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Abstract: The Zr film microstructure is highly influenced by the energy of the plasma species during
the deposition process. The influences of the discharge pulse width, which is the key factor affecting
ionization of sputtered species in the high-power impulse magnetron sputtering (HiPIMS) process, on
the obtained microstructure of films is investigated in this research. The films deposited at different
argon pressure and substrate biasing are compared. With keeping the same average HiPIMS power
and duty cycle, the film growth rate of the Zr film decreases with increasing argon pressure and
enhancing substrate biasing. In addition, the film growth rate decreases with the elongating HiPIMS
pulse width. For the deposition at 1.2 Pa argon, extending the pulse width not only intensifies the
ion flux toward the substrate but also increases the fraction of highly charged ions, which alter the
microstructure of films from individual hexagonal prism columns into a tightly connected irregular
column. Increasing film density leads to higher hardness. Sufficient synchronized negative substrate
biasing and longer pulse width, which supports higher mobility of adatoms, causes the preferred
orientation of hexagonal α-phase Zr films from (0 0 0 2) to (1 0 1 1). Unlike the deposition at 1.2 Pa,
highly charged ions are also found during the short HiPIMS pulse width at 0.8 Pa argon.

Keywords: zirconium; high-power impulse magnetron sputtering; pulse width

1. Introduction

Zirconium (Zr) exhibits exceptional properties, such as low neutron absorption cross-
section, high mechanical strength, high melting temperature, resistance to corrosion and
oxidation [1–4]. Therefore, Zr can be used as an alloying agent or compound in mate-
rials. Its alloys, oxides and nitrides are widely used in many refractory and machining
applications [1,3–5], including nuclear reactors [6–9], aerospace turbines [10], crucibles
and furnaces [11]. Zirconium is also a non-toxic, biocompatible material for medical
implants [12,13]. Its powder also can be used as explosive primers and catalysis [14].
Zirconium could be a potential source to fabricate high-k gate dielectrics in semiconduc-
tor field-effect transistors and a candidate for infrared reflectors [14,15]. Most of these
Zr-contained alloy or compound films are deposited by applying physical vapor deposi-
tions (PVD) [4,5,15–21], parts are prepared by plasma spray and chemical vapor deposi-
tion [10,22]. The obtained film structure is significantly influenced by substrate material,
interlayer, source material, negative substrate biasing and kinetic energy of generated
species [16,19–21]. Since zirconium is a raw material for products in such a wide range of
applications, and various deposition techniques of zirconium-contained coatings have been
attempted and industrialized, knowing the properties and discharge behavior of zirconium
sources is essential for the process control.

High-power impulse magnetron sputtering (HiPIMS) is a highly ionized physical
vapor deposition technique, which is based on magnetron sputtering with delivering high-
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power densities in pulses with a low duty cycle [23,24]. The high-power pulse mode enables
a high-density plasma above the source cathode and enhances the ionization ratio of the
sputtered source particles, which provides facilitation for altering the film microstructure
through controlling the kinetic energy of incident ions and migration of adatoms via
substrate biasing [25–27]. It allows the preparation of films with superior properties,
especially compared to direct current magnetron sputtering [28,29]. This feature meets the
demands of microstructural texturing for zirconium thin film preparation [16,19–21] and
lowers down the deposition temperature for specific crystalline phases [30,31].

Although various HiPIMS power supplies or coating systems are commercialized for
years [24], the discharge behavior for each different metal and the physics behind it are still
in exploration [25–27,31–35]. Effects of pulse off time, substrate bias, and magnetic field on
the HiPIMS deposition of zirconium-containing coatings have been reported [21,36,37], but
the influences of discharge pulse width, deposition pressure, and applying synchronized
substrate bias have not been revealed. In our previous work [38], it was found that the
deposition pressure, the discharge pulse width significantly affects the energy of ions and
the obtained chromium film structure. A synchronized pulsed substrate bias effectively
prevents the bias voltage from dropping while the high-power pulse discharge initiates,
as described in the literature [23,39]. This helps the improvement of the film density and
the crystallinity through steady substrate bias voltage. Therefore, this work researched the
influences of the HiPIMS discharge pulse width at two different argon deposition pressure
on the microstructure of obtained zirconium films.

2. Materials and Methods

The deposition system and power supplies were described in our previous work of Cr
films [38]. The source material was one rectangle zirconium target cathode (432 (L) × 76 (w)
× 13 (h) mm3) with an unbalanced magnetron and connected with the TRUMPF Hüttinger
TruPlasma Bias 4010 G2 (TRUMPF, Ditzingen, Germany) in the unipolar negative voltage
pulse mode. Two different substrate materials were used at the same time, SUS 304 stainless
steel mirror plate with a size of 20 (w) × 30 (l) × 1 (h) mm3 and Silicon wafer chips with
a size of 1021 mm2 (a) × 0.3 mm (h). The cleaning process, the position in the deposition
chamber, and the argon glow discharge ion bombardment of substrate samples are the
same as our previous work [38]. The deposition parameters for Zr films are shown in
Table 1.

Table 1. Parameters for the deposition of zirconium films.

Deposition Parameters Value

Atmosphere Argon pressure (Pa) 0.8, 1.2

Target HiPIMS power

Average power (kW) 3
Peak voltage (V) −987~−877
Peak current (A) 214~156

Pulse frequency (Hz) 410, 105, 58
Pulse width (µs) 60, 200, 400

Pulse duty cycle (%) ~2.5

Zr ion bombardment
Synchronized bias voltage pulse −1000 V (pulse width 120, 400, 800 µs)

Bombardment time 40 s

Zr film deposition Synchronized bias voltage pulse Ground 0 V, −200 V (pulse width 120, 400, 800 µs)
Deposition time 40 min

Deposition temperature (◦C) 190~200

Note: high-power impulse magnetron sputtering (HiPIMS).

Rectangle high voltage pulses with three different pulse widths 60, 200 and 400 µs
were, respectively, were applied to the source-target to initiate the sputtering of zirconium.
The pulse voltage and the corresponding peak current on the target float between −987 to
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−877 V due to the varying target conditions and the set deposition pressures. To simplify
the conditions of varying voltage, current, and peak power of each pulse, the pulse fre-
quencies were manually set with the same pulse duty cycle 2.5% to keep a constant target
average power of 3 kW for all depositions.

Applying a pulsed substrate bias, which is synchronized with the target HiPIMS
discharge pulse, is helpful to selectively attract ions and the charged species with a stable
bias voltage and enables the target ion bombardment for a stronger film adhesion [23,38].
As the target HiPIMS pulse began, the substrate bias voltage pulse of–1000 V with a
2-fold pulse width of HiPIMS pulses was simultaneously applied in order to accelerate
Zr ions to bombard the substrate. To minimize the roughness and temperature change
on the substrate surface, the Zr ion bombardment is restricted to 40 s, and the substrate
temperature was not over 200 ◦C. After ion bombardment, the substrate bias voltage then
switched to 0 V (grounded) or pulsed −200 V directly without any gradient biasing to
deposit a subsequent Zr film for 40 min. During the deposition, the optical emission
spectra of HiPIMS discharge were recorded by applying an AvaSpec-ULS2048XL-EVO
spectrometer (AVANTES, Apeldoorn, The Netherlands) with 1 s accumulation time.

A scanning electron microscope (SEM, S-4800 Cold Field Emission Scanning Electron
Microscope, Hitachi, Tokyo, Japan) was used to observe the top and cross-sectional mi-
crostructures of deposited Zr films. Film thickness was estimated from cross-sectional
images. The X-ray diffractometer (XRD, D8 Discover X-ray diffractometer, Bruker, Billerica,
MA, USA) was utilized to characterize the crystallinity of the Zr films. The nanoindenta-
tions (A TTX-NH3 nanoindentation tester, Anton Paar, Graz, Austria) were carried out to
evaluate the film hardness. Settings of analysis instruments were as the same as described
in the references [38].

3. Results and Discussion
3.1. The Comparison between HiPIMS Discharge Behaviors of Zr at the Difference Deposition
Pressure and Voltage Pulse Width

The current pulse shape of the Zr cathode with different HiPIMS voltage pulse width
and under three different deposition pressures are shown in Figure 1. The current initially
increases to the maximum in 20 to 50 µs. The higher the pressure is, the faster the current
increases. This is due to the enhancement of ionization through increased species collisions
at higher pressure [23–25]. For the pulse longer than 60 µs, the current decreases moderately
after the maximum. Moreover, the current increases to about 150 µs. This second current
peak could be attributed to the appearance of metal ions after the transformation from the
argon sputtering stage into the self-sputtering stage [23–25]. The curves in Figure 1b,c are
similar, but a drastically current drop occurred at about 150 µs on curves in Figure 1a. This
current drop could be due to the gas rarefaction, and the pressure is too low to sustain the
self-sputtering process [24]. The areas of current pulses of 1.2 Pa are slightly higher than
those of 0.8 Pa but much higher than those of 0.13 Pa.

To confirm such difference among the excited ions at three deposition pressures and
different pulse widths, the responded substrate current pulses are recorded by the built-in
oscilloscope of the bias power supply while applying the synchronized −800 V substrate
bias pulses with 1 ms pulse width. The substrate current represents the state of the incident
ions toward the substrate. In order to clearly demonstrate the disparity, only three substrate
current pulses of different HiPIMS pulse widths at each pressure are shown in Figure 2.
The pulse width of 60 µs is shorter than the moment of the maximum current peak in
Figure 1. The pulse width of 200 µs is just after the second current peak in Figure 1b,c,
and the current drop in Figure 1a. The longest pulse width in this study is 400 µs. As
shown in Figure 2, the area of the responded substrate current pulse extends with the
target pulse width. Although the contributions of Ar or Zr ions on the substrate current
remain indistinguishable, the extended area of current pulses indirectly evidences that the
amount and the charge state of ions intensify with the pulse width. All the responded
substrate current pulses in Figure 2 are broader than the corresponding target current pulse
width in Figure 1. The peak currents of 200 µs and 400 µs in Figure 2 occur afterward
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comparing to the relevant pulses in Figure 1. Moreover, the delay elongates with increasing
deposition pressure from 0.13 Pa to 0.8 Pa. The delay between pulses at 0.8 and 1.2 Pa is
indistinguishable. Such delay at different deposition pressure could be attributed to several
reasons, including the duration of the ion recycling, the transition from gas sputtering into
self-sputtering, and the flight of ions from target to the substrate [23,24,32,38,40–42]. At the
beginning of each HiPIMS pulse, the strong negative voltage on the target attracts back
a large fraction of the gas ions and sputtered metal ions (ion recycling), which restricts
the fraction of ions that reach the substrate until the conditions of the discharge current
runaway are fulfilled [23,24]. The responded substrate current of target pulse width 60 µs
is much lower than those of target pulse width 200 and 400 µs at all three pressures. This
implies the ion flux or the ionization ratio of the sputtered species could be much lower
when the pulse width is short. The relatively much lower currents at 0.13 Pa shown in
Figures 1a and 2a imply a lower ionization ratio of the Zr species, which is not a proper
condition of the HiPIMS deposition of the Zr film. There is a current drop at about 200 µs
in Figure 2a, which is consistent with Figure 1a. Therefore, pressures of 0.8 Pa and 1.2 Pa
were chosen to deposit zirconium films for further experiments.
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3.2. Effects of the Pulse Width on the Zr Film Structure

Figure 3 shows the top and cross-sectional SEM SE images of HiPIMS Zr films de-
posited with different pulse widths, 60, 200 and 400 µs at deposition pressure 1.2 Pa onto
grounded silicon wafer chips (substrate bias 0 V). Three samples of the different pulse
widths present different columnar cross-sectional features. The microstructures of the Zr
films of 60 and 200 µs shown in Figure 3a,b are similar to the pulsed-DC deposited Zr films
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at a temperature of 773 K [19]. These loosen columnar features are in the range of Zone 1
according to the structure zone model proposed by Anders based on Thornton’s structure
zone model [43]. The inter-columnar void between hexagon columns, which results from
the shadowing effect, reduces. The hexagonal pointed top becomes more rounded, flatter
and irregular, with an elongation of the pulse width. The microstructure of the Zr film of
400 µs in Figure 3c is in the range of Zone T. Similar trends were found in other reported
HiPIMS Cr films [34,38].
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wafer chips.

The density of excited ions and the portion of high energy ions both increase with the
pulse peak power in a HiPIMS process [33]. Since the output voltage pulse waveform of the
HiPIMS power in this work is near to a rectangular pulse with a voltage variation of 11%,
the peak power can be considered in proportion to the current pulse width. The increased
ion flux and ion energy provide higher mobility of adatom to diffuse further and to form a
denser and crystalline structure [27,31]. The X-ray diffractograms of the deposited films
in Figure 4 prove this assumption about the energy change of adatoms. There are only
diffraction peaks of hexagonal close-packed α-phase of three films with different pulse
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widths. Without applying substrate bias, the deposited Zr films tend to exhibit a preferred
orientation of (0 0 0 2). Since the three films are all thicker than 4 µm, the influences of
film thickness on crystal structure can be ignored [20]. The peak intensity of preferred
orientation enhances with elongating the pulse width indicates that the crystallinity of
films also increases with the pulse width.
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The estimated deposition rate of at pulse widths of 60, 200, and 400 µs are, respectively,
140, 151, and 157 nm/min. Even the average target power is kept at the same 3 kW, and
the duty cycle is kept at the same 2.5%, the deposition rate increases with the pulse width.
One possible reason is mentioned in the previous section. It usually requires several
microseconds delay for the ion recycling process before the discharge current runaway is
fulfilled [23,24] in each pulse. In the condition of the same duty cycle, the proportion of
delay for a shorter pulse with a higher frequency is relatively increased, which results in a
lower proportion for really releasing sputtered species toward the substrate.

3.3. Effects of Synchronized Pulse Substrate Bias on the Zr Film Structure

Figure 5 shows the top and cross-sectional SEM SE micrographs of the Zr films
deposited with target different pulse widths, but the same synchronized pulse substrate
bias of −200 V at 1.2 Pa. The microstructures of the three films with different pulse widths
are similar and in the range of Zone 2 [43]. The boundaries of columns are closely connected
with granular edges. Comparing with the microstructure of films shown in Figure 3, the
films deposited with applying substrate bias of −200 V shown in Figure 5 exhibit relatively
denser structures without inter-columnar voids. It demonstrates the incident charged
species toward the substrate and deposited adatoms are entirely energized by negative
substrate bias. On one hand, the similar microstructure in Figure 5 indicates that the ion
energy enhancement by the negative substrate bias surpasses the effect of pulse width
and peak power. On the other hand, applying adequate substrate bias can counteract the
weakness of the lower ion energy for short pulse widths.

In Figure 6, the XRD patterns of three films deposited with a substrate bias of −200 V
show strong diffraction peaks of crystalline α-phase. This again suggests that using the
substrate bias will enhance the ion energy and improve the crystallinity. While using a
longer pulse width or a negative substrate bias, the adatoms would be energized to migrate
long distances to arrange a more ordered crystalline structure. The film of 60 µs exhibits the
same preferred orientation of (0 0 0 2), but a much stronger diffraction peak. However, the
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strongest peak of films of pulse width 200 and 400 µs with −200 V substrate bias changes
to (1 0 1 1). Similar changes in the preferred orientation results by the substrate bias
were found on metallic and nitride films [27,31,38,44–46]. Adatoms with higher mobility
could migrate further on the planes which require longer diffusion distance [27,31], which
promotes the epitaxial grain growth [32,33] and also lead to a finer grain structure [43,44].
The high ion-to-atom ratio and high ion bombardment also cause the recrystallization and
consequent epitaxial growth of grains [45].
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The estimated deposition rate of pulse width 60, 200, and 400 µs with applying−200 V
substrate bias are respectively 109, 126, and 138 nm/min. The deposition rate still increases
with the pulse width when the −200 V substrate bias is applied. The deposition rates for
films of −200 V substrate bias are about 28%, 19% and 13% lower than that of 0 V. This
could be attributed to reducing void and the sputtering loss of adatoms. This difference
between film growth rates of HiPIMS depositions with and without substrate bias voltage
reduces with the target pulse width. This could be due to the increase of the film density
with elongating the pulse width for films of substrate bias 0 V. The film hardness could be
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an indirect proof of the increasing film density by extending the target pulse width and
applying the negative substrate bias.
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Figure 6. X-ray diffractograms of Zr films deposited at an argon pressure of 1.2 Pa and pulsed
subscheme 200. V with different HiPIMS pulse widths (ton).

Figure 7 shows the nanoindentation results of the Zr films deposited at a pressure of
1.2 Pa by applying different target pulse widths and negative substrate bias voltages. The
film hardness of pulse width 200 and 400 µs are about 30% higher than that of pulse width 60
µs. This trend is consistent with the reported HiPIMS deposition of Cr films [35,38]; the film
hardness increases with the peak power. Applying a negative substrate bias voltage enhances
the film hardness significantly, from 15% to 32%. The increased film hardness for longer pulse
width and applying substrate bias could be attributed to the elimination of inter-columnar
voids shown in Figure 1. However, based on the Hall–Petch relation, the grown grain size,
which countervails the benefit from increased film density, which may be the reason for the
competitive hardness values for films of target pulse width 200 and 400 µs.
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3.4. Effects of Deposition Pressure on the Zr Film Structure

In previous work of Cr films, higher deposition pressure usually results in a lower
deposition rate due to the increased scattering loss of sputtered species during the flight
at high working pressure. The increase of scattering of sputtered particles with working
pressure has been detailly investigated by Wu et al. [47]. In addition, the decrease of
deposition rate reduces with elongating the pulse width [38]. In order to compare, Zr films
of the different pulse widths were also prepared at a substrate bias of −200 V in a 0.8 Pa
argon atmosphere. Figure 8 shows the top and cross-sectional morphologies of the Zr films
of the working pressure of 0.8 Pa are shown. The microstructures of the three films are all
in the range of Zone 2 and similar to those in Figure 5. The estimated deposition rate of
pulse width 60, 200, and 400 µs are 118, 130, and 139 nm/min, which are slightly higher but
very close to those of 1.2 Pa listed in the previous section. Furthermore, the film hardness
of the three pulse widths is approximate about 7 GPa and slightly increases with the pulse
width. This is different from the deposition of Cr films [38].
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synchronized substrate pulse bias −200 V.



Coatings 2021, 11, 7 10 of 13

The XRD patterns of the Zr films of 0.8 Pa, as shown in Figure 9, are similar to those
in Figure 6. However, the relative intensity of peak (1 0 1 1) for all three pulse widths
is stronger than those of 1.2 Pa. This implies that the ionization ratio and the energy
of excited ions for 60 µs pulse width at 0.8 Pa could be higher than that at 1.2 Pa. To
investigate the difference of excited plasma species in these two argon pressures. The
optical emission spectra were recorded during the film deposition at different pulse widths
and working pressures, as shown in Figure 10. At a pressure of 1.2 Pa (Figure 10b), the
intensity of emission peaks with a wavelength shorter than 440 nm all intensify with
elongating pulse width. This means that the ionization ratio and high charged ions increase
with the pulse width.
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Otherwise, the emission peaks with the wavelengths shorter than 440 nm are strong
for all pulse widths at a pressure of 0.8 Pa. This reveals the ionization ratio of sputtered Zr
species could be higher at a pressure of 0.8 Pa. This could be the reason for approximate
hardness values for films of three pulse width. However, the substrate current curves in
Figure 2b,c does not present a corresponding increase. The energy distribution of differently
charged ions could be varied by the pulse width [42], pressure [48], and properties of source
material [25]. The ion flux could also be varied by the pressure and the ejection angle [40].
It requires further investigation to reveal the mechanism.

By comparing with the HiPIMS deposition of titanium and chromium films [30,38],
several phenomena of HiPIMS deposition, which are very different from those of direct
current magnetron sputtering, were found. In the typical magnetron sputtering, the
relationship between plasma power, pressure, working distance, and deposition rate of
different elements are similar and can be easily estimated by referred to the reported
sputtering yield vs. Ar+ [49]. This relationship in HiPIMS deposition of different can be
different, even contrary. For example, the sputtering yield vs. Ar+ of chromium is twice
that of those of zirconium and titanium. However, the deposition rate of zirconium is four
times as chromium and twice of titanium with the same HiPIMS deposition parameters.
This could be a result of compromised and synergistic influences of pressure, ejection angle,
self-sputtering yield, ionization ratio [23]. This work preliminarily indicates the influences
of discharge pulse width, deposition pressure and substrate bias on the HiPIMS deposition
of zirconium film. The results can be used to evaluate the settings of deposition pressure
and pulse width for HiPIMS depositing zirconium alloys or compounds by utilizing
multi-target co-sputtering or composite targets for desired compositions and texture. For
instance, a long pulse width could be the better choice to deposit crystalline metallic films
on a low thermal tolerant and electrically insulated polymer substrate. Short pulse width
could minimize the target poisoning effect in a reactive HiPIMS deposition of zirconium
compounds, and the lower deposition pressure could be the better choice for a higher ion
flux and less hysteresis [24].

4. Conclusions

This research preliminarily investigates the influences of basic parameter settings,
including discharge pulse width, deposition pressure and substrate bias, on the high-power
impulse magnetron sputtering deposition of zirconium film with the same average power
and pulse duty cycle.

Without applying the substrate bias, the inter-column gaps and voids reduce with
elongating of the discharge pulse width and individual hexagon columns. The crystallinity
and preferred orientation of films also enhance the discharge pulse width due to the en-
hanced ionization ratio of sputtered species. Applying the synchronized negative substrate
bias voltage effectively intensifies the energy of sputtered species and adatoms, in order to
alter the loosened columnar film microstructure into a more crystalline, epitaxial granular,
and denser one. In the case of the densified film microstructure, the film hardness increases
with the pulse width and negative substrate bias. The deposition rates of the Zr thin films
at working 0.8 Pa are higher but close to those of 1.2 Pa. The Zr films deposited with
different pulse widths at 0.8 Pa exhibit similar microstructure, and preferred orientations
are similar to those of 1.2 Pa, but the fraction of (1 0 1 1) orientation is increased. This could
be attributed to the higher ionization ratio at 0.8 Pa. These trends can help to estimate
proper settings of deposition pressure, discharge pulses, and substrate bias to synthesize
zirconium-contained alloys and compounds, with the desired texture and composition, by
using multi-target co-sputtering or composite target.
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