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Abstract: In order to improve the friction and wear performance and surface hardness of AISI 1045
steel and expand its application range, this paper carried out the research on friction and wear
performance and surface hardness of Zr65Al7.5Ni10Cu17.5 crystalline powder (CP) and amorphous
powder (AP) after laser cladding on AISI 1045 steel surface. The results show that both CP and
amorphous powder (AP) formed a cladding layer on the surface of AISI 1045 steel under laser
irradiation. The thickness of the cladding layer is about 400 µm, and the thickness of the AP cladding
layer is slightly larger than that of the CP cladding layer. The results show that there are many
holes in the AP cladding layer, and holes can be observed at the junction with the matrix; while
the CP cladding layer is well combined with the matrix and no holes are observed. The friction
performance of CP cladding layer is better than that of AP cladding layer. In the wear marks of
the AP cladding layer, there are bonding areas, while the wear marks of the CP cladding layer
have a furrow-like morphology, and part of the matrix is exposed. The surface microhardness and
average microhardness of AP cladding layer are 49% and 94% higher than that of CP cladding layer,
respectively. Hardness modification has obvious advantages. The reasons for porosity, large friction
coefficient and low stability of the friction experiment of the AP cladding layer are analyzed and
discussed. The ideas and methods for improving the laser irradiation to achieve both high wear
resistance and high strength of the AP cladding layer are proposed.

Keywords: amorphous alloy powder; laser cladding; surface modification; friction coefficient; micro-
hardness

1. Introduction

AISI 1045 Steel is a daily steel for people, with high strength and forming ability, but
its wear resistance and surface hardness are poor, so its use range is limited. In order to
improve the surface properties and application range of AISI 1045 steel, the introduction
of amorphous layer on the surface is an effective means. Currently, there are several
methods used to produce amorphous coatings, such as thermal spray technology and laser
cladding technology [1]. In recent years, laser cladding technology has attracted many
people’s attention and has been used for commercial purposes to change the various surface
characteristics of steel parts. The technology provides rapid cooling rate and opens the
way for industrial application of metallic glass. The coating has excellent wear resistance
and high surface hardness. The improvement of surface performance can greatly increase
the application range of AISI 1045 steel, such as automobile crankshafts, automobile ball
joints, micro gears, etc. Compared with other technologies, it has the ability to form various
relatively thick protective layers, and the process method is more pure than the chemical
process method [1–8].

Since the first synthesis of metallic amorphous phase in 1960, efforts have been made
to develop glassy metallic alloys [9]. With the recently developed amorphous materials
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with large glass forming ability, metallic amorphous coatings can now be produced by
laser cladding technology [6,10]. As for the mechanical properties of amorphous materials,
it is found that bulk amorphous materials have low ductility, which limits the application
of amorphous materials. In the development of amorphous materials, amorphous ma-
trix composites (AMC) have received extensive attention in recent years. Although the
corrosion resistance of AMC alloys may not be as good as that of bulk alloys, they have
higher ductility and better mechanical properties [11]. In AMC, amorphous-nanocrystalline
composites exhibit high hardness, high tensile strength, excellent wear resistance and duc-
tility [12,13]. Since reheating amorphous materials to high temperatures is a common way
of synthesizing these composites, multilayer laser cladding can be used to fabricate such
composite coatings. When laser cladding is used to form amorphous coating on metal
substrate, it is usually found that amorphous coating or crystalline coating can be formed
according to the process parameters. Obviously, the phase composition of the coating will
significantly affect the surface properties of the substrate. In 1997, Audebert [14] discovered
that Zr-based alloys can be partially amorphous by laser surface treatment. Since then,
the improvement of Zr-based amorphous and nanocrystalline coatings has been widely
studied. In recent years, Yue and Subramanian have successfully strengthened magnesium
matrix by laser cladding [15,16]. Zr65Al7.5Ni10Cu17.5 cladding layer was fabricated on
magnesium substrate by laser cladding technology, which showed better properties than
magnesium matrix [17]. It is conceivable that the coating with high strength and high
wear resistance can be produced by forming appropriate amorphous composite on AISI
1045 steel substrate. In this context, the friction and wear properties and surface hardness
of AISI 1045 steel after laser cladding Zr65Al7.5Ni10Cu17.5 alloy powder and amorphous
composite powder are studied in this paper, which provides ideas and basis for expanding
the research field of amorphous alloy and promoting the industrial application of amor-
phous alloy. This article has guiding value or theoretical significance for the development
of high-performance alloy coatings.

2. Experimental
2.1. Powders Preparation and Structure Characterization

The cladding material used in this paper is crystalline powder (CP) and amor-
phous powder (AP) composed of Zr65Al7.5Ni10Cu17.5. Arc melting from pure elements
(purities above 99.96%) was used to prepare ingot with the targeted compositions of
Zr65Al7.5Ni10Cu17.5 (at.%). After the ingot was mechanically broken, the powder with a
particle size of 400 mesh was screened out. The sieved powder was crystal powder. Take
part of the sieved powder for ball milling (The parameters are shown in Table 1) to obtain
amorphous powder.

Table 1. The parameters of ball milling.

Parameters Value

Ball milling medium: ethanol absolute 2 mL
Ball milling time 15 h
Ball mill speed 350 r/min

Ball to material ratio 20:1

The Zr–Cu–Ni–Al CP and AP were analyzed by an X-ray Diffractometer (D/max-
Ultima Type of IV, Rigaku, Osaka, Japan). The two powders were spread flat on the sample
stage, and then the stage was placed in the X-ray diffractometer. The X-ray consisted of a
Cu beam with a wavelength of 1.54 Å. The voltage and the current were set to 40 kV and
30 mA, respectively. The diffraction angle, 2θ, ranged between 20◦–80◦, in which data was
recorded every 0.013 degrees.
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2.2. Sample Preparation

The Zr-Cu-Ni-Al CP and AP cladding layers were fabricated by laser generator (XL-
1000WF, Xinglai Laser Technology Co. Ltd, Guangzhou, China). Firstly, An AISI 1045 steel
(The chemical compositions are shown in Table 2) sample (AISI 1045, Guangzhou Iron and
Steel Group, Guangzhou, China) was taken and cut out two steel substrate samples in size
14 mm × 14 mm × 2 mm with a wire cutter machine. Then the oxide layer on the surface
of AISI 1045 steel was grinded by 240 mesh sandpaper.

Table 2. The chemical composition of AISI 1045 steel.

Elements Content

Fe 98.50–98.96
C 0.43–0.50

Mn 0.60–0.90
P ≤0.040
S ≤0.050

The substrates are then machined out of two milled grooves by a milling machine,
with a width of 4 mm and a depth of 0.4 mm. The two substrates are labeled a and b
respectively, AP cladding on a, and CP cladding on b. Further, Spread the pre-prepared
CP and AP respectively in the grooves of the AISI 1045 steel matrix, set the parameters
of the pulse laser generator as shown in Table 3, and hit the laser on the powder to melt
the powder. After self-excited cooling, the molten powder will solidify and bond with
the matrix.

Table 3. Parameters of laser cladding.

Parameters Value

Pulse current (A) 130
Laser frequency (Hz) 14
Pulse duration (ms) 1.5

Scanning speed (mm/s) 4
Spot size (mm) 4
Overlapping 50%

Three pieces are cut from the sample prepared in this step, which are convenient for
the following tests. Two pieces of 2 mm × 14 mm × 2 mm in size were used for hardness
testing and OM, and another piece of 10 mm × 14 mm × 2 mm in size were used for friction
wear testing. Place the sample in a soft plastic mold with the cross section facing down, and
then pour the epoxy resin and ethylenediamine (according to the 2:1 ratio) into the mold.
Put the mold in the drying oven until the epoxy resin is completely cured. The surfaces of
the specimens were ground and polished in turn by using sandpapers with size of 240#,
600#, 1000# and 1500#, respectively. Then, Polish the sample with SiO2 polishing powder
(Particle size: 0.25 µm) and polishing machine. The final surface roughness reaches about
Ra0.02. The schematic diagram of the sample preparation process is shown in Figure 1.

2.3. Friction and Wear Test

The friction and wear properties of two cladding layers were tested by WTM-2E Mini-
Tester (Zhongke Kaihua Company, Lanzhou, China) of Friction and Wear. This instrument
can detect and collect signals in real time through the computer, and display the change
curve of friction coefficient in real time. It is specially used to test the friction coefficient
and wear resistance of various coatings or solid lubricating materials. This test was carried
out at room temperature in the atmosphere, because AISI 1045 steel is for daily use which
is usually served at room temperature. Place the test sample on the center of the sample
platform, gently press the sample with a clamp of appropriate size, and then install the
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three fixing screws. Choose the bolt disc or ball disc indenter, install it on the indenter rod,
and fix the locking nut. Rotate the lifting bracket adjustment nut according to the height of
the sample and observe the level to make the loading beam parallel. Adjust the load beam
weight balance slider to make the load beam at the balance position, and fix the balance
slider nut. Start the running program after setting the parameters. The process parameters
of friction and wear test are shown in Table 4.
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Figure 1. The schematic diagram of the sample preparation process.

Table 4. Parameters of friction and wear.

Parameters Value

GCr15 steel ball diameter (mm) 3
Load (N) 5

Linear reciprocating friction length (mm) 3
Friction time (min) 10

Sliding speed (mm/min) 200
Roughness of GCr15 steel ball Ra0.1

2.4. Optical Microscopy

The optical microscopy of cross section of two samples were observed by high power
optical microscope of Zeiss (Oberkochen, Germany).

2.5. Micro-Hardness Tests

The hardness of two samples were tested by THE HV-1000IS type of micro Vickers
hardness Tester (HV-1000IS, Nuoen, Hangzhou, China). After the sample is polished by
sandpaper and polished by a polishing machine, it is placed on the stage for testing. Start
the test after checking that the diamond indenter of the hardness tester is not damaged.
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After the diamond indenter is pressed into the sample, a pit is formed on the surface of
the sample. Align the crosshair of the microscope with the pit, and measure the diagonal
length of the pit with an eyepiece micrometer. The instrument will automatically calculate
the hardness value of the measured substance based on the applied load and the diagonal
length of the pit. In order to reduce the influence of errors on the experimental results, the
average value of 5 test points is selected as the final hardness value. The selected load was
300 gf, and the dwell time was 8 s.

3. Result and Discussion

Figure 2 shows the XRD patterns of the prepared crystalline powder (CP) and amor-
phous powder (AP). It can be seen from the figure that the CP has a sharp diffraction peak
at about 2θ = 38◦ and the amorphous powder presents a wide dispersion diffraction peak at
about 2θ = 38◦. The sample after laser cladding is shown in Figure 3, in which Figure 3a is
the macro sample diagram of amorphous powder cladding layer, and Figure 3b is the macro
sample diagram of composite powder cladding. It can be seen from the figure that in the
small groove processed in AISI 1045 steel, the two alloy powders are melted and solidified
to form a cladding layer under high-energy laser operation. Macroscopically, the surface of
the cladding layer presents a dense and regular corrugated accumulation phenomenon.
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Figure 3. (a) A sample with amorphous powder cladding layer. (b) A sample with crystalline powder coating.

The cross-section optical micrographs of the two specimens with cladding layer are
shown in Figure 4. It can be seen from the figure that the CP cladding layer is well bonded
with the AISI 1045 steel matrix, and the bonding between the AP cladding layer and the
substrate is poor. The cladding thickness of the two samples is about 400 µm, and the
amorphous powder cladding layer is thicker. Observing the sample from the figure, there
are many small holes distributed on the AP cladding layer, while the CP cladding layer
shows a smooth and non-porous state, so the CP cladding layer should be relatively dense.
The distribution of elements on the cross section of CP and AP cladding layers (Figure 5)
shows that Zr, Cu, Ni and Al elements are uniformly distributed in CP cladding layer, but
a little unevenly distributed in AP cladding layer. This may be related to the formation of a
large amount of enthalpy and surface activity of the amorphous alloy powder during the
mechanical alloying preparation process. It is reported that [18,19] the heat enthalpy and
surface activity of the AP prepared by ball milling make it easier for atoms to overcome
the potential barrier and form lower crystallization activation energy, and lower the glass
transition point and melting point. Some literature points out that [20] the high-energy
laser beam interacts with the substance, releasing a large amount of heat instantly to melt
the substance quickly. Compared with the CP, the AP can quickly melt to form a cladding
layer with only a small amount of external energy due to its own enthalpy and surface
activity. The energy density of high-energy laser beam is high, the amorphous powder in
the laser beam high-speed scanning, the instantaneous release of heat, through the heat
transfer to the matrix more heat, the molten pool often produces gas turbulence, which
makes the molten metal easier to flip, gas overflow from the molten pool, forming a large
number of small holes and thick cladding layer. In the process of laser irradiation, laser
energy is absorbed to form molten metal, and the heat transferred to the matrix is less than
that of amorphous powder. The melting process and cooling process are more stable than
the melting process of amorphous powder. The formed cladding layer is easier to be dense,
with fewer small holes, and the thickness of cladding layer is correspondingly thinner.
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The friction coefficient curve of AP and crystalline powder cladding sample is shown
in Figure 6a. It can be seen from Figure 6a that during the friction and wear experiment,
the friction coefficient of the amorphous powder cladding layer mainly fluctuates between
0.5 and 1, and the fluctuation range is very large. The maximum instantaneous friction
coefficient is 1.21, and the minimum instantaneous friction coefficient is also higher than
0.45. The overall friction coefficient of the CP cladding layer is relatively smooth, and
with time increases, the friction coefficient shows a gradually increasing trend. In the
first 5 min, the maximum instantaneous friction coefficient of AP cladding layer and CP
cladding layer is 1.07 and 0.29, the minimum instantaneous friction coefficient is 0.53 and
0.15, the average friction coefficient is 0.79 and 0.21, and the maximum amplitude of friction
coefficient is 0.54 and 0.14, respectively, as shown in Figure 6b. At this stage, the friction
performance parameters of the CP cladding layer are significantly better than those of the
AP cladding layer. In the last 5 min, the maximum instantaneous coefficient of friction of
AP cladding and CP cladding is 1.21 and 1.03, the minimum instantaneous coefficient of
friction is 0.47 and 0.25, the average coefficient of friction is 0.79 and 0.59, and the maximum
amplitude of friction coefficient is 0.74 and 0.78, respectively, as shown in Figure 6c. At
this stage, the friction performance parameters of the CP cladding layer quickly lose their
advantages with the increase of time, and some parameter values are worse than those
of the AP cladding layer. During the entire friction and wear experiment, the maximum
instantaneous friction coefficients of the AP cladding layer and CP cladding layer were
1.21 and 1.03, the minimum instantaneous friction coefficients were 0.47 and 0.15, and the
average friction coefficients were 0.77 and 0.40, respectively. The maximum amplitudes
of the coefficients are 0.74 and 0.88, respectively, as shown in Figure 6d. The above data
consolidation is shown in Table 5.

Coatings 2021, 11, x FOR PEER REVIEW 8 of 13 
 

 

friction is 0.47 and 0.25, the average coefficient of friction is 0.79 and 0.59, and the maxi-

mum amplitude of friction coefficient is 0.74 and 0.78, respectively, as shown in Figure 6c. 

At this stage, the friction performance parameters of the CP cladding layer quickly lose 

their advantages with the increase of time, and some parameter values are worse than 

those of the AP cladding layer. During the entire friction and wear experiment, the maxi-

mum instantaneous friction coefficients of the AP cladding layer and CP cladding layer 

were 1.21 and 1.03, the minimum instantaneous friction coefficients were 0.47 and 0.15, 

and the average friction coefficients were 0.77 and 0.40, respectively. The maximum am-

plitudes of the coefficients are 0.74 and 0.88, respectively, as shown in Figure 6d. The 

above data consolidation is shown in Table 5. 

Table 5. Data of friction coefficient. 

Time Samples 
Maximum Friction 

Coefficient 

Minimum Friction 

Coefficient 

Average Friction 

Coefficient 

Maximum Amplitude of 

Friction Coefficient 

First 5 min 
CP 0.29 0.15 0.21 0.14 

AP 1.07 0.53 0.79 0.54 

Last 5 min 
CP 1.03 0.25 0.59 0.78 

AP 1.21 0.47 0.79 0.74 

Whole 10 min 
CP 1.03 0.15 0.40 0.88 

AP 1.21 0.47 0.77 0.74 

Overall, the friction performance of the CP cladding layer is better than that of the 

AP cladding layer. In the final stage of the experiment, the friction performance gap be-

tween the two gradually became smaller, and even showed the opposite result, which 

may be related to the surface cladding layer being worn through and losing the strength-

ening effect. 

  

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

C
o

ef
fi

ci
en

t 
o

f 
fr

ic
ti

o
n

Time/min

 Amorphous powder
 Crystalline powder

(a)

Coatings 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 

  

Figure 6. (a) Curve of friction coefficient of amorphous alloy powder and crystalline powder cladding sample; (b) Param-

eters of friction coefficient for the first five minutes; (c) Parameters of friction coefficient for the last five minutes; (d) 

Parameters of friction coefficient for the whole ten minutes. 

The micro morphology of wear marks of AP cladding layer and CP cladding layer 

after friction and wear is shown in Figure 7, in which Figure 7a is the wear mark of amor-

phous cladding layer and Figure 7b is the wear mark of CP cladding layer. The wear scar 

width of the amorphous powder cladding layer is about 330 μm, and the wear scar width 

of the alloy powder cladding layer is about 740 μm. Under the same test conditions, the 

wider the wear scar, the greater the amount of wear. Therefore, the wear amount of the 

amorphous powder cladding layer in this test is smaller. It can be seen from Figure 7a that 

the part of the edge of the wear scar of the amorphous cladding layer is partially peeled 

off, which is related to the rapid and violent melting of the AP under the energy density 

of the high-energy laser beam and the insufficient bonding of some areas of the cladding 

layer; Binding area appears in the wear scar. The binding area is caused by local welding 

and subsequent sliding shear caused by pressure generated in the individual contact area 

between the GCr15 steel ball and the surface of the cladding layer during the friction test. 

In Figure 7b, no bonding zone is observed in the wear scar of CP coating, but there are 

debris and spalling zones. In the process of sliding friction, the GCr15 steel ball and the 

cladding layer have a slight bite, and then the surface layer is torn out, thus forming spall-

ing zones. Compared with the wear marks of the AP cladding layer, the wear marks of 

the CP cladding layer show obvious furrow morphology, and part of the substrate is ex-

posed due to the severe wear of the cladding layer, which may be the reason for the sharp 

rise of the friction coefficient of the CP cladding layer in the later stage of the friction and 

wear experiment. 

Figure 6. (a) Curve of friction coefficient of amorphous alloy powder and crystalline powder cladding sample; (b) Parameters
of friction coefficient for the first five minutes; (c) Parameters of friction coefficient for the last five minutes; (d) Parameters
of friction coefficient for the whole ten minutes.



Coatings 2021, 11, 103 9 of 13

Table 5. Data of friction coefficient.

Time Samples
Maximum

Friction
Coefficient

Minimum
Friction

Coefficient

Average
Friction

Coefficient

Maximum
Amplitude of

Friction Coefficient

First 5 min
CP 0.29 0.15 0.21 0.14
AP 1.07 0.53 0.79 0.54

Last 5 min
CP 1.03 0.25 0.59 0.78
AP 1.21 0.47 0.79 0.74

Whole 10 min
CP 1.03 0.15 0.40 0.88
AP 1.21 0.47 0.77 0.74

Overall, the friction performance of the CP cladding layer is better than that of
the AP cladding layer. In the final stage of the experiment, the friction performance
gap between the two gradually became smaller, and even showed the opposite result,
which may be related to the surface cladding layer being worn through and losing the
strengthening effect.

The micro morphology of wear marks of AP cladding layer and CP cladding layer after
friction and wear is shown in Figure 7, in which Figure 7a is the wear mark of amorphous
cladding layer and Figure 7b is the wear mark of CP cladding layer. The wear scar width
of the amorphous powder cladding layer is about 330 µm, and the wear scar width of
the alloy powder cladding layer is about 740 µm. Under the same test conditions, the
wider the wear scar, the greater the amount of wear. Therefore, the wear amount of the
amorphous powder cladding layer in this test is smaller. It can be seen from Figure 7a that
the part of the edge of the wear scar of the amorphous cladding layer is partially peeled
off, which is related to the rapid and violent melting of the AP under the energy density
of the high-energy laser beam and the insufficient bonding of some areas of the cladding
layer; Binding area appears in the wear scar. The binding area is caused by local welding
and subsequent sliding shear caused by pressure generated in the individual contact area
between the GCr15 steel ball and the surface of the cladding layer during the friction
test. In Figure 7b, no bonding zone is observed in the wear scar of CP coating, but there
are debris and spalling zones. In the process of sliding friction, the GCr15 steel ball and
the cladding layer have a slight bite, and then the surface layer is torn out, thus forming
spalling zones. Compared with the wear marks of the AP cladding layer, the wear marks
of the CP cladding layer show obvious furrow morphology, and part of the substrate is
exposed due to the severe wear of the cladding layer, which may be the reason for the
sharp rise of the friction coefficient of the CP cladding layer in the later stage of the friction
and wear experiment.

Figure 8 shows the distribution of the microhardness of the two cladding samples
compared with AISI 1045 steel. It can be seen from Figure 8a that the microhardness
of the AP cladding layer and the CP cladding layer is significantly higher than that of
the AISI 1045 steel substrate. The surface microhardness of the two cladding samples
reached the maximum values of 1322 and 661 Hv, respectively. As the depth increases,
the microhardness values of the two cladding samples gradually decrease. Within 300 µm
from the surface, the microhardness of the AP cladding layer decreases more rapidly with
the increase in depth, and the microhardness is significantly higher than that of the CP
cladding layer. Starting at about 400 µm from the surface, the micro-hardness of the two
slowly decreases and approaches as the depth increases further. Beyond 700 µm, with
the further increase of depth, the microhardness values of the two materials gradually
approach 282 Hv, which can be determined as the microhardness value of 45 steel matrix.
The surface microhardness of laser cladding layer of AP is increased by 369% compared
with that of AISI 1045 steel matrix, and the mean value of microhardness (MV) of the
whole cladding layer is 984 Hv, which is 3.5 times of that of AISI 1045 steel matrix. The
average microhardness of the cladding layer is 508 Hv, which is 2.3 and 1.8 times of
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that of the AISI 1045 steel matrix, respectively. The surface microhardness and average
microhardness of cladding layer of AP cladding sample are 49% and 94% higher than that
of CP cladding sample respectively, which shows great advantage of hardness modification.
The microhardness of AP cladding sample and CP cladding sample in powder remelting
zone (PRZ), junction zone (JZ) and basic matrix (BM) are 950, 523, 282 and 604, 311 and
282, respectively, as shown in Figure 8b. From the point of view of hardness, the overall
hardness of the AP cladding layer is higher than that of the CP modified layer, and the
modification effect is very significant.
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In this experiment, compared with the CP cladding layer, the AP cladding layer is
less dense, with a large number of fine holes, and the thickness of the cladding layer
is slightly larger, which is related to the higher activity and enthalpy of the amorphous
powder. Reactivity and enthalpy cause the AP cladding layer to have a more violent
melting reaction than CP at the same laser energy input, and the heat transport distance
is longer. Although the surface microhardness and average microhardness of the AP
cladding layer are significantly higher than those of the CP cladding layer, in the friction
and wear process, the friction coefficient is large and the friction performance is poor,
which contradicts the results of general conventional friction experiments [21]. In fact, in
the friction wear experiment, the AP cladding sample is much harder than the CP cladding
sample, but the former is distributed with a large number of small holes inside, so that
the GCr15 steel ball in the test constantly ups and downs, friction test stability relative
to the alloy powder cladding is poor, resulting in violent fluctuations in the coefficient of
friction. The CP cladding layer is denser, there are no or a few tiny holes inside, the friction
test stability is better, and the friction coefficient is small. Near the end of the frictional
wear experiment, the cladding layer was first worn because the hardness and thickness
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of the CP cladding were smaller than the AP cladding layer. At this time, the force of the
friction pair steel ball on the sample is significantly enhanced, resulting in a furrow-like
appearance in the wear scar of the CP cladding layer. The intensification of wear leads to
widening of the wear scar, and finally the width of the wear scar of the CP cladding layer
is larger than that of the AP cladding layer. Due to the extremely high microhardness and
thickness of the AP cladding layer, it was not worn through at the end of the experiment,
showing a smoother wear scar morphology and a narrower wear scar width. If the AP
cladding layer can avoid defects such as porous holes, the AP cladding layer will have
more room for performance improvement than the CP cladding layer. It can be predicted
that by optimizing the laser irradiation process parameters, appropriately reducing the
energy flow density and increasing the pulse width, and taking measures such as protective
atmosphere, it is very possible to obtain a less-holes AP cladding modified layer and obtain
better overall performance.
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Figure 8. The distribution of the microhardness of the two cladding samples compared with AISI 1045 steel. (a) Microhard-
ness curve of the two cladding samples; (b) Histogram of average microhardness in basic matrix, junction zone, powder
remelting zone and mean value of the two cladding samples.

4. Conclusions

This article attempts to prepare different types of cladding layers by laser cladding
modification technology, and explore ways and methods for strengthening the surface
of AISI 1045 steel to expand its application range. The conclusions are as follows: The
thickness of the cladding layer is about 400 µm, and the thickness of the amorphous powder
(AP) cladding layer is slightly larger than that of the crystalline powder (CP) cladding layer.
There are many holes in the AP cladding layer, and holes can be observed at the junction
with the matrix; while the CP cladding layer is well combined with the matrix and no holes
are observed. The friction performance of the CP cladding layer is better than that of the
AP cladding layer. The wear scar of the AP cladding layer has a bonding zone, whereas the
wear scar of the CP cladding layer has a furrow-like morphology, and there is no bonding
zone, and there is a part of the matrix in the wear scar exposed. The surface microhardness
of the AP cladding layer and the average microhardness of the cladding layer are 49% and
94% higher than those of the CP cladding layer, respectively. The microhardness of AP
cladding samples and CP cladding samples power remelting zone (PRZ), junction zone (JZ)
and basic matrix (BM) are 950, 523, 282 and 604, 311, 282, respectively. From the perspective
of hardness only, the overall hardness of the amorphous powder cladding layer is greater
than the crystalline powder modified layer, and the modification effect is very significant.
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