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Abstract: In this study, a 3.5-GHz solidly mounted resonator (SMR) was developed by doping
scandium in aluminum nitride to form AlScN as the piezoelectric thin film. Molybdenum (Mo) of
449 nm thickness and silicon dioxide (SiO2) of 371 nm thickness were used as the high and low
acoustic impedance films, respectively, which were alternately stacked on a silicon substrate to form
a Bragg reflector. Then, an alloy target with atomic ratio of 15% Sc was adopted to deposit the
piezoelectric AlScN thin film on the Bragg reflector, using a radio frequency magnetron sputtering
system. The characteristics of the c-axis orientation of the AlScN thin films were optimized by
adjusting sputtering parameters as sputtering power of 250 W, sputtering pressure of 20 mTorr,
nitrogen gas ratio of 20%, and substrate temperature of 300 ◦C. Finally, a metal top electrode was
coated to form a resonator. The X-ray diffraction (XRD) analysis showed that the diffraction peak
angles of the AlScN film shifted towards lower angles in each crystal phase, compared to those of
AlN film. The energy dispersive X-ray spectrometer (EDX) analysis showed that the percentage of
scandium atom in the film is about 4.5%, regardless of the sputtering conditions. The fabricated
resonator exhibited a resonance frequency of 3.46 GHz, which was a small deviation from the preset
resonance frequency of 3.5 GHz. The insertion loss of −10.92 dB and the electromechanical coupling
coefficient of 2.24% were obtained. As compared to the AlN-based device, the AlScN-based resonator
exhibited an improved electromechanical coupling coefficient by about two times.

Keywords: SMR; AlScN; 3.5-GHz; BAW

1. Introduction

With continuous technological advancement, the rapid development of RF microelec-
tromechanical devices is urgently required for manufacturing wireless communication
equipment. The miniaturization and multi-functionality of the equipment have completely
changed the way people communicate. For example, mobile communication devices used
in vehicles and aviation, global positioning system (GPS) and military satellites are all ap-
plications of wireless communication. Moreover, with the advent of fifth-generation mobile
communication technology (5G), the frequency spectrum, quality and characteristics of
filters are becoming more and more important in 5G or higher frequency bands.

There are many types of filters; among them, the acoustic wave filter is of the most
concern. The acoustic wave filters can be divided into surface acoustic wave (SAW)
filters [1] and bulk acoustic wave (BAW) filters [2,3]. Compared with surface acoustic wave
filters, bulk acoustic wave filters can more easily achieve a high frequency range (>2 GHz),
and have a smaller volume, excellent device characteristics, higher power endurance and
wider application frequency range, among other advantages, which make the bulk acoustic
wave filters highly valued in future mobile communication applications.

A BAW resonator comprises a piezoelectric film, sandwiched between the upper
and lower electrodes. To effectively limit the acoustic wave energy in the piezoelectric
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layer, at present, face-etched [4–7], back-etched [8–13], and solidly mounted structures
are used to avoid the loss of sound wave energy through the substrate. Solidly mounted
resonators (SMRs) are composed of high and low-acoustic-impedance materials, alternately
deposited on the substrate at a quarter resonant wavelength (λ/4) to form a Bragg reflector.
Depending on the design, the reflector can be used as a low-acoustic-impedance interface,
similar to air, to prevent the sound wave energy from escaping the substrate, or as a high-
acoustic-impedance interface to reflect the sound wave energy back into the piezoelectric
layer. As SMR suppresses or reflects sound waves in piezoelectric materials through the
Bragg reflector, there is no need to etch the cavity from the substrate when manufacturing
the device, which results in a stable structure and high yield [14–22].

Aluminum nitride (AlN) and zinc oxide (ZnO) are popular piezoelectric materials
used in BAW devices. ZnO has a high electromechanical coupling coefficient kt

2, but a
low longitudinal acoustic wave velocity. AlN has a high longitudinal wave velocity and
is therefore preferred for realizing sub-6 GHz components in 5G systems. Both AlN and
ZnO are excellent piezoelectric materials [23]. However, because of the current trend of
high-frequency communications, AlN has attracted more attention than ZnO.

In addition to the development of high-frequency components, increases in the kt
2

value of a material are noteworthy. Many methods have been adopted to improve the kt
2

value of a material. According to Tasnádi et al. [24], the hexagonal structure of ScN will
contribute to the piezoelectricity of ScxAl1−xN (x < 0.5) thin films. Farrer et al. discovered
that ScN has an unstable wurtzite structure and a stable hexagonal structure, due to the
isostructural phase transition of wurtzite to a layered hexagonal structure [25,26]. Sc-IIIA-N
compounds exhibit excellent piezoelectric properties. Among the IIIA compounds, AlN
exhibits the highest Curie temperature and thermal stability [27]. AlN and Sc can be
combined to form ScxAl1−xN alloy films as novel piezoelectric materials for acoustic wave
components.

2. Materials and Methods
2.1. SMR Design

In this study, a 3.5-GHz SMR was developed using an AlScN piezoelectric film, sand-
wiched by a bottom and a top electrode. A low-roughness Bragg reflector was deposited on
the substrate to prevent the dissipation of acoustic wave energy. In the SMR structure, the
upper part of the piezoelectric layer is an air or vacuum interface, while the lower part is a
reflective Bragg reflector formed by alternately stacking high-acoustic-impedance materials
and low-acoustic-impedance materials. The SMR structure can be divided into the two
modes of λ/4 mode and λ/2 mode. In this study, an λ/2 mode resonator is adopted, in
which the thickness of each layer of the reflective Bragg reflector is λ/4, and that of the
piezoelectric layer is λ/2, where λ is the resonance wavelength. According to the structure
of the reflective layer, whether the impedance of the interface between the piezoelectric
layer and the reflective layer is low-impedance or high-impedance can be determined.
Looking into the reflective layer from the piezoelectric layer, if the acoustic impedance of
the 1, 3, and 5 layers is lower than that of the 2, 4, and 6 layers, the overall impedance of
the reflective layer tends to zero, and there is a free interface between the Bragg reflector
and the piezoelectric layer, as shown in Figure 1. If the wavelength of the sound wave does
not comply with a wavelength of λ/2, the sound wave does not form a standing wave,
which results in energy dissipation. Generally, the piezoelectric film is a λ/2 type resonator,
which has a larger effective electromechanical coupling coefficient than that of the λ/4 type
resonator [28].

In this study, high-acoustic-impedance material of molybdenum (Mo) and low-acoustic-
impedance material of silicon dioxide (SiO2) were used as the reflective high and low
impedance layers, respectively, to construct the Bragg reflector on Si substrate. The thick-
nesses of Mo and SiO2 films can be derived from the formula v = f × 4d, where v is the
bulk acoustic wave velocity of Mo or SiO2 film; f is the resonance center frequency; and
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d is the thickness of Mo or SiO2 film, which are calculated as approximately 449 nm and
371 nm, respectively, to accommodate the 3.5 GHz frequency response.
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Figure 1. The schematic of a λ/2 mode resonator.

An Al(85%)-Sc(15%) alloy target was used to deposit AlScN piezoelectric films, us-
ing a reactive RF magnetron sputtering system. The quality of the piezoelectric layer
considerably affects the characteristics of the device. Therefore, the characteristics of the
piezoelectric film were analyzed through scanning electron microscopy (SEM, JEOL-6700
Field Emission SEI/BEI type scanning electron microscope, JEOL, Ltd., Tokyo, Japan), X-ray
diffraction (XRD, Bruker, Billerica, MA, USA), and energy dispersive X-ray spectroscopy
(EDX, JEOL, Ltd., Tokyo, Japan) to determine the optimal sputtering parameters. SEM was
used to analyze the surface and cross-sectional structures of the films under various sput-
tering conditions. XRD was performed using an X-ray diffractometer (Bruker D2 Phaser
system, Bruker, Billerica, MA, USA) to analyze the crystalline orientation and the peak
strength of X-ray diffraction of AlScN film and determine its optimal sputtering parameters.

Finally, the required thickness of the piezoelectric film was determined to fabricate
SMR devices, which had their frequency responses and electromechanical coupling coeffi-
cients measured using a network analyzer E5071C (Keysight, Santa Rosa, CA, USA).

2.2. SMR Parametric Properties

In BAW devices, the effective electromechanical coupling coefficient kt
2 and the thick-

ness of the piezoelectric layer affect the resonator bandwidth, insertion loss, and resonance
frequency. Therefore, the deposition of thin film with low-acoustic wave loss and high
electromechanical coupling coefficient is critical.

2.3. Measurement of Electromechanical Coupling Coefficient kt
2

The electromechanical coupling coefficient is defined as the ability to convert me-
chanical energy to electrical energy and vice versa. The greater the electromechanical
coupling coefficient, the better the conversion effect. In addition, the higher the effective
electromechanical coupling coefficient of the resonator constituting the filter, the greater
the bandwidth of the combined filter [29].
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The electromechanical coupling coefficient is mainly determined by two parameters,
namely the parallel resonant frequency fp (ωp) at which the imaginary part of impedance
is maximum, and the series resonant frequency fs (ωs) at which the imaginary part of
impedance is zero. The effective electromechanical coupling coefficient kt

2 is calculated as
follows [30]:

(kt)
2 =

(
π2

4

)
·
(

ωs

ωp

)
·
(

ωp − ωs

ωp

)
(1)

2.4. Fabrication Processes

In this study, on-axis direct current (DC) sputtering system and radio-frequency (RF)
magnetron sputtering system were used to alternately deposit Mo and SiO2 films on a
p-type (100) Si substrate to form three pairs of Bragg reflectors. The Mo and SiO2 layers
were 449- and 371-nm thick, respectively. Photolithography was used to define the bottom
electrode pattern. A seed layer of Ti and the bottom electrode of Mo were deposited
through DC magnetron sputtering. The overlying film of AlScN was then deposited
above the bottom electrode by using a reactive RF magnetron sputter. Finally, another
photolithography process was used to define the top electrode. The Mo/Ti top electrode
was fabricated on the piezoelectric film by using a DC magnetron sputter. To realize an
electrical connection with the bottom electrode, photolithography was performed again for
thorough hole patterning. AlScN was etched with phosphoric acid at 90 ◦C. Thus, a λ/2
mode SMR was fabricated. Deposition was performed through DC magnetron sputtering
and RF magnetron sputtering, and patterning was realized through photolithography
by using three masks. The flowchart of the fabrication process is displayed in Figure 2.
Figure 3 shows the 3D representation of the structure of a solidly mounted resonator.
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3. Results and Discussion

To confine acoustic energy in the piezoelectric layer and prevent acoustic scattering,
the surface of the Bragg reflector should be as flat as possible [31]. The DC and RF
magnetron sputters were precisely controlled to alternately deposit Mo and SiO2 films
on a silicon substrate, to prepare a low-surface-roughness Bragg reflector. The optimal
sputtering parameters of the Mo thin film were obtained using a sputtering power of
100 W and a sputtering pressure of 1 mTorr. Atomic force microscopy (AFM, Digital
Instrument, Milano, Italy) revealed that the deposited Mo film had a surface roughness
of 1.367 nm. A sputtering power of 80 W, sputtering pressure of 5 mTorr, and a substrate
temperature of 350 ◦C were the optimal sputtering parameters of SiO2. AFM revealed
that the Mo/SiO2 structure had a surface roughness of 1.298 nm. The conditions for a
high c-axis structure of the AlScN piezoelectric film were determined by changing the
sputtering parameters. In this experiment, an Al(85%)-Sc(15%) alloy target was used to
deposit the AlScN piezoelectric film with the strongest (002) crystal orientation and a highly
pronounced c-axis orientation [32], using reactive RF magnetron sputtering.

SEM and XRD were performed to characterize the surfaces and cross-sectional struc-
tures, crystal characteristics, and compositions of the films. The sputtering power, sputter-
ing pressure, and nitrogen ratio (N2/N2 + Ar) were adjusted to deposit the AlScN films
on the Mo/Ti/Si structure at a substrate temperature of 300 ◦C. SEM and XRD were per-
formed on the deposited films to verify the physical properties and determine the optimal
sputtering parameters.

In the experiment, the consistency of each set of samples has been verified through
physical property analysis. The next set of process parameters will be executed until
the reproducibility of the samples is confirmed. Firstly, the sputtering power, nitrogen
ratio, and substrate temperature were fixed as 250 W, 20%, and 300 ◦C, and the sputtering
pressure was adjusted to 10, 20, and 30 mTorr, respectively. Figure 4 shows the XRD
diffraction patterns of the AlScN films, which shows a pronounced diffraction peak at
35.97◦, corresponding to the (002) crystal orientation of the wurtzite structure, and that the
film performs best when the sputtering pressure is 20 mTorr. There exists a diffraction peak
shift phenomenon between AlScN and AlN films, the (002) crystal orientation angle of AlN
is 36.079◦ and AlScN is 35.97◦, and the offset between the two is 0.109◦. The reason for this
is that Sc replaces Al atom in the lattice structure, and the change in the lattice structure
causes the shift in the diffraction peak [33]. From the SEM analysis, as shown in Figure 5,
the surface of the film sputtered at 20 mTorr exhibits a dense small cobblestone structure
and a columnar and clear cross-section.
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Then, the sputtering pressure, sputtering power, and substrate temperature were fixed
as 20 mTorr, 250 W, and 300 ◦C. The nitrogen ratio was adjusted to 20%, 50%, and 80%,
and the influence of the gas environment on the AlScN film was discussed. As shown in
Figure 6, the film exhibits the strongest intensity of (002) crystal orientation at a nitrogen
ratio of 20%, then decreases with the increased nitrogen ratio. Figure 7 reveals that the
surface of the film sputtered at the nitrogen ratio of 20 mTorr exhibits a dense cobblestone
structure and an excellent columnar cross-section.

Finally, the sputtering pressure, nitrogen ratio, and substrate temperature were fixed
as 20 mTorr, 20%, and 300 ◦C, and the sputtering power was adjusted to 200, 250 and 300 W,
respectively. As displayed in Figure 8, when the sputtering power is increased to 250 W,
the film exhibits the strongest (002) crystal orientation. Figure 9 shows the SEM images
of the surfaces and cross-sectional structures of the AlScN films deposited under various
sputtering powers. The surface of the film exhibits a dense small cobblestone structure
and a columnar and clear cross-section at 250 W. The above results indicate that a chamber
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pressure of 20 mTorr, nitrogen ratio of 20%, substrate temperature of 300 ◦C, and sputtering
power of 250 W are the optimal parameters to deposit the AlScN films in this study.
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(N2/N2 + Ar).

It is worth noting that the XRD diffraction peak angles of the AlScN films are shifted
towards lower angles with 2θ of about 0.1~0.25◦ in each crystal phase, compared to those
of AlN films. The reason for this is that the larger scandium atoms replace part of the
aluminum atoms in the aluminum–nitrogen bond. The crystal lattice structure of the film
changes, which, in turn, causes the angle of the diffraction peak to shift.

On the other hand, the compositions of the AlScN films under different sputtering
conditions were analyzed by EDS. The results show that the scandium content in the film
under different sputtering pressures, nitrogen ratios, and sputtering powers is not much
different, because the experiment uses an aluminum–scandium alloy target (15% scandium)
as the sputtering target. The proportion of aluminum and scandium in the target is fixed, so
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it is difficult to vary the scandium content in the film by changing the sputtering conditions.
The overall results show that the percentage of scandium atom in the film is about 4.5%.

In this study, Bragg reflectors with three pairs of Mo/SiO2 are used in the SMR devices.
In order to clarify the effect of Sc doping in AlN piezoelectric film on the characteristics of
acoustic wave devices, a 3.5 GHz SMR device with an AlN piezoelectric film was fabricated.
Figure 10a shows the S21 response of the AlN-based SMR.
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In order to fabricate the designed SMR device, the thickness of the piezoelectric AlScN
thin film was adjusted according to the λ/2 mode SMR device design. In the design, based
on previous experience, it is estimated that the sound velocity of the AlScN film is about
6000 m/s. Therefore, the thickness of the piezoelectric layer is preliminarily set as 863 nm,
according to the formula v = f × 2d, in which, v is the bulk acoustic wave velocity of
AlScN film, f is the resonance center frequency, and d is the thickness of AlScN film. The
film thickness and characteristics of AlScN were then taken into the simulation software.
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The simulated frequency response of S21 is shown in Figure 10b, in which the resonance
center frequency of 3.5 GHz, the electromechanical coupling coefficient kt

2 of 5.45%, the
quality factor Q of 208, and the insertion loss IL of −10.83 dB are obtained. However,
as the component was fabricated using an AlScN piezoelectric film of 863 nm thickness,
a resonance response with a frequency of 2.97 GHz is obtained. The deviation between
simulated and experimental may indicate that the elastic constant of the piezoelectric film
is changed due to the doping of Sc, resulting in a decrease in sound velocity compared
to that estimated. Therefore, the required piezoelectric layer thickness must be adjusted
to 731 nm, derived from the calculated true sound velocity of the AlScN film of about
5126 m/s. Figure 10c shows the frequency response of S21 of the SMR device after adjusting
the thickness of the piezoelectric layer to 731 nm, in which the electromechanical coupling
coefficient kt

2 of 2.24%, the quality factor Q of 183, and the insertion loss IL of −10.92 dB
are obtained. Figure 11 shows the frequency response S11 of the SMR device with the
731 nm thick AlScN piezoelectric film. From this, a resonance response at 3.46 GHz can be
obtained, which is near the designed resonance frequency of 3.5 GHz. It also has a return
loss of −30.62 dB, as shown in Figure 11.

Coatings 2021, 11, x FOR PEER REVIEW 9 of 12 
 

 

characteristics of acoustic wave devices, a 3.5 GHz SMR device with an AlN piezoelectric 

film was fabricated. Figure 10a shows the S21 response of the AlN-based SMR. 

 

Figure 10. Frequency responses (S21) of SMR resonators using AlScN and AlN as piezoelectric layers, 

(a) experimental results of AlN-based resonator, (b) simulation results of AlScN-based resonator, 

and (c) experimental results of AlScN-based resonator. 

In order to fabricate the designed SMR device, the thickness of the piezoelectric 

AlScN thin film was adjusted according to the λ/2 mode SMR device design. In the design, 

based on previous experience, it is estimated that the sound velocity of the AlScN film is 

about 6000 m/s. Therefore, the thickness of the piezoelectric layer is preliminarily set as 

863 nm, according to the formula v = f × 2d, in which, v is the bulk acoustic wave velocity 

of AlScN film, f is the resonance center frequency, and d is the thickness of AlScN film. 

The film thickness and characteristics of AlScN were then taken into the simulation soft-

ware. The simulated frequency response of S21 is shown in Figure 10b, in which the reso-

nance center frequency of 3.5 GHz, the electromechanical coupling coefficient kt2 of 5.45%, 

the quality factor Q of 208, and the insertion loss IL of −10.83 dB are obtained. However, 

as the component was fabricated using an AlScN piezoelectric film of 863 nm thickness, a 

resonance response with a frequency of 2.97 GHz is obtained. The deviation between sim-

ulated and experimental may indicate that the elastic constant of the piezoelectric film is 

changed due to the doping of Sc, resulting in a decrease in sound velocity compared to 

that estimated. Therefore, the required piezoelectric layer thickness must be adjusted to 

731 nm, derived from the calculated true sound velocity of the AlScN film of about 5126 m/s. 

Figure 10c shows the frequency response of S21 of the SMR device after adjusting the thick-

ness of the piezoelectric layer to 731 nm, in which the electromechanical coupling coeffi-

cient kt2 of 2.24%, the quality factor Q of 183, and the insertion loss IL of −10.92 dB are 

obtained. Figure 11 shows the frequency response S11 of the SMR device with the 731 nm 

thick AlScN piezoelectric film. From this, a resonance response at 3.46 GHz can be ob-

tained, which is near the designed resonance frequency of 3.5 GHz. It also has a return 

loss of −30.62 dB, as shown in Figure 11. 

Figure 10. Frequency responses (S21) of SMR resonators using AlScN and AlN as piezoelectric layers, (a) experimental
results of AlN-based resonator, (b) simulation results of AlScN-based resonator, and (c) experimental results of AlScN-
based resonator.

In summary, it can be found that in the 3.5 GHz SMR devices made of AlN and
AlScN, the insertion loss of the two components is not much different. However, the
effective electromechanical coupling coefficient of AlScN-based SMR is almost twice that
of AlN-based device. This study successfully used the RF magnetron sputtering system to
control the thickness of AlScN film at 731 nm, obtaining the designed 3.5 GHz SMR devices.
Figure 12 shows the cross-section of the final fabricated device. The experimental results
prove that doping of Sc in the AlN film changes the film’s sound velocity and significantly
increases its elastic constant, thereby increasing the electromechanical coupling coefficient
of the SMR device.
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4. Conclusions

High-acoustic-impedance (Mo) and low-acoustic-impedance (SiO2) materials were
alternately deposited on the silicon substrate through DC and RF magnetron sputtering,
respectively, to obtain a high-quality Bragg reflector. An alloy target with atomic ratio
of 15% Sc was adopted in this study. Deposition of a piezoelectric AlScN thin film at
a sputtering power of 250 W, a sputtering pressure of 20 mTorr, a nitrogen gas ratio of
20%, and a substrate temperature of 300 ◦C resulted in an excellent c-axis (002) crystalline
orientation with a dense columnar and pebble-like surface. The XRD diffraction peak
angles of the AlScN films are shifted towards lower angles in each crystal phase, compared
to those of AlN films. The EDX analysis showed that the percentage of scandium atom in
the film is about 4.5%, regardless of the sputtering conditions.

The fabricated resonator exhibited a resonance frequency of 3.46 GHz, which was a
small deviation from the preset resonance frequency of 3.5 GHz. The insertion loss was
−10.92 dB, and the electromechanical coupling coefficient was 2.24%. An AlN piezoelectric
film-based device was fabricated and compared with the AlScN-film-based device. Accord-
ing to the obtained results, the electromechanical coupling coefficient of the AlN-based
device was 1.17% and that of the AlScN-based device was 2.24%. The effect of Sc-doped
AlScN piezoelectric film was verified. The electromechanical coupling coefficient can
be further increased by using alloy targets with a higher atomic ratio of Sc or through
co-sputtering technology.
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