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Abstract: This article describes a method of measurement of the current-to-probe voltage characteris-
tic curve of a Langmuir electrostatic probe immersed in a plasma characterized by a low electron
temperature that is only one order of magnitude higher than room temperature. These plasmas are
widely used in industrial processes related to surface technology, polymers, cleaning, nanostructures,
etc. The measurement method complies with the strict requirements to perform representative
plasma diagnosis, particularly in the ion saturation zone when the probe is polarized much more
negatively that the potential of the plasma bulk surrounding the probe and allows to diagnose
the plasma very quickly and locally, making it possible to better monitor and control the plasma
discharge uniformity and time drift. The requirements for the Langmuir probe design, the data
acquisition and data treatment are thoroughly explained and their influence on the measurement
method is also described. Subsequently, the article describes different diagnostic methods of the
magnitudes that characterize the plasma, based on theoretical models of that characteristic curve.
Each of these methods is applied to different zones of the measured characteristic curve, the obtained
results being quite similar, which guarantees the quality of the measurements. The advantages and
disadvantages of each method are discussed. A series of measurements of the plasma density for
different plasma conditions shows that the method is sensitive enough that the temperature of the
ions needs to be taken into account in the data processing. Finally, a Virtual Instrument is included in
the LabView environment that performs the diagnosis process with sufficient speed and precision,
which allows the scientist to control the parameters that characterize the plasma to increase the
quality and performance of the industrial processes in which the plasma diagnosis is to be used.
The Virtual Instrument can be downloaded for free from a link that is included, in order to be easily
adapted to the usual devices in a plasma laboratory.

Keywords: plasma diagnosis; Langmuir probe; surface technology

1. Introduction

Plasmas are increasingly used in many different industrial processes, such as those
related to surface technology, such as plasma-assisted chemical vapor deposition, ion
implantation, etching, surface coating, thin films, nanotechnology, etc. [1–7]. Of the many
kinds of plasma used in these processes, low-temperature electronic plasmas are the most
common. These plasmas present a unique combination of very high chemical activity
and high capability for processing at or near room temperature, with the neutral gas
temperature, Tneutral , below 100 ◦C. Thus, this combination is ideal for processing a wide
variety of materials sensitive to temperature, such as semiconductors, polymers, textiles,
etc. [8–13]. In the process, the cold plasma modifies only the surface properties of materials,
without affecting or degrading the bulk properties. Therefore, plasma can be used to clean
a surface, to remove or erode material from the surface, or to deposit a thin film on it. These
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cold plasmas are produced by electrical discharges of a direct current or an alternating
current, in gases at low pressure (less than 100 Pa). Plasma densities, ne ≈ n+, are obtained
in the range between 1014 and 1017 m−3, ne and n+ being the electron density and positive
ion density, respectively, which must be equal as a consequence of the quasineutrality
condition in the plasma bulk. Electron temperature values, Te, are obtained between
0.1 and 10 eV (between 103 and 105 K). The positive ion temperature is similar to that of the
neutral gas [7,14–23], since the mean free path of the ion-neutral collision is of the order of
1 mm, this type of collision being the most frequent in this type of discharges and the mean
free paths corresponding to the other possible collisions among neutrals, electrons and ions
being of the order of magnitude of the characteristic size of the discharge, 0.1 m [3,24].

Plasma diagnosis, consisting in the measurement of the physical magnitudes that
characterize the plasma, is essential in the technological processes discussed, as it allows to
control these processes to optimize results and enhance its performance.

Among the different plasma diagnosis methods, the method based on the Lang-
muir electrostatic probes is one of the most used diagnostic methods in all types of
plasmas [14,15,21,23,25–37]. Langmuir himself developed the first diagnostic procedures
with Langmuir electrostatic probes in 1929. It consists in introducing a cylindrical (although
it can also be flat or spherical) conductor or probe into the plasma and measuring its I-V
characteristic curve, that is, the current collected by the probe as a function of the potential
to which it is subjected. This method has several advantages:

• The method allows, from the I-V characteristic curve, the diagnosis of multiple
quantities characterizing the plasma, such as the following: the potential of the plasma,
Vplasma; the floating potential, Vf loat, to which the conductor is polarized when it is in
equilibrium with the plasma, so that the net current collected by the probe is zero; the
density and temperature of the different species that contain in the plasma, electrons
and positive ions, ne, n+, Te, T+; the electron energy distribution function (EEDF).

• The method provides different values of several of these magnitudes depending on
the zone of the I-V characteristic curve and the theory backing the calculations, which
allows the results to be compared to ensure their accuracy and quality.

• The Langmuir probe allows performing local measurements, that is, measurements
in the immersion zone of the probe, of the parameters described above. This last
advantage is very important because it distinguishes this diagnostic method from
others that do not provide a local measurement. A drawback of this diagnostic method
that could be claimed would be that the probe itself, when immersed in the plasma,
causes a disturbance in the plasma. However, as shown in Section 3.3, the ion sheath,
which, under certain conditions, forms around the probe, shields the plasma from this
perturbation, such that it is negligible as we move away a few millimeters from the
probe [7,14–17,22,23,35,36,38].

In this work, different methods for the diagnosis of cold plasmas using Langmuir
electrostatic probes are introduced. In general, this method of diagnosis is based on the
comparison between the experimental measurements of the I-V characteristic curve of a
Langmuir electrostatic probe, cylindrical in this case, immersed in the plasma (IVCP) and
various theoretical models of the ion sheath surrounding the probe. Indeed, depending
on the conditions of the plasma and the zone of the IVCP, there are different theoretical
models that allow the experimentalist to correctly diagnose the plasma. These models
can be grouped into two groups with two classical limit theories used to describe the
intensity of the current collected by the Langmuir electrostatic probe as a function of its
polarization potential:

• The orbital limited motion theory, which assumes that charged particles, ions or
electrons, fall towards the probe following orbiting trajectories. It can be applied
when the mean free paths of the plasma particles involved are long, compared to the
scale of the sheath, so that they have little influence on the trajectories, as it is always
the case for electrons. It was developed by Mott-Smith and Langmuir in 1920 using
conservation laws for the particles in the sheath and it is precise enough to model
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the electron current, assuming that the ion temperature is negligible compared to the
electron temperature, β = T+/Te = 0 [39]. Bernstein and Rabinowitz extended the
theory to take into account the potential profile assuming monoenergetic particles [40].
Finally, Laframboise solved the Bernstein–Rabinowitz model by assuming that the
particles follow a Maxwellian distribution function [41].

• The theory of radial movement of the particles towards the probe. It was developed
by Allen, Boyd and Reynolds (ABR) for spherical probes [42] and completed by Chen
for cylindrical probes to model the positive ion current collected by the probe [43].
It assumes that, after each ion–neutral collision, which, as stated before, is the only
type of collision to be considered, the ion loses all its kinetic energy; therefore, after
the last collision, it falls towards the probe in a radial movement. Initially, this theory
did not consider the thermal movement of the ions, that is, it assumed β = 0, and was
extended by the authors of this article for the case of β 6= 0 [15,44–50].

It is interesting to note that both classical limit theories, OML and ABR, assume the
EEDF to be compatible with thermodynamical equilibrium for the electrons and a single
electron temperature value, assumption that can be verified given that the EEDF can be
measured from the IVCP.

The article outline is as follows: in Section 2, the experimental device is described, in
which the discharge is produced and on which the measurements described in this article
are performed. The IVCP measurement method is also described. In Section 3, the different
diagnostic methods used in the different zones of the IVCP are described, as well as the
advantages and disadvantages of each of them, and the results that were obtained are
compared. Finally, Section 4 comprises the conclusions that can be drawn from this work.

2. Experimental Discharge Device and Measurement Method of the IVCP

In this section, a method for measuring the IVCP, that is used throughout the article and that
has been widely used by the authors in other works, is presented [14,15,17,18,22,23,36,37,49,51].

Figure 1 illustrates the experimental discharge device and the IVCP measurement
device. The discharge was produced in a Pyrex glass cylinder of 31 cm in diameter and
40 cm in height, in which two circular electrodes of 8 cm in diameter were arranged and
connected to a very stable source of high voltage (HV) configured as direct current source
with an output voltage in the range Vd(V) ∈ [0, 2000] and an output current in the range
Id(mA) ∈ [0, 50]. The ground was the same for all devices and the metallic lids of the
Pyrex glass cylinder, connected to the ground of the laboratory. The pressure of the gas
used in the discharge, p ≤ 100 Pa, was controlled by a mass flow regulator.

2.1. Langmuir Probe Design

The manufacture of the probe is an important issue, since a bad design of the probe
can lead to bad measurements of the IVCP and, therefore, to erroneous diagnoses of the
parameters that characterize the plasma. Figure 2a illustrates a schematic of the probe
used in this article. It was formed by a cylinder of tungsten of 6 mm in length and
0.1 mm in radius. Tungsten was chosen to ensure that sputtering or secondary electron
emission phenomena that can occur when charged particles impinge on the probe were
negligible [7,14,16,34].

Both the size of the probe and the size of its container were carefully chosen so that
the required conditions for a good design of the probe were met [22,51,52]. In order for the
probe to behave as cylindrical, then rp, rc � L; in order for the thickness of the container
sheath to be negligible compared to the size of the probe, then λD � L; in order for
the probe to be much smaller than the size of the discharge so that the measurement is
close to being point-like and does not disturb the discharge appreciably, then L� λe. In
these inequalities, rp and rc are the radius of the probe and of its container, respectively;

L is the length of the probe (see Figure 2b); λD =
√

ε0kBTe
e2ne

is the Debye length, which is
the characteristic size of the sheath where e is the charge of the electron, ε0 the vacuum
permittivity and kB the Boltzmann constant; λe is the mean free path of electron–electron
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collisions, comparable to the size of the discharge. It should be noted, in both figures,
that, at the end of the container, the probe is guided to avoid touching it, because it
would increase the effective surface of the probe, since, over the surface of the container,
particles extracted from the electrodes of the discharge, as well as other impurities, may
be deposited.

Finally, it is noted that the probe is located in the diffuse afterglow plasma zone where
the value of Te is only one order higher than T+, conditions in which the study of the
influence of β = T+/Te 6= 0 is possible, a situation that is important to be taken into
account both in the diagnosis and in the technological processes in which this type of
plasmas is normally used [7–11,14,18,22,23,49,52].
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2.2. Analogue Digital Converter Card and Controller CPU

Figure 1 also illustrates the IVCP measurement device. The whole process is controlled
by a Virtual Instrument (VI) programmed in the LabView environment [14,23,36]. When
the VI is activated, it sends the desired Id in the HV source and measures the pressure, p,
of the gas in the discharge. Both variables characterize the discharge conditions in which
the IVCP is to be measured. Subsequently, the VI sends the Analogue Digital Converter
Card (A/DCC) the command to generate a TTL (Transistor–Transistor Logic) pulse that
synchronizes two processes: (1) the function generator emits a sawtooth potential pulse,
amplified by the constant gain amplifier and connected to the probe through the resistor
RS; (2) the A/DCC begins to measure simultaneously channels Ch1 and Ch2. However,
the polarization values of the probe are usually higher than those allowed by the A/DCC
conversion channels of the card (20 V) and that would break the converter card. To
adapt these values to the input range of the converter card, a known gain voltage divider,
Gan#= (1 + RH#/RL#), is placed at the input of each channel. With these measured
values, VCh#, RS, RH#, RL# and Gan#, the IVCP can be reconstructed by means of the
following relationships:

V = VCh1·Gan1, (1)

I =
VCh1
RL1

+

(
VCh1·Gan1−VCh2·Gan2

RS

)
, (2)

where V is the polarization potential of the probe and I is the corresponding current
collected by the probe. Regarding this measurement process, it is necessary to make a
series of comments:

• In order to increase the measurement accuracy of the IVCP, the measurement of
channels Ch1 and Ch2, VCh#, should be performed with the greater sensitivity allowed
by the A/DCC converter card—16 bit, in our case.

• For the same reason, the A/DCC channels must be carefully calibrated and their zero
error must be compensated to ensure maximum sensitivity.

• Likewise, the measurements of channels Ch1 and Ch2 must be performed simul-
taneously, since the polarizing potential from the amplified sawtooth pulse varies
with time.

• The sawtooth pulse varies from an initial potential of +2 V to the minimum value of
−2 V and is amplified by a constant gain amplifier (×20), thereby achieving a linear
polarization ramp of the probe between +40 V and −40 V, although the potential
pulse sawtooth sweep can be varied to encompass other potential intervals. The
number of data measured by both channels, Ch1 and Ch2, of the A/DCC and its
sampling rate must correspond to the width of the constant slope part of the sawtooth
pulse. In our case, 2000 data are measured simultaneously by each channel with a
sampling rate fsampling = 5·105 samples/s; therefore, the probe polarization ramp
must have a duration somewhat greater than 4·10−3 s, so that, during the measurement
process, the peak of the sawtooth signal is never reached, which would make the probe
polarization nonlinear. This would unnecessarily complicate the data smoothing and
data processing algorithm.

• The results using an increasing sawtooth sweep are the same as those obtained us-
ing a decreasing sawtooth sweep. However, given that the state of rest between
measurements is +40 V, as explained in Section 2.3, the decreasing sawtooth sweep
was used.

• Voltage dividers were used to adapt the potential values to those in the input range
of the A/DCC, since, as they are passive elements in the circuit, they barely con-
tribute to increasing the noise of the measurement. In our case, RH# ≈ 1 MΩ and
RL# ≈ 0.1 MΩ; therefore, the corresponding gain values were Gan# ≈ 11.

• In our case, RS ≈ 10 kΩ. These resistance values, RH#, RL# and RS, must be measured
as accurately as possible, because these values are used directly in the formulas to
obtain the IVCP.
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• As it is shown in Section 3.2, it is essential to minimize the noise inherent in the
measurement process, so all cables were coaxial with the shielding of the cables
connected to ground, with BNC-type connections. Likewise, all the circuits illustrated
in Figure 1 were inside a metal box which was also connected to ground.

2.3. Considerations on the Possible Distorsions on the IVCP

The IVCP may be subject to several distortions due to the measurement uncertainty
that may arise from the physics of the phenomena involved in the measurement process.
The two most important conditions that have to be taken into account in the IVCP measure-
ment are the time involved in the measurement [14,36,51] and the possible contamination
of the surface of the probe [53].

It is of utmost importance that the measurement of the IVCP is as fast as possi-
ble. Therefore, it should be conducted with the highest sampling rate available, 5·105

samples/s, in our case. This importance is due to the fact that the current collected by
the probe is very different depending on the zone of the IVCP being measured, with
high intensities in the range of high positive polarization potentials; these, as shown in
Section 3.1, correspond to the current due to the electrons and low intensity in the range of
negative polarization potentials, which correspond to the current due to the positive ions
of the discharge. The different magnitudes of the current collected by the probe cause the
probe temperature to vary throughout the IVCP measurement process. The Helmholtz
potential varies with temperature and constitutes a potential barrier between the probe
surface and the sheath [14,21,23,36,38,51,54]; this would imply that this potential barrier
would be different in each zone of the IVCP, thus altering the curvature thereof and causing
a hysteresis. In other words, the IVCP obtained for an increasing polarizing potential
ramp, heating the probe, would not be the same as the IVCP obtained if the polarizing
potential sweep was from a high to a low potential, cooling the probe (see Figure 3). As
shown in Section 3.2, this alteration of the curvature would cause a great distortion in the
measurement the EEDF. The way to avoid this problem is to measure very quickly, 4 ms, in
our case, so that the probe temperature hardly changes during the measurement process.
It should be remembered that the probe is immersed in plasma and neutral gas at low
pressure; therefore, the heat exchange flux is very small, the radiation process being the
dominating one. Thus, the characteristic times of temperature change of the probe were
verified to be greater than 0.1 s, a value much higher than the 4 ms necessary to measure
the IVCP. This way, we could ensure that the Helmholtz potential was constant during
the measurement and caused a negligible displacement or distortion of the polarization
potential of the probe that would have hardly affected the results. As shown in Section 3.2,
there is a criterion that ensures the correctness of the measurement regarding this issue.
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Hysteresis can also occur, as well as a diminution of the collected current, if the
surface of the probe is contaminated with impurities, due to debris removed from the
electrodes and other impurities, which also alter the Helmholtz potential on the surface
of the probe. This inevitably occurs after a few minutes. Therefore, before performing
the IVCP measurement, it is highly recommended to decontaminate the probe. For this
reason, it is recommended to polarize the probe with a high potential for a few seconds
before carrying out a measurement of the IVCP, so that the high energy electrons impinging
on the probe heat it, eliminating such impurities. Therefore, in the state of rest between
measurements, our system polarized the probe to +40 V. This implies that the IVCP was
measured starting from a high potential using a decreasing ramp. It was verified that the
results obtained this way are optimal.

2.4. Locality of the Results

As stated in the introduction, one of the advantages of the Langmuir probe diagnosis
method is that the measurements are local. The design of the measurement device can be
used to better characterize the discharge. Since A/D converter cards normally have several
channels—eight, in our case—with the same card, the VI can measure the IVCP of seven
different probes, using channels 1–7, each located at a different point on the discharge. The
eighth channel would be reserved for measuring the polarization ramp of these probes, as
Ch2 does in Figure 1, since it is common to all of them. This measurement can be carried out
simultaneously in the seven probes or sequentially, according to the requirements that may
arise in a particular application. This facilitates, without increasing the cost, the study of
plasma uniformity and its spatial variations, which is of utmost importance in large surface
technology devices. Likewise, temporal variations or drift processes of the parameters
that characterize the plasma can be monitored due to the speed of the entire measurement
process, which is less than one second, thanks to the automatization programmed in the VI.

Figure 4 illustrates an IVCP measured using the procedure described. The discharge
conditions of this example measurement were Argon Gas, p = 8.13 Pa, Id = 2.0 mA. As
already stated, the probe was located in the diffuse afterglow plasma zone of the discharge.
A summary of the measurement characteristics is included in Table 1.
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Table 1. Summary of the characteristics of the measurement process.

Characteristics of the Measurement Process

Sampling frequency 5 × 105 samples/s
Number of samples 2000 samples per channel

Duration of the measurement 4 ms
Timestep 2 µs

Average IVCP voltage step in Zone I 23.8 mV
Average IVCP voltage step in Zone II 12.0 mV
Average IVCP voltage step in Zone III 30.8 mV

Sweep starting potential +40 V
Sweep ending potential −40 V

Probe potential between measurements +40 V
A/DCC voltage range ±5 V

Precision of the digital conversion 16 bits

3. Different Diagnostic Methods Using the IVCP

Once the IVCP has been measured, different diagnosis methods for these plasmas
with lower electron temperature can be used on the obtained IVCP, as described in this
section. Initially, the simplest case is considered, namely, the plasma is made of electrons
and positive ions of a single species, although, since, similarly to the positive ion current,
the negative ion current is much smaller than that of the electrons, most of the described
diagnostic can also be applied to diagnose plasmas with negative ions, as long as electrons
remain the predominant negative species [37,48,55].

Figure 4 also serves to illustrate the scheme of one typical IVCP. As can be observed
in the figure, a typical IVCP can be divided into three zones depending on whether the
current collected by the probe is mainly due to electrons (zone I), positive ions (zone III) or a
significant mixture of both (zone II). In Figure 4, the points corresponding to the floating
potential, Vf loat, and to the plasma potential, Vplasma, are indicated.

In the following sections, the different diagnostic methods applied in each of these
zones are exposed, along with a discussion on their advantages and disadvantages.

3.1. Zone I

Zone I, for values of the polarization potential of the probe greater than Vplasma, is
called the electron saturation zone. It is characterized by the current collected by the
probe being fundamentally given by electrons, since, in this situation, these are attracted
by the probe, while the positive ions are repelled. This current has the highest values
within the IVCP. In this zone, the electrons fall towards the probe following an orbital
trajectory without any collision, since, as previously stated, the mean free path of the kinds
of collision in which electrons are involved is comparable to the characteristic size of the
discharge chamber.

It can be shown that, under these circumstances, the electron current collected by the
probe is given by the following equation [14,38,51]:

Ie(V) = −Apnee

√
kBTe

2πme

2√
π

1−
e
∣∣∣V −Vplasma

∣∣∣
kBTe


1
2

, (3)

where me is the mass of the electron and Ap is the surface of the probe. This expression
is valid for values of V > Vplasma + 2kBTe/e, so that the mathematical approximations
made are valid [38,51] and to make sure that the current collected is almost exclusively due
to electrons.

Different criteria allow us to ensure that electrons are governed by this equation
in zone I of the IVCP. First, when the I2-V curve is represented, a straight line should
be obtained, as predicted by (3) therefore, the linear correlation coefficient of the linear
regression, r, should approach unity. Figure 5 illustrates this relationship. Note that this
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figure confirms the indicated lower limit, V > Vplasma + 2kBTe/e, since it fails to follow a
linear behavior when approaching Vplasma.
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Figure 5. I2 versus V curve (black line) of zone I of the experimental IVCP illustrated in Figure 4. The
linear zone is constituted by 335 points and fits very well with a linear behavior since the correlation
coefficient of the linear regression (red line) is r = 0.9993.

Likewise, the criterion of Pilling and Carnegie [7,56] allows us to assure that, in this
zone of accelerating electron, the electrons are governed by the OML theory; it consists of
the representation of the curve d

(
log10 V

)
/d
(
log10 I

)
. Based on (3), the curve should show

a trend towards the value of 2, if the motion of the particles attracted and collected by the
probe is orbital. Figure 6 shows this representation for an experimental IVCP. As can be
seen, the curve approximates the value of 2, as indicated above.
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Thus, the first method of plasma diagnosis is found:

• The slope of the line in the I2 versus V representation allows us to directly obtain
ne(I2-V) ≈ n+.

• This method has the advantage that it directly determines ne(I2-V) in both electropos-
itive and electronegative plasmas, since the current due to negative ions is very small
compared to the electron current, so that its contribution to the zone I current is neg-
ligible. Furthermore, a precise knowledge of Vplasma is not necessary, since only the
linear zone is needed. On the other hand, it should be noted, as a disadvantage, that it
can lead to ne(I2-V) results a little lower than those actually found in plasma. This is
because the currents collected by the probe are high in magnitude and may produce a
depletion in the population of electrons in the space surrounding the probe [14,33].
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3.2. Zone II

As can be seen in Figure 4, zone II is separated from zone I by Vplasma and from zone III
by Vf loat. In zone II, the current collected by the probe is a mixture of electron current and
positive ion current that reach the probe, the current due to electrons being dominant in the
points next to Vplasma and equal to the positive ion current in Vf loat. It is called the electron
retarding zone because the potential of the probe is below the potential of the plasma,
V < Vplasma, so that the electrons headed towards the probe are slowed down and only
those with a kinetic energy higher than the potential barrier, V − Vplasma, are capable to
reach the probe. Therefore, the electron current decreases when the potential is decreased.
Positive ions behave in the opposite way, that is, they are accelerated as the polarization
potential of the probe, V, is decreased and, when V = Vf loat, the positive ion current equals
the electron current, so the net current equals zero. In zone II, electrons are in thermal
equilibrium within the electric field between the plasma and the probe, so it is assumed
that electrons follow a Maxwell–Boltzmann distribution function [7,14,23,37,38,44–49,57].
Thus, the electron current collected by the probe for potential values close to the plasma
potential, Vplasma, follows the following expression:

I = I0e
−e|V−Vplasma |

kBTe , (4)

where I0 = I
(

Vplasma

)
is the value of the current collected by the probe when V = Vplasma.

So, the representation of the log I versus V has a linear behavior, as illustrated in Figure 7,
which gives us a method of diagnosis for Te.

Figure 7. Curve ln I versus V in zone II of an experimental IVCP for the same discharge conditions
as those in Figure 4. The linear zone contains 25 points and fits very well with a linear behavior since
the correlation coefficient of the linear regression is r = 0.9994.

The slope of the ln I versus V representation allows us to obtain Te(ln I–V). The
linearity of such representation ensures the Maxwellian behavior of the electron population
in this zone.

Once Te(ln I-V) has been determined, the only physical magnitude that still has to be
diagnosed is the value of the plasma potential, to be able to establish the limit between
the two zones I and II. For these calculations, Vplasma is not necessary, since the methods
described for the diagnosis of ne(I2-V) and Te(ln I-V) only require a linear interval in
which the slope is calculated. Figure 8 illustrates a comparison between the curves I2

versus V and of ln I versus V, of the experimental IVCP from Figure 4. Both linear zones
can be observed in the curves; the change in behavior of the electrons, corresponding to
the crossing from zone I, where the electrons are accelerated towards the probe, to zone
II, where they are slowed down, can be observed. This change in behavior implies the
existence of an inflection point in the IVCP, which is where the plasma potential, Vplasma, is
located, separating the two zones.
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However, maximum possible precision in the determination of Vplasma is essential for
several reasons:

• As previously commented, it separates two zones where the electrons reaching the
surface of the probe display different behaviors;

• It allows an alternative method for the determination of ne, which is described at the
end of this subsection, given that, when the probe and the plasma have the same
potential, the electric field between them is zero and the charged particles reach the
probe by means of the mechanism of effusion;

• Finally, Vplasma is the reference potential for determining the EEDF that provides us
with a highly accurate diagnosis method for Te and ne. Indeed, it was Druyvesteyn,
in the 1930s, who demonstrated that the EEDF of a plasma can be obtained from
the IVCP of a non-concave probe immersed in the plasma, using the following
expression [14,23,36,37,51,54,58]:

[ fE(E)]E=−eVp
= − 4

Ap

√
−meVp

2e
d2 I

dVp2 , Vp ≤ 0, (5)

where Vp is the potential of the probe referred to the potential of the plasma,
Vp = V − Vplasma. In this equation, the usual approximation I = Ie is used, since
the positive ion current follows an almost linear behavior in zone II, which makes
its second derivative negligible compared to the second derivative of the electron
current [14,44–46,51]. Given that the numerical second derivative uses three points of
the IVCP, zone II of the IVCP should be measured with as many points as possible.

As shown above, to obtain the EEDF and a precise value of Vplasma, the second
derivative of the IVCP is needed, which implies a problem; the IVCP is made up of
experimental values, so its measurement is accompanied by noise, due to the uncertainty
of the measuring process, because a plasma is an inherently noisy system whose noise is
amplified by the numerical derivation process dominating the result of the derivation and
masking the derivative of the IVCP. Therefore, it is clearly necessary to filter this noise,
smoothing out the experimental IVCP before proceeding to the derivation. The methods
available for this purpose are diverse, such as, for example, the use of electronic filters and
differentiators when measuring the IVCPs and their first and second derivatives [21,54,59].
However, the use of numerical filters on the measured experimental data has given better
results. Specifically, the authors proposed a numerical method of smoothing the data from
the experimental IVCP [36,51] that has been widely referenced [25,33,60–68]. Firstly, it
should be noted that the smoothing process is performed separately on the data measured
simultaneously by channels Ch1 and Ch2 of the A/DCC from which the experimental IVCP
is obtained by applying (1) and (2). This is convenient, because the curvature of the line



Coatings 2021, 11, 1158 12 of 22

representing the data from channels Ch1 and Ch2 as a function of time is smaller than the
curvature of the IVCP, which facilitates smoothing, as shown in Figure 9.
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In fact, the data measured by channel Ch2 correspond to the linear potential ramp
polarizing the probe through RS. Therefore, these data are filtered by simply calculating
the best linear regression using least squares regression. To ensure the linearity of the set of
measured data and the corresponding smoothed linear regression, data are discarded if
the correlation coefficient of the linear regression is below a quality threshold, r < 0.9999,
which would imply a synchronization problem between the triggering of the ramp from the
function generator and the sampling of the measurements in the A/DCC. The smoothing
of the data measured by the channel Ch1 is obtained by the iterated convolution of the
data with the instrument function of the measurement system, g(x), which is assumed to
be Gaussian. The entire iterative process can be performed in a single step by using the
convolution product of the data with the function [36,51]

gn(x) =
n

∑
k=1

(
n
k

)
(−1)k+1 α√

πk
e
−α2x2

k , (6)

where n is the number of iterations and α is related to the standard deviation of the
Gaussian, σ = 1/α

√
2. Typically, it is enough, with n = 2 and α = 15, to obtain a smooth,

noiseless and derivable IVCP. Note that the convolution of channel Ch1 with the function
given by (7) smooths the signal using the neighboring points, so that the lowest α value
that allows the numerical derivation should be chosen.

Once the data measured by channels Ch1 and Ch2 have been smoothed out, the
smoothed experimental IVCP can be obtained by applying (1) and (2) and their numerical
first and second derivatives. Figures 4 and 10 illustrate those curves. It can be seen in
Figure 4 that the smoothing process was successful since the theoretical and experimental
IVCP overlap in the entire measurement interval. Similarly, Figure 10 shows the first and
second derivatives, which have a noise-free behavior. Finally, by applying the Druyvesteyn
formula (5), the EEDF is obtained. Figure 11 illustrates the EEDF and the ln

(
d2 I/dV2

p

)
versus Vp curve obtained from the IVCP from Figure 4.
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Figure 11. EEDF and ln
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)
-Vp curve obtained from the IVCP of Figure 4. Both contain

76 points. The linear zone fits very well with a linear behavior (black straight line) since the correlation
coefficient of the linear regression is r = 0.998.

These curves are very important because of the diverse information that is obtained
from them, explained now in detail as follows:

• The curve ln
(

d2 I/dV2
p

)
provides a precise value of Vplasma, as it corresponds to the

inflection point of the IVCP, that is, it is the potential at which d2 I/dV2
p = 0 (see Figure 10).

• As stated when discussing the required precision for Vplasma, this plasma potential

allows the use of an alternative method for the determination of ne

(
I
(

Vplasma

))
, since,

when the probe and the plasma have the same potential, the electric field between
them is zero and the charged particles and, in particular, the electrons, whose current
is dominant at the plasma potential, enter the probe by effusion, so that the value of
the current collected by the probe when it is polarized to the plasma potential is

I
(

Vplasma

)
= I0 =

eApnevmean

4
= eApne

√
kBTe

2πme
. (7)

This expression, assuming that the electrons follow a Maxwellian EEDF [14,36,38,51],
once Te is known by any of the methods described, allows the calculation of ne

(
I
(

Vplasma

))
,

using a zone of the characteristic different from the previously used to determine
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ne(I2-V). It should be noted that I
(

Vplasma

)
is taken from the smoothed IVCP to eliminate

the uncertainty due to experimental noise.

• The EEDF provides another way to determine the electron density of the plasma.

ne(EEDF) =
∫ ∞

0
fE(E)dE. (8)

This calculation does not rely on the plasma electrons to be governed by a Maxwellian
EEDF, in contrast with the diagnostic methods for ne discussed above.

• The EEDF also allows us to determine the electron temperature.

Te(EEDF) =
2

3kB
Emean, (9)

with
Emean =

1
ne

∫ ∞

0
E fEdE, (10)

in the case that the EEDF is Maxwellian. If the EEDF is not Maxwellian, the effective
temperature of the electrons of the plasma, Te,e f (EEDF), is defined as [21]

Te,e f (EEDF) =
2

3kB
Emean. (11)

• The values of ne(EEDF) and Te,e f (EEDF) obtained using this method are highly
accurate and, given that these values do not depend on the premise that the EEDF
is Maxwellian, these values are used as a reference for comparison with the values
obtained by other methods.

• Although, in many cases, the EEDF is Maxwellian, it is convenient to check it for
each measurement, because, as mentioned, most of the diagnostic methods presented
are only applicable for a Maxwellian EEDF. In order to compare the results, it is
necessary to study the linearity of representation of ln

(
d2 I/dV2

p

)
versus Vp given

that, when EEDF is Maxwellian, the curve plotted should approximate a linear
behavior [13,35,36,49,65]. In our case, when the correlation coefficient of the lin-
ear regression was below a threshold, r < 0.9, it was considered that the EEDF was
not Maxwellian and the corresponding IVCP was rejected because the described di-
agnostic methods could not be applied to it. In Figure 11, the straight black line is
the linear regression of the curve of ln

(
d2 I/dV2

p

)
versus Vp, showing that the EEDF

is Maxwellian.
• Similarly, d2 I/dV2

p provides a parameter that controls whether the IVCP measurement
has been fast enough and the temperature of the probe has not changed during the
measurement. As shown in Section 2.3, if the temperature of the probe changes
during the measurement, then a variation in the curvature of the measured IVCP
takes place; therefore, an alteration of the EEDF is found. In general, this change in
curvature consists of a displacement of the maximum of the curve versus Vp towards
higher energy values, although there are other processes that give rise to the same
displacement. Therefore, to control that the displacement is acceptable, within the
limits imposed by the measurement process, the following criterion was used: it is
acceptable if the absolute value of the potential difference, |∆V|, which is the difference
between the maximum and the inflection point of the curve d2 I/dV2

p versus Vp, fulfills
the condition |∆V|< 0.3Emean [14,36,51,54] (see Figure 10). When this criterion is not
met, the corresponding IVCP must be discarded. However, a very high value of the
standard deviation of the instrument function shown in (6) can also lead to the same
displacement, so that, before discarding the measured IVCP, smoothing of the IVCP
should be carried out using smaller α values.
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• A second control parameter of the smoothing process was also used. In general,
the smoothing of experimental data consists in reducing its curvature caused by the
additive noise, since the random noise bandwidth is mostly at a higher frequency than
the measured IVCP itself. Thus, since the proposed smoothing process is based on
the convolution with the instrument function which is assumed to be Gaussian, as the
variance of this Gaussian increases, the smoothing increases. Even more, the numerical
second derivative uses two additional neighboring points. Thus, if the variance were
excessively large, that is, comparable with the variation of the IVCP itself, its curvature
could be altered, which would modify and invalidate the results obtained from it, the
EEDF and the d2 I/dV2

p . To avoid this problem, the following condition is imposed on
the variance of the instrument function: σ < 2Emean/3 [14,36,63].

Finally, once the temperature of the population of electrons has been accurately deter-
mined, using the reference value, Te = Te(EEDF), the determination of T+ is considered,
necessary to obtain β = T+/Te.

• Obtaining T+ is straightforward, since, as stated in the introduction, ion–neutral
collisions are, under the usual discharge conditions in this type of processes, those
with the lowest mean free path—less than 1 mm—and all other types of collision
between charged and neutral particles in cold plasmas have much larger mean free
paths, of the order of the size of the discharge. Therefore, it is accepted that the
temperature of the positive ions can be considered to be equal to the neutral gas
temperature [7,14–23], T+ = Tneutral . In this work, a value of T+ = 350 K was used,
above room temperature due to the heating from the electrodes that became very hot
during operation.

3.3. Zone III

This zone is called ion saturation zone, because the current collected by the probe
is fundamentally due to positive ions, since V < Vf loat < Vplasma; therefore, the floating
potential, Vf loat, separates zone III from zone II. As it is shown in Figure 4, the current in
zone III has the lowest value of the entire IVCP, which makes the measurements in this
zone difficult to be performed adequately. However, the measurement method proposed
in this article achieves precision measurements in this zone of the IVCP, which facilitates
the diagnosis of the plasma with minimum disturbance to the plasma. Plasma diagnosis in
this zone is optimal for several reasons:

• As mentioned, the current and, therefore, the charge drained by the probe to the
plasma in this zone hardly affect the discharge, since, at most, they are of the order
of magnitude of 10−7 A, while the interelectrode current, Id, is, at least, of the order
of 10−3 A;

• Also, the perturbation due to the presence of the polarized probe immersed in the
plasma is more efficiently shielded by the positive ion sheath than by the sheath
formed in other zones of the IVCP, as measured by the authors [17];

• Finally, plasma diagnosis in zone III is optimal to diagnose n+ ≈ ne, taking into
account the temperature of the positive ions, for β = T+/Te 6= 0.

3.3.1. The Sonin Plot

The Sonin Plot is used to diagnose in this zone. It consists of a dimensionless
representation of the current collected by the probe according to the following equa-
tions [7,14,15,22,23,32]:

I′
(
xp, ySP, β

)
=

I+
(
xp, ySP, β

)
erpn+

(
m+

2πkBTe

)1/2
, (12)

I′
(
xp, ySP, β

)
x2

p =
I+
(

xp, ySP, β
)
erp

ε0

(
m+

2πk3
BT3

e

)1/2

, (13)
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where ySP = −eVSP
kBTe

, with VSP value of the polarization potential of the probe referred to
the potential of the plasma, Vplasma; I+

(
xp, ySP, β

)
is the intensity corresponding to VSP in

the IVCP. This experimental value is absolute, so it must be measured with great precision,
hence the considerations made in this regard when describing the IVCP measurement
process. Finally, xp =

rp
λD

is the dimensionless probe radius.
The value of ySP must be chosen carefully, since, on the one hand, it must correspond to

values of VSP negative enough so that the current collected by the probe is exclusively due
to positive ions; however, it cannot be so negative that there is secondary electron emission
on the surface of the probe when the positive ions impinge upon it, as emitted secondary
electrons would be confused with positive charge reaching the probe and altering the true
value of intensity collected by the probe. To solve these problems, Tungsten was used
to manufacture the probe and the value ySP = 25 was chosen for the graphs obtained
for this article, since it was observed that this value provides the best results, for which
n+(Sonin, β 6= 0) ≈ ne(EEDF). The value of ySP can be modified in the VI, if necessary. In
Figure 4, a dot is plotted at the potential corresponding to the value of V(ySP = 25).

Figure 12 illustrates the theoretical Sonin Plot obtained for plasmas with positive ions
following the ABR theory for ySP = 25 and different values of β obtained from the authors’
model [7,15,18,22,44–50]. In Figure 12, the theoretical Sonin Plot corresponding to the ions
following the OML Laframboise theory are also plotted, following the fitting curves by
Peterson and Talbot [7,18,22,69].
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orbital (green) theories. It also illustrates the cross plotting for ySP = 25 used for the calculation
of n+.

Plasma diagnosis using this method is performed, firstly, by obtaining the corre-
sponding abscissa of the Sonin Plot using (13). To do this, it is only required to have Te,
which can be calculated, for example, from the EEDF and β. Once this abscissa is known,
the theoretical radial curve is cross-plotted against this abscissa, for the given β, from
which the corresponding ordinate is obtained; subsequently, using (12), the correspond-
ing n+(Sonin, β 6= 0) value diagnosed from the Sonin Plot in the zone III of the IVCP is
obtained. Figure 12 shows the case corresponding to the discharge conditions of the IVCP
shown in Figure 4. In this case, the value of β = 0.1 is small, so that the influence of the
thermal movement of the ions is small. This implies that the ordinate of the cross-plotted
theoretical Sonin Plot for β = 0 is very close to the ordinate for β = 0.1 and the results
of the diagnosis for ne are similar. For this reason, the results from another measurement
were added, for which β = 0.25, for an Argon discharge with pressure p = 6.84 Pa and
interelectrode current Id = 2.5 mA. In this case, the difference between the ordinates of the
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cross-plotted theoretical Sonin Plots for β = 0 and for β = 0.25 differ appreciably, resulting
in differing values for ne on account of the upwards displacement of the theoretical Sonin
Plot for increasing β [44–47]. As a conclusion, the measurement method of the IVCP and
this diagnosis method is capable to discern the influence of β in the results of the diagnosis.

3.3.2. Improvement in the Diagnosis of the Plasma Density

A representation of different values of plasma electron densities diagnosed in different
ways, such as the one calculated from the EEDF, ne(EEDF), the one calculated taking into
account T+, n+(Sonin, β 6= 0) and the one calculated assuming cold ions, n+(Sonin, β = 0)
versus the dimensionless ion temperature, β, is illustrated in Figure 13a and the electron
densities diagnosed versus the interelectrode current Id, which is a fundamental magnitude
in the characterization of the discharge, are illustrated in Figure 13b. These graphs show
that, indeed, for large values of Te, which correspond to small values of β, the diagnosis
does not need to take into account the value of β. However, as Te becomes smaller and
closer to room temperature, which may occur in several of the technological applications
related to the manufacture or treatment of semiconductors, polymers or textiles, the β
values increase and must be taken into account when diagnosing the plasma. The same
would happen if the neutrals were heated, as is the case of PACVD, since it increments T+.
The measured ne and n+ values also diverge when the interelectrode current is increased,
given that the increase in the interelectrode current is associated to an increase in β.
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It is interesting to note that the quasineutrality condition of the plasma is verified
given that the values obtained for n+(Sonin, β 6= 0) are very close to those obtained for
ne(EEDF), for all β values, even if both values have been obtained using different theories
applied in different zones of the IVCP.

On the other hand, this method involves a paradox; it is not known a priori which
of the two theories, radial or orbital, the plasma ions follow. However, the authors found
that, except in very extreme cases [7,18,22,70], the behavior followed by the positive ions in
these kind of low temperature plasmas is systematically radial. Indeed, only for Helium
plasmas with low plasma density the orbital theory was found to be valid [7,18,22,70]. In
any case, a quick estimate can always be made using the values of ne and Te obtained with
any of the aforementioned methods and comparing the results. Figure 14 illustrates that,
indeed, the OML behavior can be ruled out, since the points obtained with the EEDF results
are very close to and above the curve corresponding to the radial behavior, for β 6= 0.
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0.26 ≤ β ≤ 0.34. Reproduced with permission from Díaz Cabrera et al., Plasma Sources Science and
Technology; Reprinted with permission from ref. [18]. Copyright 2015 IoP.

Figure 14 illustrates the theoretical Sonin Plots versus the experimental points from
the EEDFs for 153 different Argon discharge measurements under different conditions of
pressure and interelectrode current. The series were taken with the interelectrode current
ranging from 1.2 mA to 10 mA in 0.5 mA steps until the HV power source voltage limitation
was found. Similarly, the pressure ranged from 2 Pa to 10 Pa in 0.3 Pa steps. As can be
seen, for all the points obtained from the EEDF, the location of the points is always in
accordance with the curves predicted by the radial theories. Furthermore, the points follow
the evolution of the parameter β. This further supports the precision of the method. The
OML curves are not consistent with any of the measurement performed with Argon in the
conditions of the experiments. It is interesting to note that the OML model also predicts
an increase in the ion current collected when the ion temperature is taken into account, as
shown in Figure 14, following the fitting curves by Peterson and Talbot [7,18,22,69]. More
advanced orbital models, common in other cold plasma studies, such as space plasmas,
studied that consider the thin sheath [71] or the collisions in the sheath [72,73], that also
predict a higher ion current in order to find closer agreement with measurements in these
or similar conditions should be used.

This method can also be adapted to the diagnosis of negative species, since our models
can be used in the case of several negative species of any kind provided that the positive
ions approach the probe following the radial theories. Therefore, it is possible to obtain the
theoretical Sonin Plot to diagnose the plasma and cross-plot the density of positive ions,
n+(Sonin, β 6= 0). Franklin and Snell [55] showed how to obtain an appropriate value for
the temperature of negative ions, T−, depending on the conditions of the plasma. From
the EEDF, Te and ne can be obtained. Finally, the quasineutrality condition allows us to
establish n− = n+ − ne [37,44–48,50,55,57,74,75].

In Table 2, a comparison is shown between the values of ne ≈ n+ and Te obtained by
means of the different methods presented in this work, both for the discharge for which the
IVCP of Figure 4 was obtained, with β = 0.1, and for the case included in Figure 11, with
β = 0.25. The chosen β values are examples of the two extremes in the electron temperature
in the series of measurements included in this work and serve to illustrate the possible
differences that arise in the plasma diagnosis when the ion temperature is not negligible
compared to the electron temperature. It is shown that there is good agreement between
the values obtained from the density of the EEDF and the Sonin plot for β 6= 0, while the
value for β = 0 slightly deviates to higher values, since it corresponds with lower ordinate
values in the cross-plotting, this difference being greater for the case with β = 0.25. Finally,
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the values obtained from I
(

Vplasma

)
and I2-V area somewhat smaller, since, as mentioned,

the current collected by the probe in this zone are important and a depletion of electrons
and a decrease in the electron density may occur in the space around the probe.

Table 2. Comparison of the results obtained using the different plasma diagnosis methods as a function of β.

Plasma Diagnosis Method

β
ne(EEDF)

(m−3)
n+(Sonin,β 6= 0)

(m−3)
n+(Sonin,β = 0)

(m−3)
ne(I2-V)
(m−3)

ne(I(Vplasma))
(m−3)

Te(lnI-V)
(K)

Te(EEDF)
(K)

0.1 2.5993 × 1015 2.6515 × 1015 2.8436 × 1015 2.2422 × 1015 1.8016 × 1015 3544 3681
0.25 4.9923 × 1015 5.1232 × 1015 6.2038 × 1015 2.8716 × 1015 3.1560 × 1015 1362 1360

4. Conclusions

In this article, different methods of plasma diagnosis using Langmuir electrostatic
probes are described, suitable for the case of plasmas with electron temperature close to
room temperature. The following conclusions should be highlighted:

• The method here described for measuring the current-to-probe voltage characteristic
curve of a Langmuir probe immersed in a low temperature plasma, or IVCP, complies
with the strict precision requirements needed to diagnose the plasma using any of the
methods described, including the method that uses the ion saturation zone, which is
particularly difficult because the current collected by the probe is very small.

• Likewise, the necessary qualities of a Langmuir electrostatic probe are described, as
well as the conditions that its size, shape and container must meet.

• The measurement of the IVCP allows to diagnose the plasma locally, which implies
measuring magnitudes that characterize the plasma in the region where the probe
is located. This makes it possible to monitor and control the discharge to improve
the quality and performance of these industrial processes, such as repeatability, by
exploring the discharge parameters that provide better results; uniformity, by allowing
the measurement at various points at the same time and for the same cost; or time
drift, by processing the measurement and data treatment in a very short time, less
than a second.

• Depending on the zone of the characteristic, different diagnostic methods are here de-
tailed, their results are compared and each one of their advantages and disadvantages
are weighed. These methods are based on different sheath theories in plasmas that are
referenced. The values of the different plasma parameters obtained in the different
zones of the IVCP are consistent with the theories, with remarkably good agreement
between the results obtained using the measured EEDF and the ion saturation radial
model taking into account the ion temperature.

• The entire process of measuring the IVCP and data processing to obtain the phys-
ical magnitudes that characterize the plasma by different methods was automated
by programming a Virtual Instrument, VI, in the LabView environment. The entire
data acquisition and data processing takes less than a second. The VI can be down-
loaded for free. Adapting this VI to the devices from other plasma laboratories is
relatively straightforward.
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