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Abstract: Cotton fabric, as an important material, is suffering from some defects such as flammability,
easy pollution and so on; therefore, it is important to make a flame-retardant and superhydrophobic
modification on cotton fabric. In this study, we demonstrated a preparation of high-efficiency flame-
retardant and superhydrophobic cotton fabric with double coated construction by a simple multi-
step dipping. First, the fabric was immersed in branched poly(ethylenimine) (BPEI) and ammonium
polyphosphate (APP) water dispersions successively, and then immersed in polydimethylsiloxane
(PDMS)/cellulose nanocrystals (CNC)-SiO2 toluene dispersion to form a BPEI/APP/PDMS/CNC-SiO2

(BAPC) composite coating on the surface of the cotton fabric. Here, the hydrophobic modified CNC-SiO2

rods were used to construct the superhydrophobic layer and the BPEI/APP mixture was used as the
flame-retardant layer, as well as SiO2 particles which could further improve the flame-retardant effect.
PDMS was mainly used as an adhesive between the BPEI/APP layer and the CNC-SiO2 layer. The
resulting cotton fabric shows outstanding flame-retardant properties, in that the value of oxygen index
meter (LOI) reaches 69.8, as well as excellent superhydrophobicity, in that the water contact angle (WCA)
is up to 156.6◦. Meanwhile, there is a good abrasion resistance, the superhydrophobicity is not lost
until the 16th abrasion cycles and the flame retardant retains well, even after 100 abrasion cycles in an
automatic vertical flammability cabinet under a pressure of 8.8 kPa.

Keywords: cotton fabric; flame retardant; superhydrophobic; immersing

1. Introduction

Fire disaster occasionally takes placed in daily life and may lead to significant losses
of human lives and properties [1]. Additionally, flame-retardant materials could repel or
slow the spread of fire and have been widely used [2]. Cotton fabric is a common and
important material for human survival due to its softness, comfort and environmental
protection, but it is also too flammable to use in some occasions such as use as for fabric for
fireman’s clothes, which have a high requirement for flame-retardancy [3]. Therefore, it is
indispensable to develop a high flame retardancy cotton fabric. To date, there have been
various methods exploited to prepare a flame-retardant cotton fabric, including dipping [4],
pad–dry–cure [5], sol–gel [6], layer-by-layer assembly [7] and so on. The common purpose
of these methods is mainly to stabilize fire retardant on the surface of the cotton fibers. Of
all of them, dipping is a mature and efficient method due to its convenient operation and
appropriate large-scale production [8]. At present, there are various types of fire retardants,
commonly including halogenated flame retardants, phosphorus flame retardants, nitrogen
flame retardants and inorganic flame retardants [9]. From an environmental view, phos-
phorus flame retardants are targeted for further development because of the advantages
of low smoke, non-toxic and low halogen. For example, Kanat et al. [10] synthesized two
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new phosphorus flame retardants for cotton fabric using an oxide as raw material, and
their flame-retardant effect was obvious. Phosphorus flame retardants were also often used
in conjunction with other flame retardants. For example, Alongi et al. [11] applied both
SiO2 and phosphorus flame retardant to cotton fabric by sol–gel method, which greatly
enhanced the flame-retardant effect.

At present, the development of multifunctional materials, such as magnetic adsorp-
tion [12], fluorescent adsorption [13], flame retardant-conductive [14] materials, etc., is
a trend due to the social demand for high value-added products [15]. Additionally, a
superhydrophobic surface which requires reasonable rough structure and low surface
free energy has such functions as self-cleaning, antifouling and resistance reduction, etc.,
attracting scholars’ interest [16,17]. Therefore, it is a feasible and good choice to add
both flame-retardant and superhydrophobic functions to cotton fabric to make it both
waterproof and fire retardant. For example, Xue et al. [18] took synthetic polyacrylate
soap-free latex as a hydrophobic modifier and APP as flame retardant to form a composite
mixture, and a superhydrophobic and flame-retardant cotton could be prepared only by a
multi-step immersing. Additionally, a self-healing and flame-retardant superhydrophobic
surface can also be achieved in cotton using branched poly(ethylenimine) (BPEI) and
ammonium polyphosphate (APP) as promoters by immersing in turn, followed by treat-
ing with fluorinated-decyl polyhedral oligomeric silsesquioxane, which was synthesized
by perfluorodecanethiol and vinyl-decyl polyhedral oligomeric silsesquioxane, and the
resulting cotton also showed excellent self-healing properties [19]. All the above indi-
cated that the preparation of the flame-retardant and hydrophobic cotton fabric has made
some progress.

However, there is still room for improvement in flame retardancy of cotton fabric,
and superhydrophobic surfaces are also suffering from poor mechanical properties [17].
In particular, it is tougher to fix a superhydrophobic coating on the surface of substrates
with flame-retardant treatment. For example, parts of superhydrophobic coatings have
insufficient adhesion and are easy to disengage [20], or even if the adhesion is sufficient,
the rough structure is prone to collapse [21]. In view of the above problems, our research
group used cellulose nanocrystals (CNC) as skeletons to string SiO2 particles together to
consolidate a rough structure on the surface of a commercial spray adhesive. Compared
with the pure SiO2 one, the resulting CNC-SiO2 superhydrophobic coating showed a
significant improvement on abrasion resistance [22].

From the above points, it is clear that during the current development, it is difficult for
a flame retardant and superhydrophobic cotton fabric to meet a wider application require-
ment. Therefore, the objective of this study was to enhance flame retardancy of cotton fabric
and to improve stability of superhydrophobic coatings on it. Both BPEI and APP were
adopted to build a flame-retardant layer. The 1H,1H,2H,2H-perfluorooctyltriethoxysilane
(FOTS)-modified CNC-SiO2 rods were used to build a superhydrophobic layer and also
beneficial to enhance the flame retardant performance. Because SiO2 was an inorganic flame
retardant material and could construct a dual flame retardant structure with BPEI/APP.
PDMS is used as an adhesive which could provide adhesion between the BPEI/APP
and the FOTS-modified CNC-SiO2 rods to prepare a highly flame-retardant and superhy-
drophobic cotton fabric with good stability. In this study, the used substances such as BPEI,
APP, PDMS and CNC-SiO2 are considered non-toxic, and the C–F bond is stable in FOTS.
However, they should be used with caution.

2. Materials and Methods
2.1. Materials

Branched poly(ethylenimine) (BPEI), ammonium polyphosphate (APP), 1H,1H,2H,2H-
perfluorooctyltriethoxysilane (FOTS, C8F13H4Si(OCH2CH3)3, 97%) and tetraethyl orthosili-
cate (TEOS, 98%) were purchased from Sigma (Shanghai, China). The cellulose nanocrystals
(CNC) with solid of 12% were purchased from the Process Development Center, University
of Maine (Orono, ME, USA). Ammonium hydroxide (25%), toluene (99.9%) and anhydrous
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ethanol (99.5%) were purchased from Macklin (Shanghai, China). Polydimethylsiloxane
(PDMS, Sylgard 184 silicone elastomer) and its curing agent were purchased from Dow
Corning, Inc. (Midland, MI, USA). The cotton fabric, made of pure cotton, was purchased
from Yilian Jiamei Household Products Co., Ltd., Beijing, China, and washed with anhy-
drous ethanol and air dried before using. All the chemical reagents were used without
any treatment.

2.2. Preparation of Flame-Retardant Cotton Fabric

Similar to the description in this study [19]. First, BPEI aqueous solution (5 mg/mL),
APP aqueous dispersion (20 mg/mL) and PDMS (mass ratio of PDMS to curing
agent = 10:1) toluene solution (2 mg/mL) were respectively modulated for standby appli-
cation. The cotton fabric washed with anhydrous ethanol and dried in air was entirely
immersed in the BPEI aqueous solution for 30 min and wrung out, followed by immersion
in APP dispersion aqueous for 90 min and then washed by deionized water. Subsequently,
the BPEI/APP (BA) cotton fabric was dried at 80 ◦C until the water was completely evap-
orated. Finally, the dried BA cotton fabric was immersed in PDMS toluene solution for
10 min.

2.3. Preparation of Hydrophobic CNC-SiO2 Rods

The hydrophobic CNC-SiO2 rods were taken as structural materials for superhy-
drophobic coating and could be fabricated as described in our previous study [22]. Briefly,
50 mL of CNC ethanol suspension (1.5 wt.%) were mixed with 4 mL of TEOS under alkaline
conditions (pH = 13) and 55 ◦C for 2 h to obtain the CNC-SiO2 rods. The hydrophobic
CNC-SiO2 rods could be prepared by adding FOTS and stirring for another 2 h. To remove
unreacted FOTS and redundant by-product, the hydrophobic CNC-SiO2 rods were washed
using fresh toluene by centrifugation.

2.4. Preparation of Flame-Retardant and Superhydrophobic Cotton Fabric

The hydrophobic CNC-SiO2 rods were added to PDMS (including curing agent)
toluene solution and stirred for 20 min to obtain the PDMS/CNC-SiO2 hydrophobic
mixture (10 wt.%). The above cotton fabric treated with BPEI/APP/PDMS (BAP) was
immersed in the PDMS/CNC-SiO2 hydrophobic mixture for 20 min and air dried, followed
by drying at 120 ◦C for 2 h to obtain the flame-retardant and superhydrophobic cotton fabric
(BPEI/APP/PDMS/CNC-SiO2 (BAPC) cotton fabric). To make a comparison, the samples
including BPEI cotton (B cotton), BPEI/APP cotton (BA cotton) and BPEI/APP/PDMS
cotton (BAP cotton) are prepared by the same method.

2.5. Flammability and Antiabrasion of Cotton Fabric

As described in the study [19], the flammability of the samples with different treat-
ments was estimated by a vertical flame test with a size of 8 cm × 30 cm using an automatic
vertical flammability cabinet (5402, Vouch testing technology Co., Ltd., Suzhou, China).
The samples were kept in fire from a gas burner for 12 s and then removed. The mechanical
property of the coated cotton fabric was tested by an antiabrasion test using a commercial
fabric abrasion tester (Y571, Laizhou Yuanmao Instrument Co. Ltd., Laizhou, China) with
a speed of 28 cm/s under an applied pressure of 8.8 Kpa.

2.6. Characterization

A Zeiss Auriga SEM/FIB crossbeam workstation (Zeiss, Oberkochen, Germany) was
used to collect STEM images. SEM images were observed by a QUANTA FEG 250 (FEI com-
pany, Hillsboro, OR, USA). Chemical construction of the samples with different treatment
was analyzed by a FTIR analyzer (PerkinElmer, Waltham, MA, USA) with a range from
600 to 4000 cm−1 with scans of 16 times. DTG-60 thermogravimetric analyzer (Shimadzu,
Kyoto, Japan) was used to analyze thermostability of APP, CNC-SiO2 rods before and
after modification. An X-ray photoelectron spec-troscopy (XPS, PHI-5300 photoelectron
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spectrometer, PerkinElmer Instruments Co. Ltd., Waltham, MA, USA) was used to de-
termine elemental composition of the cotton fabric before and after treatment. An X-ray
diffractometer (XRD-6000 Shimadzu, Kyoto, Japan) was used to analyze the change of
crystallinity of CNC-SiO2 rods and elemental information of other samples. Both water
contact angle (WCA) and slide angle (SA) were measured using a commercial contact angle
meter (Shanghai Zhongchen JC2000D, Shanghai, China). An oxygen Index Meter (LOI,
JF-3, Jiangning District Analytical Instrument Factory, Nanjing, China) was used to analyze
flame-retardant property.

3. Results and Discussion
3.1. Formation Mechanism of Flame-Retardant and Superhydrophobic Cotton Fabric

As shown in Figure 1, the washed cotton fabric was successively immersed in the
BPEI and APP aqueous suspension to obtain the APP/BPEI flame-retardant coating on the
cotton fabric [23]. In this flame-retardant system, the APP [24,25] acted as the acid source
and a stable polyphosphoric acid could be generated and play a role on protection of the
polymer and isolate oxygen when APP was decomposed by heating [26]. The BPEI acted as
a blowing agent and carbon source and occurs thermal decomposition under the catalysis
of APP to produce loose carbon layer due to its decomposition and the production of typical
gases, meanwhile supporting adhesion between the APP particles and the cotton fabric
due to its high viscidity [19], followed by immersing in the PDMS to make the APP firmer
on the fiber surface. Finally, PDMS/CNC-SiO2 hydrophobic mixture was used to cover the
BAP cotton and the modified CNC-SiO2 rods formed a superhydrophobic surface on the
top of the BPEI/APP layer by meeting both reasonable rough structure and low surface free
energy supplied by FOTS. At the same time, the SiO2 was also an inorganic flame-retardant
matter [27] and could further enhance the flame-retardant effect. Additionally, PDMS could
supply the adhesion between the CNC-SiO2 layer and the BPEI/APP layer. Therefore, the
high-efficiency flame-retardant and superhydrophobic cotton fabric (BAPC cotton) could
be prepared.
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Figure 1. Formation mechanism of flame-retardant and superhydrophobic cotton fabric.

3.2. Surface Morphology

TEM images of the CNC-SiO2 rods can be seen in Figure 2a. CNC is a substance
rod-like structure, and the pearl-like CNC-SiO2 rods are formed by growing SiO2 particles
on the CNC as a central axis. As shown in Figure 2b, the cotton fibers showed a relatively
smooth surface in the untreated fabric and have a certain of gaps among them, which are
the reason for good breathability of the cotton fabric. After the fabrics were coated by
BPEI (Figure 2c), there was no significant change on the surface of the cotton fibers. After
further immersing in APP aqueous dispersion, some irregular-shaped APP particles were
attached to the surface of the B cotton fabric (Figure 2d), followed by treatment by PDMS
(Figure 2e) to obtain a firmer structure. When the CNC-SiO2/PDMS hydrophobic mixture
was immersed onto the BA cotton, the flocked CNC-SiO2 rods were fixed to the APP/BPEI
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layer using PDMS as an adhesive to build a stable rough structure (as shown in Figure 2f);
the low surface free energy is supplied by the modifier FOTS. The flame-retardant and
superhydrophobic BAPC cotton fabric is obtained.
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3.3. TGA of Cotton Fabric with Different Treatment

The thermal stability of the cotton fabric with different treatments was tested by a TG
analyzer. As shown in Figure 3, this was in the temperature range of 25–100 ◦C [28]. It
mainly occurs during the evaporation of absorbed water; during 100–200 ◦C, the weight
loss rates of all the samples were relatively stable. The cotton fibers decomposed into car-
bon by removing hydroxyl groups during 200–400 ◦C, while in a higher temperature range
of 400–600 ◦C, the residues were slowly decomposed into volatile products containing lev-
oguloglucan [29]. In the temperature range of 400–600 ◦C, in the B cotton, in addition to the
carbonization of the cotton fibers, BPEI also produced bubbles by thermal decomposition
and formed loose carbon layer on the surface of the cotton fibers. Therefore, the residue
mass is greater than the pure one. The mass of the BA cotton is mainly rapidly deteriorating
due to the thermal decomposition of APP during 200–300 ◦C [30]. The BAP cotton shows
an almost coincidental thermal stability curve with the BA one, because the amount of
PDMS is extremely low and has little effect on the residual mass. In the BAPC cotton, in
addition to the thermal decomposition of cotton fibers and CNCs of the CNC-SiO2 rods
during 200–400 ◦C, the dehydration reaction of hydroxyl groups among SiO2 particles is
also one of the main reasons [31]. In the range of 400–600 ◦C, SiO2 continues to dehydrate
and lose weight. Additionally, the weight loss of the modified CNC-SiO2 rods in the range
of 400–600 ◦C might be caused by the thermal decomposition of its surface low-energy
substances, and the mass is relatively stable after 600 ◦C.
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3.4. FTIR Analysis

As shown in Figure 4, the absorption peak at 1100 cm−1 is caused by the stretching
vibration of the Si–O–Si bond from SiO2 particles [32]. The absorption peak at 2988 cm−1 is
due to the stretching vibration of the C–H bonds from CNC and FOTS [33]. The stretching
vibration of the –OH causes the absorption peak at 3439 cm−1 and the strength of the
modified one is weaker than that of the unmodified one. This is because –OH is reduced
due to the reaction between FOTS and –OH on the SiO2 surface, the reaction between
FOTS and –OH has generated new Si-O bonds whose stretching vibration caused the new
absorption peak at 901 cm−1 [16]. The new absorption peaks at 1145 and 1208 cm−1 are
caused by the stretching vibration of the C–F bond from FOTS, proving successful grafting
of FOTS.
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3.5. Mapping Analysis

To detect the chemical component of the BAPC cotton fabric, energy dispersive spec-
trometer (EDS) is used. As shown in Figure 5a–h, except C and O elements, the elements
(N, P and Si) exist in the BAPC cotton and their distribution is relatively uniform, proving
that APP, BPEI and PDMS have been attached to the surface of the cotton fiber with good
distribution. After treatment with the modified CNC-SiO2 rods, the fabric shows a dense
distribution of the F element, which supplies low surface free energy for the superhy-
drophobic surface. It has been proven that FOTS are grafted onto CNC-SiO2 rods in FTIR
analysis (Figure 4).
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3.6. Wettability

As shown in Figure 6a–c, all the WCAs of the pure, B and BA cotton are 0◦, and when
the water droplets (dyed blue) were dropped onto the surface of these cottons, they could
soak into the substrates due to gaps among cotton fibers and a large number of hydrophilic
hydroxyl groups on the surface of these cotton fibers. When it was continued to be treated
only by PDMS (Figure 6d), the sample showed a certain hydrophobicity (WCA = 127.8◦),
because PDMS itself is a hydrophobic material and could provide a certain low surface
free energy. After the treatment with the modified CNC-SiO2 rods (Figure 6e), the WCA
was up to 156.6◦ and the SA only 7◦, proving that modified CNC-SiO2 rods could provide
sufficient roughness and low surface free energy [22].

3.7. Flame-Retardant Properties

A vertical flame test is conducted to evaluate flame-retardant properties of the cotton
fabric with different treatment. As shown in Figure 7a, the pure cotton could be quickly
lit by and the fire spreads fast. Additionally, when the flame is removed, the fire does
not go out until it is absolutely burned. Additionally, the pure cotton is burnt to ashes,
extinguishing the fire within 18 s. Additionally, the BA cotton was not ignited within 12 s;
when the fire source was removed, the flame was extinguished instantly and the cotton was
intact, only leaving a long blackened trace by smoke. This is because BPEI is dehydrated
under the catalysis of APP during combustion and the foaming agent decomposes out
inert gas to form an expansive and porous carbon layer, hindering the extension of oxygen
and heat and playing a role in protecting the underlying cotton fabric [34]. The BAP cotton
showed a similar combustion process to the BA one, but a much shorter blackened trace.
This might be because after PDMS burned, a carbon layer was added and had a better
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protective effect. Similar to the BA and BAP ones, the flame was extinguished as soon as it
was removed; the BAPC cotton could also not be ignited within 12 s and had the shortest
blackened trace, showing outstanding flame-retardant properties. This is because SiO2
itself is a good inorganic flame- retardant, combining together with BA coating and having
a double protection [35].
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As we know, the LOI value represents the minimum oxygen concentration required
for the sample to maintain combustion in oxygen–nitrogen mixture. If the LOI value of
materials is higher than 21%, it will be considered flammable. As shown in Figure 7b, the
LOI value of the untreated sample is only 18.3% and consistent with the previous report
which the LOI value of the pure cotton is only 18–19% [7]. The LOI value of the BA coating
reaches 22% and belongs to a non-combustible material, proving that BA coating has a
good flame-retardant effect. The LOI value of the BAP coating is 24.2% and a little higher
than that of the AB one. This is because PDMS is an easily combustible material and burnt
to form a loose carbon layer which plays a role on heat insulation and oxygen isolation.
The LOI value of the BAPC coating is up to 68.6%, which is because SiO2 itself is a kind of
flammable material and able to further improve flame-retardant properties.
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3.8. Durability

To test the mechanical durability of the samples, the cotton fabric with different
treatment was examined by repeatedly rubbing using a cylindrical copper under a pressure
of 8.8 kPa. The BAPC cotton lost superhydrophobic until the 16th cycles and the WCA
decreased to 149.4◦ (as shown in Figure 8a). This was because the CNC-SiO2 coating on the
surface of the cotton fiber was destroyed continuously during testing, leaving only sparse
CNC-SiO2 clumps and not affording superhydrophobic (as shown in Figure 8b). To prove
the flame-retardant effect of the BA coating, the cotton treated only with CNC-SiO2 coating
was taken as a reference group. After abrasion for the same 16 times, the vertical flame test
was carried out on it. The results are shown in Figure 8c; the flames could spread quickly
and the CNC-SiO2 cotton was quickly burned out, which is because when the CNC-SiO2
coating is worn off, it loses its fire protection. However, the flame-retardant performance of
the BAPC coating was still retained even after one hundred cycles (as shown in Figure 8d),
which is because the BA coating has not been worn off after 100 abrasion cycles. The SEM
image of the BAPC coating after combustion is shown in Figure 8e. The fiber is intact,
with only a loose surface layer, which is a porous carbon layer formed by the thermal
decomposition of APP. This proves the BA coating has excellent adhesion. It still had a
good flame-retardant effect with a LOI value of 22.4%. Therefore, it is proven that it has
good flame-retardant durability.
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4. Conclusions

The flame-retardant and superhydrophobic cotton fabric could be prepared by a
simple sequential dipping. The flame-retardant component BPEI/APP and the superhy-
drophobic component CNC-SiO2 rods could be connected together by PDMS to form a
multi-functional coating on the surface of cotton fabric. This as-prepared cotton fabric
showed excellent flame-retardant and superhydrophobic properties, the value of oxygen
index meter (LOI) reaching 69.8 and WCA is up to 156.6◦. In the BPEI/APP coating, BPEI
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acts as acid source and a binder and APP acts as carbon source and a foaming agent.
During burning, a loose carbon layer is formed on the surface of the cotton fibers to isolate
heat and oxygen and to play a flame-retardant role. PDMS mainly adheres the CNC-SiO2
layer to the surface of BPEI/APP layer. In the CNC-SiO2 layer, the surface of SiO2 is
hydrophobically modified by FOTS to provide rough structure and low surface free energy,
while CNC mainly plays a role in stabilizing SiO2 particles; meanwhile, SiO2 is a highly
effective flame retardant material. The BAPC cotton fabric also shows good wear resistance.
After the 16th abrasion cycles, the sample lost its superhydrophobic properties, but still
had flame-retardant properties. Given the simplicity of preparation and good performance,
the resulting cotton fabric has a potential application.
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