = O bond became more apparent. Importantly, the
characteristic absorption peak (1700 cm−1) of the carbonyl group had tended to shift to low-
wavenumber regions and the absorption intensity was increased, which are attributed to the
fact that the addition of the zwitterion promoted association between molecules, resulting
in the decrease of the intramolecular force constant and the increase of the molecular
vibration dipole moment of the carbonyl group [40]. Furthermore, XPS spectroscopy was
also applied to characterize surface element changes (Figure 3b–d). After integrating
TPAPS to the PVB network, the characteristic absorption peaks of Si 2p and S 2p affiliated
with TPAPS appeared in the full spectrum of the XPS, which can be more clearly observed
from their fine spectra in Figure 3c–d.
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Figure 3. Analysis of the surface chemical composition of PVB-X% TPAPS coatings. (a) The FTIR
spectrum, (b) the XPS full spectrum and fine spectrum of characteristic elements Si 2p (c) and S 2p
(d), respectively.

Considering the coating properties are not only determined by the chemical compo-
sition, but also subject to the microstructure, the surface morphology of the coating was
inspected. As shown in Figure 4a,b, all the coating surfaces and section area were smooth
without any wrinkles and apparent defect, which indicated that the zwitterionic compound
TPAPS were well compatible with the PVB polymer network. Therefore, the compromise of
other functional properties of the coatings caused by the unintended local phase separation
was effectively avoided, such as of the mechanical properties and optical transmittance [27].
As illustrated in the three-dimensional profile images in Figure 4c, the surface roughness of
the coatings gradually increased from 230 nm to 430 nm with the increase of TPAPS. These
results were consistent with the discussion of previous surface wettability.
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Figure 4. Characterization of surface morphology and roughness of PVB-X% TPAPS coatings. The
SEM images of surface (a,b) section morphology, (c) typical three-dimensional contour height images
of the coating surfaces for (1) PVB, (2) PVB-10% TPAPS, (3) PVB-20% TPAPS, (4) PVB-30% TPAPS
and their corresponding roughness, respectively.

3.2. The Mechanical Properties of Coating

The mechanical properties of the coating were characterized by tensile tests. The
results show that the PVB coating possessed the lowest elongation and the strongest
breaking strength, and there was no obvious yield process. Interestingly, when the TPAPS
content exceeded 20%, obvious yield and necking process emerged in the stress–strain
curves. Meanwhile, with the increase of TPAPS, the breaking strength and yield strength of
the coating first grew and then shrunk, and the corresponding elastic modulus continuously
decreased. However, compared with the counterparts of the PVB coating, the break
elongation kept increasing, from 8% for the PVB-10%TPAPS to 22% for the PVB-30%TPAPS
sample (Figure 5a,b). These results were caused by the fact that zwitterionic TPAPS bonds
to the PVB polymer network in a silicon–oxygen bond, and the PVB polymer networks had
sufficient flexibility to develop an almost perfect homogeneous distribution of the internal
structure. The previous surface morphology characterization also has provided favorable
support for this conclusion. In addition, the interface adhesive ability of the coatings was
measured according to the standard ASTM d3359, in which the standard operating method
and the grade-level by which to value the extent of the adhesion of the coating were
described. For the standard operating method, grade 5B indicates the strongest adhesion
to a substrate and 0B means the poorest adhesion [41]. As shown in Figure 5c, for PVB
and PVB-10%TPAPS coatings, the intersection of the incision was completely smooth after
testing; the small grid did not fall off, and the remaining coated parts even withstood
quickly peeling 3 M tape from it. As a result, their corresponding adhesive grades were
5B, based on the ASTM d3359. While for the PVB-20%TPAPS and PVB-30%TPAPS, in
whose peel tests only a small amount of coating peeled off, their adhesive grade was 4B
(Figure 5d). These test results demonstrate that the coating modified with zwitterionic
TPAPS possessed good adhesive capability to their substrates and provide a promising
prospect for practical application.
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Figure 5. The mechanical properties and adhesion determinations of the coatings by a cross-cut test.
(a) The stress–strain curves and (b) their corresponding elastic modulus. (c) Digital photographs of
the PVB-10%TPAPS coating before and after peeling with 3M tape, the bottom right of the image is
the microscope photo of the grid. (d) Corresponding statistical chart of the adhesion classification of
PVB-X% TPAPS coatings.

3.3. The Light Transmission Properties of Coating

The high transparency for underwater detection equipment is necessary, due to its
service behavior. Therefore, the transmittance of the coating applied to a glass sheet
with high transparency was measured by a UV photometer (Figure 6). Obviously, in
the visible light region (400–800 nm), compared with the original or PVB-only coated
plates, the transmittances of the PVB-X% TPAPS coatings were slightly reduced, but they
all maintained a transmittance above 90%, and were nearly the same as the primitive
glass slide (92%) (Figure 6a). To further determine the water resistance and stability of
the coating, the change in light transmittance of the coating before and after immersion
in water was explored as well. As shown in Figure 6b, the PVB-30%TPAPS coating has
apparently swelled and partially turned white after having soaked in water for 7 days,
inducing a blurry background. Although for the other coatings (PVB-10%TPAPS and
PVB-10%TPAPS), transmittance saw a slight decline, they remained in their initial state,
and the characters written to the background behind the coating was still legible; these
results indicate that very good light transmittance and water resistance of the coatings was
achieved by adjusting their TPAPS content.



Coatings 2021, 11, 1164 11 of 17

Figure 6. Optical transmittances of the PVB-X% TPAPS coatings. (a) Transmission curve of visible
light (400–800 nm) compared with the glass slide and (b) photographs of coating before and after
soaked in water for 7 days.

3.4. The Anti-Oil-Adhesion Properties of the Coatings

Due to tanker transportation accidents or oil leakage from offshore platforms, oil
contamination has been a serious problem for marine equipment. The two representative
oil stains were used to study their adhesion behavior on the surfaces of the coatings. As the
demonstration in Figure 7a,b, for the pure-PVB coating, the crude oil flowed in a stream,
and there was a large amount of residual crude oil along the flow path. When the coating
was removed from the water tanker, serious contamination on the coating’s surface was
obvious. However, for PVB-20% TPAPS, the crude oil continuously rolled down, and there
was almost no crude oil residual on the surface (Figure 7c,d). On the other hands, n-hexane
measurements were taken to accurately assess its adhesion to the coating surface, due to
its lower surface tension and susceptibility to oil stain (Figure 7e–g). For the PVB coating,
when the n-hexane droplets reached its surface, it vibrated violently, hence, in the curve, a
large jump emerges. While the oil droplets receded after full exposure, some liquid residue
remained on the substrate (inset of Figure 7e), which indicated that the adhesion of the
n-hexane droplet to the coating was greater than its cohesive energy, therefore adhesion
force of the n-hexane to the PVB coating was invalid. However, for the other coatings, when
the n-hexane was completely wiped from the surfaces, no residue remained. Importantly,
the observed adhesion force of n-hexane to the coatings decreased with the increase of
TPAPS (Figure 7g), which was mainly attributed to the gradually improved hydration
ability it provided. These results indicate that TPAPS can effectively decrease oil’s adhesion
to a PVB coating, therefore, more practical applications of the PVB-X% TPAPS beyond its
efficacy in light transmittance coating can be expected.
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Figure 7. The anti-contamination properties of the PVB-X% TPAPS coatings. Selected snapshots show the crude oil
impinging on the coated surfaces for the PVB coating (a) and the PVB-20% TPAPS coating (b) at various times; the optical
photographs of the PVB (c) and PVB-20% TPAPS (d) were taken from the water tank when the tests had finished; the typical
underwater adhesive curves of the PVB coating (e) and the PVB-20% TPAPS coating; (f) the statistical adhesive forces of
n-hexane on the coatings (g), the insets illustrate the oil-drop state at different time periods.

3.5. The Resistance Capacities of the Coatings to Proteins

When the test surfaces were immersed in a marine environment, biofouling generally
occurred by the formation of a condition film in seconds or minutes, in which protein
adsorption was closely involved. Afterwards, this quick propagation and aggregation of
bacteria, algae and other microorganisms caused irreversible macro biofouling, which is
the reason that resistance to proteins is of such great significance for antifouling coatings.
Here, the extensively used FITC-BSA was chosen as a model protein to investigate the
effect of TPAPS content in a PVB coating on its resistance to protein adsorption. As shown
in Figure 8, stronger fluorescence implied more protein adsorption at the surfaces. The
experimental results show that the anti-protein adsorption ability of the PVB coating was
significantly enhanced by introducing TPAPS, as the corresponding fluorescence intensity
decreased from 155 to 50. Additionally, increasing the amount of TPAPS in the coating
also increasingly augmented its protein adsorption-restraining capacity (Figure 8), which
is attributed to the strong hydration ability induced by the high-density molecular water
layer on the solid surface. The TPAPS-modified PVB coating showed strong ability in
reducing protein adsorption on the surface [42].
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Figure 8. The representative fluorescent images of (a) PVB, (b) PVB-10%TPAPS, (c) PVB-20%TPAPS
and (d) PVB-30%TPAPS after the adsorption of FITC-BSA. (e) The statistical fluorescence intensity for
PVB-X%TPAPS coatings calculated from corresponding fluorescent images. Error bars represented
the standard deviation of six independent duplicates.

3.6. The Antifouling Capacity for Marine Algae of Coating

After the protein adsorption test, anti-algae-adhesion tests were conducted, employing
two kinds of typical fouling algae. It was apparent that both algae caused sever fouling
of the PVB coating, though the number of adhered algae was notably diminished for the
coating containing zwitterionic compound TPAPS (Figure 9a,b). According to the statistical
chart, for Porphyridium sp., adhesion density diminished from 5140/mm2, for PVB-only,
to 60/mm2 for PVB-30% TPAPS. Importantly, compared with the PVB control sample,
the corresponding antifouling ratios were all above 96% for the coatings with TPAPS.
Moreover, for the diatom Navicula sp., the adhesion density decreased from 1420/mm2 for
the PVB-only coating to 90/mm2 for the PVB-30%TPAPS coating, and the corresponding
antifouling ratios were 82%, 93% and 94% for PVB-10%TPAPS, PVB-20%TPAPS and PVB-
30%TPAPS coatings, respectively (Figure 9c,d). For both attachment and separation of cells
from solid surfaces, the interaction between them is defined by various types of surface
forces, including van der Waals, structural, electrostatic [43]. Among of them, steric forces
were the important component, here, for defining the proneness of cells to adhesion [44].
Interestingly, although the surface roughness (430 nm) of PVB-30%TPAPS was the greatest,
it also showed the strongest resistance to algae, which was attributed to the fact that the
roughness was much smaller than the size of the algae cells. These results demonstrate
that a proper content of TPAPS can significantly improve the anti-algae-adhesion capacity
of a PVB coating.



Coatings 2021, 11, 1164 14 of 17

Figure 9. Anti-algae-adhesion performance of PVB-X%TPAPS coatings. The typical fluorescence
microscopy images of the adhered Porphyridium sp. (a) and Navicula sp. (b) for PVB (1), PVB-
10%TPAPS (2), PVB-20%TPAPS (3) and PVB-30%TPAPS (4) after 24 h incubation. The statistical
charts of adhesive algae densities and their antifouling ratios (the blue stars) for Porphyridium sp.
(c) and Navicula sp. (d), respectively.

3.7. The Marine Field Test of the Coatings

Actual marine field testing is a more visual and effective method for evaluating both
the antifouling performance and the stability of the antifouling materials. The typical
fouling organism, the barnacle, is commonly used to evaluate the antifouling performance
of hanging plates, due to their special adherence properties [45]. The marine field tests of
our PVB coatings modified with TPAPS, were conducted using barnacles, and the number
of adhered barnacles was measured. As Figure 10a shown, for the PVB coating, numerous
barnacle larvae had adhered to the surface after 15 days of immersion; it is reasonable
to assume that serious macro biofouling would, in a real-world setting, happen quickly.
Whereas TPAPS-modified coatings effectively prohibited the adhesion of barnacles. As
our statistics show in Figure 10b, the number of adhered barnacles were 72, 45, 12, 7 for
PVB, PVB-10% TPAPS, PVB-20% TPAPS, PVB-30% TPAPS, respectively. Moreover, the
background behind the coating was still clear after the sludge was removed, which also
indicated that the coating had good mechanical stability and transparency. Consequently,
the marine field experiment shows good potential for the application of TRAPS-modified
coatings in maritime detection.
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Figure 10. Antifouling test of PVB-X%TPAPS, measuring barnacle settlement under the marine field.
(a) Photographs of the actual marine antifouling performance (without cleaning), partially apparent
barnacles were marked with red circles in the graphs. (b) A chart showing the number of adhered
barnacles. The plate size was 15 cm × 15 cm × 5 mm in this test.

4. Conclusions

In this research, a novel zwitterionic compound (TPAPS) with high hydration ability
was synthesized and integrated into PVB-polymer network, engineered at the molecu-
lar scale to obtain a highly light-transmitting coating with excellent fouling-resistance
properties. Anti-oil adhesion, anti-protein adsorption and marine algae fouling-resistance
experiments showed that the as-prepared coating with an appropriate amount of TPAPS
(20% mass content) could significantly reduce the contamination of oil stains and marine
biofouling on the coated surfaces. Interestingly, the high transparency of visible light was
achieved due to the homogenous structure, robust mechanical properties and excellent
water resistance displayed by our coatings. More importantly, the superior antifouling
ability of the PVB coatings containing TPAPS was indicated in the data, and their excellent
comprehensive properties were further supported by the marine field test. Considering
the facile preparation, excellent mechanical properties, strong antifouling ability and high
transparency of the coating, this research has provided an attractive alternative material
for marine detection applications.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/coatings11101164/s1, Figure S1: The high-resolution mass spectrum of TPAPS. Figure S2:
Contact angles of coatings under different immersion time, Figure S3: The thermogravimetric curve
of PVB-X% TPAPS coatings.
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