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Abstract: Over the past 10 years, carbon dots (CDs) synthesized from renewable raw materials
have received considerable attention in several fields for their unique photoluminescent properties.
Moreover, the synthesis of CDs fully responds to the principles of circular chemistry and the concept
of safe-by-design. This review will focus on the different strategies for incorporation of CDs in
organic light-emitting devices (OLEDs) and on the study of the impact of CDs properties on OLED
performance. The main current research outcomes and highlights are summarized to guide users
towards full exploitation of these materials in optoelectronic applications.

Keywords: carbon dots; organic light-emitting diode; photoluminescence

1. Introduction

The growing demand for electronic devices for an ever-increasing number of applica-
tions means that green and sustainable electronics are no longer just a dream but a pressing
need [1].

In this context, the electronics and optoelectronics based on organic semiconductors
showed, in the last few years, significant growth in many areas dominated by tradi-
tional electronics [2]. The foremost advantage of organic materials is that they are cheap,
lightweight, easy to be processed, and flexible [3]. However, the synthetic techniques
currently used for production of organic semiconductors [4] suffer from toxicity and envi-
ronmental problems that can seriously prevent their large-scale production. In this regard,
application of the principles of green chemistry for development of synthetic sustainable
methods for the synthesis of semiconductors is essential to support the development of
organic electronics, thus moving towards increasingly sustainable electronic devices [5].

In fact, the use of organic materials to build electronic devices [6] holds the promise
that future electronic manufacturing methods will rely on safer and more abundant raw
materials [7]. The vision is for resource-efficient synthetic methodologies, whereby both
devices themselves and manufacturing of those devices use less materials and more safe
materials.

The first pillar on which the new sustainable industrial revolution is based on is
inevitably the development of new materials that are possibly safe and sustainable by
design [8].

Among the emerging classes of materials able to meet these needs, carbon dots (CDs)
are attracting considerable interest. They are part of the nanocarbon family, and differently
from the best known carbon nanotube [9], they include quasi-spherical nanoparticles with
sizes around 10 nm. Since their first discovery in 2006, CDs [10,11] have gained ever-
increasing attention due to their fascinating properties like distinctive optical behavior,
tunable emission, different functional groups, good biocompatibility, chemical and photo-
stability, low toxicity, and low-cost production. More importantly, CDs properties can
be changed by controlling their size, shape, and heteroatom doping and by modifying
the surfaces, thanks to the quantum confinement effect (QCE) [12] (Figure 1). They are
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considered promising green alternatives to fluorescent dyes [13–15] and generally to toxic
metallic colloidal semiconductor nanocrystals and have been proposed for optoelectronic
applications in general [12,16–19] (Figure 1), such as sensing, bioimaging, fingerprint
detection, gene delivery, solar cells, or printing inks.
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In general, CD preparation methods can be grouped into two main approaches: top-
down and bottom-up. The first strategy [20–27] involves the use of techniques such as arc
discharge, laser ablation, chemical oxidation in strong acid, and electrochemical synthesis
to break down carbon sources such as graphite, carbon nanotubes, and nanodiamonds to
form fluorescent CDs. In contrast, in the bottom-up approach [28–34], CDs are synthesized
from organic molecules by applying hydrothermal solvothermal methods, ultrasonic or
microwave treatments, or simple thermal combustion.

Although CDs have been synthesized from different starting materials with a great
variety of techniques, there is a huge effort to develop sustainable synthetic paths which ad-
here to the principles of green chemistry. It has been demonstrated that CDs can be obtained
from any carbon-based materials. This, in particular, guarantees that most by-products
of the food supply chain can be reused to produce CDs. Agriculture products contain a
myriad of natural molecules that can make up a diverse source of surface functional groups
in CD formation.

A relevant feature for CD sustainability has to do with synthetic methodologies for
their fabrication. CDs can be produced hydrothermally, that is, by heating the starting
materials in water under atmosphere or elevated pressure [28–31,34,35]. Consequently, the
cost of production is low, and the operation is easy, relatively safe, and free from organic
solvents (Figure 2). Furthermore, shorter processing time and lower energy consumption for
CD manufacture can be obtained when microwaves are used as the heating source [36,37].

Toxicity studies of the CDs were performed with both plants and animals (mice), re-
vealing good biocompatibility [38–40], and opened the way not only to their bio-application
but also to biodegradable electronics [19,40].
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With this perspective, in the present review, we will discuss CDs obtained with a
bottom-up approach as it is the one that best adheres to the principles of green chemistry.
They can be obtained from renewable sources or waste such as citric acid or agricultural
waste [37]. The synthetic methodologies are simple and inexpensive, and they do not
require the use of metal catalysts or chlorinated solvents. We will focalize on CDs as a
sustainable new platform for organic light-emitting device (OLED) technology [42,43]
without deepening the methods of synthesis on which relevant works have already been
written [28–37,44]. In fact, among the various interesting applications of organic electronics,
OLEDs are certainly those that have already carved out a slice of the market [42], and for
this reason, the development of sustainable active materials and green technologies can
already help the economy make a green turn.

In the next Section 2, we will make a brief introduction on the type and optical proper-
ties of these luminescent carbon materials. Section 3 will cover the different applications
in electroluminescence devices as active layers or as charge regulating layers. In the last
section, we will give some perspectives for the use of CDs including potential applications
and possible development in particular as a safe-by-design material. We hope that this
review will provide new insights to develop new knowledge on CDs, from the point of
view of both sustainable synthesis and multiple applications, so that their potential in the
optoelectronics area can be consolidated.

2. Definition of Carbon Dots and Optical Properties

Since their fortuitous discovery in 2004 by Xu et al. [10] and subsequently by Sun
et al. in 2006 [11], CDs attracted a great deal of attention. Generally, CDs are 0-dimension
nanocarbons with a typical size of less than 10 nm, although approximately 60-nm-size CDs
have also been reported. CDs are quasispherical nanoparticles consisting of amorphous
and crystalline parts, mainly composed of carbon with a fringe spacing of 0.34 nm, which
corresponds to the (002) interlayer spacing of graphite [12–14]. CDs are often confused,
or associated, with graphene quantum dots (GQDs) [15], which are always part of the
family of carbon-based nanomaterials but have different characteristics and origins. In
fact, GQDs are nanofragments of graphene exhibiting a graphene structure inside the dots
with a typical fringe spacing of 0.24 nm associated with the (100) in-plane lattice spacing of
graphene. They have only one or a few layers of graphene with variable thickness between
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2 and 10 nm and with usually 100 nm in lateral dimension, and they are generally produced
by converting graphene or graphene oxide via top-down approaches [14].

Over the last 15 years, CDs have been synthesized with different approaches (i.e., top-
down and bottom-up). However, only recently, sustainable precursors and methodologies
have been deeply investigated for their production [45,46]. These approaches look for
sustainable materials which are low-cost, scalable, industrially and economically attractive,
and based on renewable and highly abundant resources. This means that CD synthesis can
meet the requirements of circular chemistry. Interestingly, CDs after synthesis can be further
functionalized with various surface groups. In particular, oxygen-based functional groups,
such as carboxyl and hydroxyl, give excellent solubility in water and are suitable for surface
passivation and derivatization with various organic materials. Surface functionalization
modifies both the physical properties of CDs such as their solubility in aqueous and non-
aqueous solvents and their optical properties. For example, after surface passivation, the
fluorescence properties of CDs can be improved [47,48]. In addition, the large conjugated
structure endows CDs with some important characteristics, like good photostability, high
surface area, and robust surface grafting [49]. Their electronic structures can be tuned
by their size, shape, surface functional groups, and heteroatom doping, as theoretically
investigated and experimentally confirmed by several groups [50–54]. The tunability
of optoelectronic properties by modifying synthetic parameters and precursor strictly
resembled the conjugated polymer features [55].

As mentioned above, the CD emission properties are their most amazing character-
istics [41] and significant advances have been made in the last years, reaching photolu-
minescence (PL) quantum yields (PLQYs) up to 80% in CDs produced from citric acid
as a renewable precursor or bright and stable PLQYs of 26% converting toxic cigarette
butts [28,54].

Mostly, CDs are blue emitters, but emissions from ultraviolet to near-infrared [55–58] as
well as white light emission [59] were reported. In general, their PL spectra are symmetrical
and broad, with large Stokes shifts (mainly due to the CD size distribution), and usually
have an excitation-dependent behavior, with the emission peak varying with the excitation
wavelength [22,58].

The emission mechanism of CDs is a longstanding debate, and several hypotheses
have been proposed [41] (see Figure 3) such as (i) size-dependent emission, (ii) surface
state-derived luminescence, and (iii) embedded molecular luminophore [60]. Regardless
of the type of mechanism, it has been shown that CD emissions could be regulated by
controlling their size (mainly referring to sp2 carbon domains), their surface passivation
and/or functionalization, and their doping due to the presence of heteroatom [61–63].
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The first hypothesis proposed is based on the size of CDs [60]. Yuan and coworkers
synthetized multicolor-emitting CDs with different dimensions from citric acid (CA) and
diaminonaphthalene (DAN) by controlling the process parameters. CDs showed average
sizes of about 1.95, 2.41, 3.78, 4.90, and 6.68 nm (Figure 4A), with corresponding tunable
absorption (Figure 4B) blue (430 nm), green (513 nm), yellow (535 nm), orange (565 nm),
and red (565 nm) emissions, respectively (Figure 4C). In accordance with the results, they
deduced that, by increasing the size of CDs and consequently the conjugated π-domain,
the bandgap decreases (Figure 4D,E) [65].
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diaminonaphthalene (DAN) (A) from blue to red (B–E): (A) reprinted with permission from [14], copyright 2019 American
Chemical Society, and (B–E) reprinted with permission from [65], copyright 2016 WILEY-VCH Verlag GmbH & Co. KGaA,
Weinheim.

A second hypothesis is related to the surface states of CDs. Ding et al. [66] synthetized
tunable photoluminescent CDs by one-pot hydrothermal synthesis (Figure 5A). Note-
worthy, these CDs had comparable particle size and carbon core but variable degree of
oxidation of the surface state. Therefore, a gradual reduction in their band gaps and a red
shift in their emission peaks from 440 to 625 nm (Figure 5B,C) was observed by increasing
the incorporation of oxygen species into their surface structures (Figure 5D) [66].

Also, Miao et al. [67] hypothesized a similar mechanism. They modulated the CD
emission from 430 to 630 nm by controlling the degree of graphitization and the number of
surface –COOH groups by changing the molar ratios of CA to urea at different temperatures
(Figure 6). The increasing number of –COOH groups on the surface increases the electronic
delocalization, and the emission wavelength is consequently red-shifted [64].

Another relevant hypothesis to explain CD emission is molecular luminophore-
derived emission or molecular state emission. Small molecules or oligomeric luminophores
could be produced during CD synthesis, and these luminophores could be attached
to the surface of CD backbones, allowing CDs to have bright emission properties [68].
Song et al. [69] studied the chemical structure and PL mechanism of CDs from CA and
ethylenediamine (EDA). They proved the presence of a type of bright blue fluorophore
and that CD emission was a result of small molecules, polymer clusters, and carbon cores.
Indeed, the fluorophore may be attached to the carbon core, that may strongly affect the PL
properties of the CDs.
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different temperatures: the emission of CDs3 can be adjusted from 430 to 630 nm. The photolumi-
nescence quantum yields (PLQYs) of the three CDs3 in blue, green, and red were 52.6%, 35.1%, and
12.9%, respectively. Reprinted with permission from [64], copyright (2019) Springer-Verlag.

3. OLED-Based Carbon Dots

CDs with amazing properties such as optical characteristics and carbon’s intrinsic
merits of high stability, low-cost, and environment-friendliness find natural and practical
applications as components in OLED technology.

In the last decade, the interest in OLED based on CDs (hereafter CD-OLEDs) has been
growth, and an increasing number of research groups have started to investigate in this field.

We want to provide a recent overview on CD-OLEDs, illustrating the dual employment
of CDs as emitter, both as neat layer or as a guest in host–guest systems, and as a charge
regulating interlayer (Table 1 and Figure 7). Particular attention will be devoted to the
strategies used to prevent aggregation-induced quenching in the solid-state and to tune
the emission color. It is also important to underline, although beyond the scope of this
collection, that many groups used CDs also as a remote emitter, endowing blue commercial
LEDs with a color converting filter based on CDs embedded in poly (methyl-methacrylate)
(PMMA) or other matrices. The blue LED emission was tuned from blue to red by altering
the film thickness of the filter or the doping concentration of CDs [68–72].
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Table 1. Summary of organic light-emitting devices (OLEDs) incorporating a CD layer.

Starting Materials Dimension
(nm)/Shape ELPEAK (nm) LMAX (cd/m2) ηc (Cd/A) Ref.

CDs as neat emitter - - - - -

Citric acid with
2,3-diaminonaphthalene

1.95 nm 455 136 0.084

[65]
2.41 nm 536 93 0.045
3.78 nm 555 60 0.02
4.9 nm 585 65 0.027
6.68 nm 628 12 0.0028

ethylenediamine and phthalic
acid 5.53 nm 455 4.97 - [66]

citric acid + octadecene +
1-hexadecylamine Spherical 5 nm 550-670 35 0.022 [73]

1-octadecene 1-hexadecylamine 6 ± 1.9 nm 460 21 0.06 [74]

1-hexadecylamine and anhydrous
citric acid

3.3 nm
426 24

0.018 [75]
1-hexadecylamine and anhydrous

citric acid 426, 452, 588 61

1-hexadecylamine and anhydrous
citric acid + ZnO nps 426, 452, 588 90

anhydrous citric acid and
hexadecylamine

Spherical 2.0–2.5 nm
lattice spacing 0.22 554 5.7 [76]

CDs as guest emitter - - - - -

citric acid and
diaminonaphthalene.

quasi-spherical 2.4
lattice spacing 0.21 nm 450 5240 2.6 [77]

Phloroglucinol

triangular
1.9 nm 476 1882 1.22

[78]2.4 nm 510 4762 5.11
3 nm 540 2784 2.31

3.9 nm 602 2344 1.73

Citric acid with
2,3-diaminonaphthalene 2.41 nm 536 2050 1.1 [65]

human hair 2D array of CDs 2–6
nm

498
350 0.22

[79]
700 0.2

N,N-dimethyl-, N,N-diethyl-, and
N,N-dipropyl-p-

phenylenediamine

quasi-spherical 2.2 ±
0.31. 2.3 ± 0.28. 2.3 ±
0.26 nm lattice spacing

0.21 nm

605/434
612/435
616/435

5248–5909 3.65
3.85 [80]

anhydrous citric acid and
hexadecylamine

spherical_2.0–2.5 nm
lattice spacing 0.22 558-550 339.5–455.2 - [73]

anhydrous citric acid and
hexadecylamine - 474 569.8 - [81]

CDs as interlayer - - - - -

ethylenediamine and citric acid - 532 30 730 93.8 [82]

banana leaves 4–6 nm
(quasi-spherical) 486 - - [83]

Ethanolamine - 622 3500 0.63 [84]

Note the references are numbered according to the main text.
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Figure 7. Scheme of the possible device architectures that incorporate CD as an emitter or as an
interlayer.

3.1. CDs as Emitter

In 2011, Wang et al. [73] demonstrated the first white OLED (WOLED) originating
from a single CD component film. CDs, obtained by thermal carbonization of CA in hot
octadecene with 1-hexadecylamine (HDA) as the passivation agent (Figure 8a), with a
PLQY as high as 60% were incorporated as an emitting layer in WOLEDs with a direct
architecture (Figure 8b).
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octadecene with 1-hexadecylamine (HDA) as the passivation agent (Figure 8a), with a 
PLQY as high as 60% were incorporated as an emitting layer in WOLEDs with a direct 
architecture (Figure 8b). 

 

Figure 8. Schematic representation of (a) CD synthesis and typical devices architectures: (b) direct [74]
and (c) inverted [73] in which CDs are incorporated as emitters.

Electrically driven WOLED-featured electroluminescence (EL) peaked at 550 nm, with
current density (J) of 160 mA/cm2, a maximum luminance (LMAX) output of 35 cd/m2

(Figure 9a,b), and a current efficiency (ηc) of 0.022 cd/A. As shown in Figure 9c, the
maximum external quantum efficiency (EQE), defined as the ratio between the number of
emitted photons and the number of electrons injected into the device, was 0.083% at a J of
5 mA/cm2.
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and ηc 0.06 cd/A (Figure 10) comparable to Wang’s achievements (LMAX 35 cd/m2 and ηc of 
0.022 cd/A). 

Figure 9. (a) Normalized electroluminescence (EL) spectra of direct architecture LEDs at applied bias voltages: the inset
is a photograph of a white emission of our device (16 mm2) operating at 9 V. (b) J–L–V characteristics of white OLEDs
(WOLEDs). (c) The dependence of external quantum efficiency (EQE) on J. Reproduced with permission from [73], copyright
2011 The Royal Society of Chemistry.

Wang et al. reported that white light emission was associated with energy transfer
among various emitting centers in the CDs, corresponding to different energy transitions.

Paulo-Mirasol et al. [74], in 2019, by using CDs synthesized according to Wang condi-
tions [73], demonstrated that the white light was not due to the charge transfer between
the CDs but was the result of different recombination processes within the CDs. Indeed,
they proposed two radiative PL mechanisms in the CDs, involving different energies: one
originating from the core and a second process that is faster and originates from the surface
of CDs. The variation of the current injection controls the activation of the two radiative
processes that happen inside the CDs. The combined emission from different energy states
results in white light emission at an adequate current injection rate. Differently from Wang
and colleagues, Paulo-Mirasol et al. manufactured OLEDs with an inverted architecture
ITO/ZnO/PEIE/CDs/PVK/MoO3/Au (Figure 8c). They modulated the thickness of CDs
and polyvinylcarbazole (PVK, well-known and used as a hole transporting layer or HTL)
to optimize the performance of devices obtaining WOLEDs with LMAX of 24 cd/m2 and
ηc 0.06 cd/A (Figure 10) comparable to Wang’s achievements (LMAX 35 cd/m2 and ηc of
0.022 cd/A).
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Figure 10. (a) The EL spectrum of CD-LED at 8 V (top); (b) CIE (Commission Internationale de
l’Eclairage) color coordinates of LEDs with CDs as the single emitter, (c) J-L versus applied voltage
of the LED made without CDs; (d) digital picture of the device using polyvinylcarbazole (PVK) as
the emissive layer at 12 V and the photoluminescent emission spectra of the device after excitation
at 340 nm: reproduced with permission from Reference [74], copyright 2019 The Royal Society of
Chemistry.
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Ding and colleagues [66] proposed short-chain passivated CDs; in fact, the use of short
chains allows for closer CDs, which probably facilitates the injection of carriers into CDs.
Their CDs were synthesized via a one-step hydrothermal approach using phthalic acid and
ethylenediamine. The resulting CD aqueous solution featured a PLQY of 29.3% and good
film-forming ability. CD-OLEDs were fabricated by a solution processing method, and the
devices exhibited a stable blue EL peak at 410 nm at 6–9 V. Despite improvement of the
carrier transfer ability of CDs achieved by short-chain modification, the lower PLQY com-
pared with that of long-chain passivated CDs and the not optimal device architecture (see
the energy barrier at the anode interface in Figure 11a) were the most probable explanation
for the lower performance observed in the devices (Figure 11b–d).
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working voltages (the inset is a photograph of CD-LEDs at 7 V), (c) the CIE 1931 chromaticity
coordinates of CD-LEDs at different working voltages, and (d) J–L–V characteristics of CD-LEDs:
Reproduced with permission from [66], copyright 2017 The Royal Society of Chemistry.

Zhang at al. in 2013 [75] observed for the first time, a multi-colored (bright blue, cyan,
magenta, and white) EL from CDs of the same size (3.3 nm). Such a switchable EL behavior
had not been previously observed in single nanomaterial emitting layer OLEDs. This
all-solution processed device consisted of a CD emissive layer sandwiched between an
organic HTL and an organic or inorganic ETL (electron transporting layer, EIL) with typical
architecture ITO/PEDOT:PSS/PolyTPD/CDs/TPBI (where poly-TPD was poly-(N,N’-
bis(4-butylphenyl)-N,N’-bis(phenyl) benzidine and TPBI 1,3,5-tris(N-phenylbenzimidazol-
2-yl) benzene)) or ZnO/LiF/Al (Figure 12A). The devices structure was adjusted to control
J and, therefore, the EL spectra. By increasing LiF thickness from 1 at 5 nm or by replacing
LiF and TPBi with ZnO, the emitted color changed with the applied voltage from blue,
cyan, and magenta and to white from the same carbon dots (Figure 12B–D).

The LMAX obtained was 24 cd/m2 for the blue-emitting OLED at low current injection.
The LMAX observed in devices incorporating ZnO nanoparticles was higher (90 cd/m2)
thanks to the higher electron mobility of ZnO with respect to organic ETLs.

To solve the problem of aggregation quenching of CDs, a host–guest approach [85,86]
has been proposed since 2017, with CDs as guest component and, usually, the PVK as a
host matrix.
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firstly employed as an active layer for monochromatic OLEDs with a basic architecture 
ITO/PEDOT:PSS/CDs/TPBI/Ca/Al (Figure 13a). Monochrome OLEDs featured blue (B), 
green (G), yellow (Y), orange (O), and red (R) ELs with peaks at 455, 536, 555, 585, and 628 
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Figure 12. (A) Schematic representation of the CD-LED architectures together with (B) J and L versus
V, (C) ηc and power efficiencies vs. J, and (D) EL spectra and images of the operating CD-LEDs at
different applied voltage: Reproduced with permission from [73], copyright 2013 American Chemical
Society.

Yuan et al. [65] compared the performance of a neat CD film to those of CDs dispersed
in PVK. They used bright multicolor blue-to-red fluorescent CDs (called MCBF-CDs)
with PLQY up to 75%, synthesized through a facile solvothermal method. Their CDs
were N-doped, highly surface passivated with a high degree of crystallinity. CDs were
firstly employed as an active layer for monochromatic OLEDs with a basic architecture
ITO/PEDOT:PSS/CDs/TPBI/Ca/Al (Figure 13a). Monochrome OLEDs featured blue (B),
green (G), yellow (Y), orange (O), and red (R) ELs with peaks at 455, 536, 555, 585, and 628
nm and CIE coordinates (0.19, 0.20), (0.31, 0.47), (0.37, 0.52), (0.46, 0.48), and (0.55, 0.41),
respectively. The EL spectra showed voltage-independent behavior as well as no temporal
degradation that are of great significance for display technology. In the B-OLEDs, LMAX
reached 136 cd/m2 with ηc of 0.084 cd/A (Figure 13b–d).
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turn on voltage (VON = 3.9 V) (Figure 13e). In the broad EL spectrum, two peaks were 
identified, centered at 410 and 517 nm and assigned to PVK and green MCBF-CD emis-
sion, respectively (Figure 13f). The CIE coordinate (0.30, 0.33), very close to ideal white, 
resulted from both the energy transfer from PVK to CD and the direct charge trapping on 
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In 2018, Xu et al. [76] synthesized oleophilic CDs with a PLQY of 41% by the one-pot 
microwave carbonization method (Figure 14a) to study the impact of CD aggregation as 
a limiting factor for the brightness of the CD-LEDs. 

They fabricated CD-OLEDs, incorporating a neat CD active layer, with the simple 
architecture ITO/PEDOT:PSS/CD/TPBI/LiF/Al (Figure 14b). The devices featured modest per-
formance (Figure 14c–f), with yellow emission peaked at 554 nm, LMAX of 5.7 cd/m2 at 10 V, 
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Figure 13. (a) Schematic representation of the multicolor blue-to-red fluorescent CD (MCBF-CD)-based device architectures,
(b) ηc vs. J of MCBF-CD-based monochrome electroluminescent OLEDs from blue to red, (c) normalized EL spectra (in the
inset is a picture of the working devices), (d) schematic representation of the PVK:MCBF-CD–based device architectures,
(e) ηc vs. J of PVK:MCBF-CD-based monochrome electroluminescent OLEDs from blue to red, (f) normalized white EL
spectra (in the inset is a picture of the working devices), (b,c) reproduced with permission from Reference [65], copyright
2016 Wiley-VCH, and (e,f) reproduced with permission from [14], copyright 2019 American Chemical Society.
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In the devices incorporating a blend of green-emitting CD into a PVK polymer matrix
(5 wt.% ratio), with ITO/PEDOT:PSS/PVK:MCBF-CDs/TPBI/Ca/Al architecture (Figure
13d), Yuan et al. [65] reached a LMAX and ηc as high as 2050 cd/m2 and 1.1 cd/A with a
low turn on voltage (VON = 3.9 V) (Figure 13e). In the broad EL spectrum, two peaks were
identified, centered at 410 and 517 nm and assigned to PVK and green MCBF-CD emission,
respectively (Figure 13f). The CIE coordinate (0.30, 0.33), very close to ideal white, resulted
from both the energy transfer from PVK to CD and the direct charge trapping on CD.

In 2018, Xu et al. [76] synthesized oleophilic CDs with a PLQY of 41% by the one-pot
microwave carbonization method (Figure 14a) to study the impact of CD aggregation as a
limiting factor for the brightness of the CD-LEDs.
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They fabricated CD-OLEDs, incorporating a neat CD active layer, with the simple
architecture ITO/PEDOT:PSS/CD/TPBI/LiF/Al (Figure 14b). The devices featured modest
performance (Figure 14c–f), with yellow emission peaked at 554 nm, LMAX of 5.7 cd/m2 at
10 V, and CIE coordinates od (0.36, 0.42), most probably because of aggregation of the CDs.

The impact of CD aggregation on the brightness of CD-OLEDs was studied by Xu
et al. also by blending the CDs in PVK. Yellow and white ELs were observed by tuning the
doping concentration of the active layer. The yellow EL, mainly derived from direct carrier
trapping, reached LMAX of 339.5 cd/m2 with excellent color stability. The white CD-OLEDs
exhibited a Color Rendering Index (CRI) value of 83 with CIE coordinates of (0.29, 0.33)
and high LMAX of 544.2 cd/m2. The white EL resulted from contemporary emission from
PVK and CDs, and the good brightness was attributed to a suitable balance between holes
and electrons in the emitting layer (Figure 15) [76].

In the last 3 years, the research on LEDs based on CDs has increased and focalized,
almost exclusively, on CDs dispersed in PVK as an emitting layer. The next two articles
discussed below showed that amination could be exploited to improve the performance of
devices.

Yuan et al. [77] presented deep-blue light-emitting materials and devices based on
CDs that outperform also deep-blue emitting LEDs based on Cd2+/Pb2+ materials at that
time. CDs were synthesized by solvothermal treatment using CA and DAN as precursors.
To enable efficient high-color purity, an additional surface amination step using ammonia
liquor and hydrazine hydrate under high temperature was performed. This second step,
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decreasing the number of defects of CDs and thus suppressing non-radiative pathways,
increases the PLQY up to 70%.
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CD-OLEDs were manufactured with the architecture ITO/PEDOT:PSS/TFB/PVK:
CDs/TPBI/LiF/Al (Figure 16a). The corresponding energy level diagram (Figure 16b)
shows a mitigation of energy barrier for both electrons and hole injections thanks to
the suitable selection of the different functional layers. Atomic force microscope (AFM)
measurements confirmed the small roughness of CDs blended PVK film (Figure 16c).
The EL spectra remained centered at 440 nm across the range of voltage explored and
are in good agreement with the corresponding PL emission peaks, indicating that an
efficient energy transfer from PVK to CDs takes place. L and EQE as functions of V and J,
respectively, are shown in Figure 16d,e. LMAX, ηc, and EQE reached remarkable values of
5240 cd/m2, 2.6 cd/A, and 4%, respectively.
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After operating continuously for 3 h at 1000 cd/m2, the OLED retained 50% of initial
luminance (Figure 16f) without evident changes in the EL spectrum.

At the same time, Jia and coworkers [80] demonstrated the effectiveness of the electron-
donating group passivation strategy to impart in CD finely tuned properties for their
application as emitters in CD-OLEDs. Specifically, they developed three efficient red-
emissive CDs based on the N,N–dimethyl–(NMe2), N,N-diethyl–(NEt2), and N,N-dipropyl–
(–NPr2) p-phenylenediamine derivatives and obtaining CD-NMe2, –NEt2, and –NPr2,
respectively (Figure 17a), with the aim to fabricate warm-light WOLEDs.

Thanks to theoretical investigations, they revealed that CD emission originated from
the rigid π-conjugated skeleton structure, while –NR2 passivation played a key role in
inducing charge transfer excited state in the π-conjugated structure to afford high PLQY
(up to 86%).

Moreover, the polar –NR2 groups are responsible for the good solubility of CDs in
organic solvent and then processability by low-cost spin-coating technique.

Solution-processed OLEDs were fabricated with 9 wt.% CDs–NMe2 (WOLEDs 1),
–NEt2 (WOLEDs 2), and –NPr2 (WOLEDs 3) blended in PVK as an emitting layer and
the simple architecture ITO/PEDOT:PSS/PolyTPD/blend/TPBI/Ca/Al (Figure 17b). The
WOLEDs generated warm-light with two main peaks (434/605, 435/612, and 453/616
nm for WLEDs 1, 2, and 3, respectively, Figure 17c) attributed to emission from PVK and
CDs. The corresponding CIE coordinates and correlated color temperatures were (0.379,
0.314)/3365 K, (0.383, 0.311)/3168 K, and (0.388, 0.309)/2987 K. Finally, WOLEDs 1, 2, and
3 displayed voltage-stable EL spectra with a LMAX in the range of 5248–5909 cd/m2 and a
ηc of 3.65-3.85 cd/A (Figure 17d–f).

Yuan et al. [78] recently addressed the issue of broad emission, usually observed in
CDs, which limits their application in displays.

They obtained multi-colored narrow bandwidth emission from triangular CDs (T-CDs)
synthetized starting from phloroglucinol (PG) (Figure 18A). They demonstrated that the
molecular purity and high crystallinity of the triangular CDs are indispensable to obtain
high color-purity. The triangular structure and the narrow bandwidth emission allowed
for dramatic reduction in electron-phonon coupling.
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The simple structure ITO/PEDOT:PSS/active layer/TPBI/Ca/Al (Figure 18B) was
used for fabrication of OLEDs emitting from blue to red with the T-CDs blended in PVK as
an active emission layer. The good match between HOMO/LUMO energy levels of T-CDs
and PVK ensured the efficient transfer of both electrons and holes from PVK to T-CDs
emitter. The multi-colored OLEDs based on the T-CDs demonstrated high color-purity
(FWHM of 30–39 nm) peaked at 476, 510, 540, and 602 nm for B-, G-, Y-, and R-LEDs,
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respectively, a ηc of 1.22–5.11 cd/A, and LMAX of 1882–4762 cd/m2, rivalling the well-
developed inorganic QD-based LEDs. Finally, the LEDs exhibited outstanding stability,
which is of great significance for display technology. See Figure 18B–I

Singh and colleagues [79] fabricated the first flexible OLED (Figure 19a,b) based on
CDs employing self-assembled 2D array of CDs embedded in a PVK emission layer. The
flexible device was switched on at 4.3 V and exhibited a blue/cyan emission peaked at
about 500 nm (comparable to PL emission, Figure 19c) with LMAX of 350 cd/m2 and ηc of
0.22 cd/A (Figure 19d,e), whereas the corresponding OLED device based on the rigid glass
substrate featured a LMAX of 700 cd/m2 and ηc of 0.27 cd/A. Figure 19f shows the CD 2D
island in the emitter layer.
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ploited by Xu et al. [81] for the fabrication of solution-processed blue CD-LEDs with ul-
trahigh brightness. Oleophylic CDs with a PLQY of 41% were obtained using an anhy-
drous citric acid as carbon precursor and hexadecylamine as passivation agent by the one-
step microwave carbonization method. CDs with different doping concentrations were 
blended with PVK and incorporated into a simple and PEDOT-free device architecture 
ITO/PVK:CDs/TPBI/LiF/Al (Figure 20a). The EL spectra of devices were dominated by the 
474 nm CD emission peak with a contribution from a PVK at around 410 nm. When the 
doping concentration was higher than 25 wt.%, a progressive weakening of the PVK con-
tribution in favor of an enhanced CD emission was observed. For the 30 wt.% doping 

Figure 18. (A) Synthesis route of the T-CQDs by solvothermal treatment of PG triangulogen, with photographs of the
T-CQD ethanol solution under daylight (left) and fluorescence images under UV light (excited at 365 nm) (right) included;
(B) the device structure; (C) the current efficiency versus current density; (D) the energy level diagram of the T-CQD-based
LEDs; and (E) the stability plots of the B-, G-, Y-, and R-LED. EL spectra of the B- (F), G- (H), Y- (G), and R-LEDs (I) at
different bias voltage, respectively (the insets are the operation photographs of the B-, G-, Y-, and R-LEDs with the logo of
BNU). Reproduced with permission from Reference [78], copyright 2019 Springer Nature group.
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Figure 19. Picture of a flexible device: (a) off mode and (b) on mode; (c) the normalized EL spectra of
the device and solid-state PL of a thin film; (d) J-L-V characteristic of the device; (e) current efficiency
versus current density; and (f) CD 2D islands in the emitter layer: Reproduced with permission
from [79], copyright 2020 Wiley-VCH Verlag GmbH & Co.

The host–guest energy transfer as the main mechanism for CD emission was ex-
ploited by Xu et al. [81] for the fabrication of solution-processed blue CD-LEDs with
ultrahigh brightness. Oleophylic CDs with a PLQY of 41% were obtained using an an-
hydrous citric acid as carbon precursor and hexadecylamine as passivation agent by the
one-step microwave carbonization method. CDs with different doping concentrations were
blended with PVK and incorporated into a simple and PEDOT-free device architecture
ITO/PVK:CDs/TPBI/LiF/Al (Figure 20a). The EL spectra of devices were dominated by
the 474 nm CD emission peak with a contribution from a PVK at around 410 nm. When
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the doping concentration was higher than 25 wt.%, a progressive weakening of the PVK
contribution in favor of an enhanced CD emission was observed. For the 30 wt.% doping
ratio, the LMAX reached 569.8 cd/m2 at a driving voltage of 12.5 V, with CIE coordinated
at (0.22, 0.27) located in the blue light region (Figure 20b). Also, in this case, the long-
chain passivating ligands on the oleophylic CD surfaces were responsible for the unideal
transporting performance that limited the device efficiencies. However, it should also be
considered that the devices do not contain the commonly employed PEDOT:PSS layer.
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3.2. CDs as Charge Regulating Interlayer

The possibility to tune the CD’s energy levels and intrinsic charge carrier transport
enables an alternative use of CD besides incorporation as an emitting layer. In fact, the
following paragraph demonstrates that CDs, employed as an interlayer at the electrode
interface (for this reason, they are called interfacial layers or charge regulating layers) in
devices based on different class of emitters, may improve the overall performance of LEDs.
We report examples in which the CD layer was incorporated both as ETL and HTL in either
direct or inverted LED architectures (Figure 7).

In 2017, Park et al. [84] explored the possibility to enhance the performance of
nanocrystal LEDs (NC-LEDS) based on quantum dot active layers. NC-LEDs typically
take advantage of the incorporation of organic or inorganic interfacial layers as charge
regulators to ensure charge balancing and high performance [87]. They investigated the
role played by CD N-doped interlayers inserted by spin-coating between the PVK (used as
HTL) and the core/shell CdSe/CdS quantum dots (QDs)-based emitting layer [88,89]. In
fact, QD-LEDs basically consisted of a multilayer architecture ITO/PEDOT:PSS/PVK/with
or without N-CD/QD/ZnO/Al (types A and B, Figure 21a). They showed that CD HTL
decreased the barrier height for hole injection, thus leading to more charge carrier balance
within the emitting layer. Moreover, they demonstrated that the CD interlayer acted as a
resonant energy donor layer to the QD layer.

Both type A and B devices exhibited good electrical rectification, but the leakage
current of type A QD-LEDs was significantly suppressed by inserting the N-CD layer (see
lower J for type A devices with respect to type B ones in the ohmic range below 0.5 V in
Figure 21b,c). Noteworthily, the LMAX observed in LED incorporating CDs outperformed
type B LEDs, showing 3500 and 20 cd/m2, and the ηc were 0.63 and 0.044 cd/A, respectively
(Figure 21d,e). The EL of both types of LEDs was dominated by the emission peak at 622 nm
under applied voltage >4 V (Figure 21f) with CIE coordinates (0.66, 0.33) corresponding to
the highly pure red emission (Figure 21g).
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sisted of a ZnO nanoparticle layer directly deposited on the ITO of an emissive conju-
gated polymer, the well-known and commercially available poly (9,9-dioctylfluorene-
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Figure 21. (a) Structures of solution-processed quantum dots (QD)-LEDs, with photographs of red emission from both types
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at diverse applied voltages; and (g) CIE coordinates of EL emission colors measured at various applied bias voltages of
2.0–8.0 V: Reproduced with permission from [84], copyright 2019 Springer Nature group.

In a very recently publication, Paulo-Mirasol et al. [90] described the use CDs as HTL
but in an inverted LED architecture. They synthetized four N-doped CDs by citric acid as a
precursor of carbon skeleton and p-phenylenediamine, EDA, urea, and HDA as precursors
of a capping ligand and showed that the nature of the capping ligand influences directly
the optoelectronic properties of CDs (Table 2). The architecture of the device consisted of a
ZnO nanoparticle layer directly deposited on the ITO of an emissive conjugated polymer,
the well-known and commercially available poly (9,9-dioctylfluorene-alt- benzothiazole or
F8BT, and of the CDs (Figure 22A) as HTL. The devices were completed by Au anode.
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Table 2. Summary of the most relevant parameters of devices from Reference [90], including values
obtained for a control device without hole transporting layer (HTL).

Hole Transport
Materials

Capping Ligand
Hole Mobility a LMAX (cd/m2) ηc (cd/A)

C-Dots-EDA 2.41 ± 0.60 70 2 × 10−3

C-Dots-PDA 1.5 ± 0.47 13 9 × 10−4

C-Dots-HDA 85.4 ± 1.7 174 8 × 10−4

C-Dots-Urea 2.92 ± 0.32 146 2 × 10−3

No HTM (control) - 2 5 × 10−4

a space charge limited current hole mobility measured in hole-only devices.
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The LEDs displayed moderate L values but were always clearly superior to the control
CD-free device (Figure 22B,C). In the case of EDA capping, the VON was very low, which
indicates the existence of an excellent charge injection capability. On the other hand, devices
prepared with urea and HDA CDs showed the highest L, as summarized in Table 2.

Alam et al. [83] reported the use of CDs synthesized with a one-step hydrothermal
process using the banana leaf precursor as the ETL in direct architecture LEDs with polyflu-
orene derivative as the emitting layer (Figure 23a,b). The introduction of CD as the ETL
reduces the energy barrier for electron injection, which in turn lowered the VON. The EL
spectra showed dominant peaks typical of PFO but slightly red-shifted compared to that in
the literature.

Zang et al. [82] demonstrated that stable, abundant, and easy-to-synthesize CDs are
suitable as solution processable thin transparent films, serving as the cathode surface modi-
fier in inverted LED architecture. This CD ETL minimized the charge injection/extraction
energy barrier, improved the interface contact property, and smoothed the electron trans-
port pathways in various optoelectronic devices such as perovskite solar cells and QD-LEDs.
A series of CDs with varying content of either amine or carboxyl groups at their surface
were synthesized using varying ratios of common precursors CA and EDA. Thanks to
a film consisting in a blend of CDs in ZnO, the work-function (WF) of commonly used
ITO substrates was modified over a broad range to become suitable as electron injection
electrode in the inverted device architecture (Figure 24a,b). Specifically, CD modifiers
with abundant amine groups reduced the ITO’s WF from 4.64 to 3.42 eV, while those with
abundant carboxyl groups increased it to 4.99 eV. They manufactured the inverted QD-LED
architecture based on CsPbI3 emitters. The EQE increased from 4.8% to 10.3% and the
LMAX increased from 951 to 1605 cd/m2 thanks to incorporation of the CD layer and in the
same way, the EQE of CdSe/ZnS QD-LEDs increased from 8.1% to 21.9% and ηc increased
from 34.7 at 93.8 cd/A (Figure 24c–f).
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(concentration 0.03 mg/mL in ZnO and CDx being molar ratios of the CA and EDA precursors) interface modifier, with the
EL spectrum of the LED employing the CD (0.03 mg/mL) modifier given as an inset; (d) L-J of CdSe/ZnS QD-LEDs modified
with different concentrations of CDs as given on the frame (in mg/mL), with the EL spectrum of the LED employing the
CDs (concentration 0.03 mg/mL) modifier given as an inset; (e) L and EQE versus J of CsPbI3 QD-LEDs modified with
different concentrations of CD0.33 as given on the frame (in mg/mL); and (f) EQE and ηc versus J of CdSe/ZnS QD-LEDs
with or without CD modifiers introduced at different concentrations (in mg/mL) provided on the frame: Reproduced with
permission from [82], copyright 2019 WILEY-VCH Verlag GmbH & Co.

The proposed approach may hold true for CDs with other surface functional groups,
which guides us toward more ideal interface materials, offering chances to lower the
production costs of various solution-processed optoelectronic devices with an improved
performance.

4. Summary and Outlook

CDs are materials with a great potential from multiple points of view. In fact, despite
being relatively young materials, the discovery of which is placed between 2004 and 2006,
their development has already led to particularly encouraging results in many disciplines
including biosensing, photonics, and optoelectronics.

The interest in this class of materials is both academic and applicative. In fact, nu-
merous efforts have been made to understand and modulate their chemical and physical
properties, and although different mechanisms have been highlighted, much remains to be
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done, especially in reproducibility and in the deep understanding of their size, shape, and
composition/doping property dependence.

With regard to their application in OLEDs, as reported here, they have been used both
as active layers and as charge regulation layers.

CDs have been used as active layers both dispersed in the matrix to avoid aggregation
quenching and as a neat film, leading to increasingly encouraging results mostly when
their surface was passivated by a hexadecylamine (HDA) agent [71,79].

Recently, CDs have been tested as a charge regulating layer (both for holes and
for electrons), in either direct or inverted device’s architectures, highlighting their great
versatility linked to the huge number of possible modifications, which, as we have pointed
out, are related to composition, shape, size, and surface groups. Importantly, CDs used as
ETLs in OLED with direct architecture were synthetized with the one-step hydrothermal
process using banana leaves as raw material.

In our opinion, the importance of these materials consists in the possibility of declining
them for the concept of safe-by-design, which is substantially at the basis of circular
economy.

To promote sustainability in the electronics industry, a paradigm shift needs to occur
in economic practices from linear to circular. According to the Ellen McArthur Foundation,
new electronics must be designed for sustainability from the get-go [91].

Technical performance is the driving force for not only the design but also the use
of sustainable precursor (from waste or renewable materials); biodegradability, toxicity,
synthetic methodology, and production of toxic waste are only some of the key parameters
to be taken into consideration.

In this perspective, although CDs are currently still very far from the performance of
other active materials commonly used in LED and OLED such as metallic quantum dots
or organic semiconductors, in a circular perspective, they are already able to meet some
fundamental requirements.

For this reason, we hope that this review can offer a contribution and be a source of
inspiration for the transition towards “circular organic electronics”.
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