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Abstract: In order to improve the seawater corrosion resistance of Inconel 718 superalloy, a La2Zr2O7/
NiCoCrAlY thermal barrier coating corrosion resistant to 3.5 wt.% NaCl aqueous solution was
prepared by laser cladding on Inconel 718 superalloy. X-ray diffraction (XRD), Scanning Electron
Microscope (SEM), and electrochemical techniques were used to study the microstructure and the
corrosion performance of the coating in 3.5 wt.% NaCl solution. The results show that the thermal
barrier coating is mainly composed of primary La2Zr2O7 phase and γ + laves/δ phase eutectic
structure. The corrosion potential and corrosion current of the coating in 3.5 wt.% NaCl solution are
higher and lower than that of the Inconel 718 substrate, respectively, indicating that the corrosion
performance of the coating is better than that of the Inconel 718 substrate. The presence of La2Zr2O7

phase in the thermal barrier coating is the main reason for its corrosion resistance to 3.5 wt.%
NaCl solution.

Keywords: laser-cladding; La2Zr2O7/NiCoCrAlY thermal barrier coating; Inconel 718 superalloy;
corrosion resistance

1. Introduction

It is well-known that thermal barrier coating (TBC) is widely used in aircraft engines,
turbines, and turbine blades to protect the high-temperature alloy substrate from high-
temperature oxidation and corrosion, and play a role in heat insulation, increasing engine
inlet temperature and engine thrust-to-weight ratio. At present, the most common thermal
barrier coatings are composed of bond coat and ceramic working layer. Among them, the
bond coat material is usually MCrAlY (M = Ni and/or Co), and the working layer material
is mainly ceramics based on 8 wt.% Y2O3 stable ZrO2 (8YSZ) [1–4]. However, 8YSZ coating
cannot be applied for a long time under high temperature conditions above 1200 ◦C, the
reason is that when the long-term service temperature is higher than 1200 ◦C, YSZ will
undergo phase transition (t’-ZrO2 → t-ZrO2 + c-ZrO2) and sintering, accompanied by
thermal physical and mechanical property degradation, strain tolerance reduction, and
crack generation, and eventually lead to coating failure [2,5]. Therefore, in order to meet the
higher service temperature requirements of aircraft engines, turbines and turbine blades, it
is urgent to develop new ceramic coatings for ultra-high temperature and high thermal
insulation thermal barrier. However, as a thermal barrier coating ceramic layer material,
it is required to have high melting point, low thermal conductivity, high temperature
phase stability, chemical stability, corrosion resistance, thermal expansion coefficient to
match the thermal expansion coefficient of the substrate, strong bonding strength with the
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metal substrate, good sintering resistance, and other properties. At present, La2Zr2O7 is
a new thermal barrier coating ceramic material that can basically meet the performance
requirements, and its long-term use temperature can exceed 1300 ◦C [2,6,7].

On the other hand, the current commonly used methods for preparing thermal barrier
coatings mainly include plasma spraying and electron beam-physical vapor deposition [1].
The former is easy to operate and cheap, but the adhesion between coating and substrate
is not strong, the coating microstructure is lamellar and there is a large porosity. The
latter coating microstructure is columnar, coating performance is better than the former,
but the equipment is expensive. Therefore, a new thermal barrier coating preparation
method, laser cladding method [8–12], has been developed. The coating prepared by this
method has fine grain microstructure, strong adhesion between coating and substrate,
better coating performance than plasma spraying method, close to electron beam–physical
vapor deposition method, and easy to realize automation.

To our best knowledge, there are no other literature reports on the preparation of
La2Zr2O7 thermal barrier coating by laser cladding except for our report [9]. However,
there have been a large number of literature reports on the preparation of other thermal
barrier coatings by laser cladding [8,10–12] and the preparation of La2Zr2O7 thermal barrier
coatings by plasma spraying [13–16] and electron beam–physical vapor deposition [17–21].
In addition, there are a large number of literature reports on the corrosion performance of
La2Zr2O7 thermal barrier coatings under oxygen [9,16,20,21], molten salts or oxides (such
as Na2SO4, V2O5, etc.) [4,22–24], CaO–MgO–Al2O3–SiO2 (CMAS) [4,25–27], simulated rain
water after CMAS corrosion [28], and high-temperature water vapor [4,29], etc., but there
are few literature reports on the corrosion performance of La2Zr2O7 thermal barrier coating
in seawater corrosive medium [30]. Considering that aircraft engines, turbines and turbine
blades may be stored in a marine environment [28], it is necessary to study the corrosion
resistance of La2Zr2O7 thermal barrier coating in this case.

In this paper, a La2Zr2O7 thermal barrier coating containing NiCoCrAlY bond coat
was prepared on Inconel 718 superalloy with inner layer of NiCoCrAlY powder and
outer layer of La2Zr2O7 powder by laser cladding. The microstructure characteristics and
corrosion properties of the coating in 3.5 wt.% NaCl solution were studied. The results
show that the corrosion performance of the La2Zr2O7 thermal barrier coating containing
NiCoCrAlY bond coat is better than that of the Inconel 718 substrate.

2. Materials and Methods

Inconel 718 (supplied by Shanghai Tengsi Special Alloy Company Limited, Shanghai,
China) was selected as the substrate material, its size was 100 mm × 50 mm × 8 mm, and
its chemical composition is shown in Table 1. The bond coat powder was NiCoCrAlY,
with a purity of 99.0 wt.% and a particle size of 37–75 µm, and its chemical composition is
shown in Table 2. La2Zr2O7 was selected as a thermal barrier coating ceramic powder with
a purity of 99.5 wt.% and a particle size of 37–75 µm. Figure 1 is the schematic diagram
of the pre-set powder layer before laser cladding (the second powder layer was applied
only after the first powder layer was naturally dry). The binder for the pre-set powder
was 4% Polyvinyl Alcohol (PVA) solution. Among them, the thickness of NiCoCrAlY
powder layer was about 0.1 mm, the thickness of La2Zr2O7 powder layer was about 0.2
mm, and the total thickness of the preset powder layer was about 0.3 mm. The LDF8000-
60 semiconductor laser produced by Laserline (Augsburg, Germany) was used for laser
cladding. The optimized laser cladding parameters were as follows: laser power P = 3.5
kW, laser scanning speed V = 10 mm/s, square laser spot area S = 5 × 5 mm2, laser spot
overlap rate f = 30%, and the Ar gas flow with protective effect was 16 L/min.

Table 1. Chemical composition of the Inconel 718 superalloy.

Element Cr Ni Nb Al Co Mo Ti C Fe

wt.% 18.8 52.7 5.3 0.5 0.02 2.9 0.9 0.03 Bal.
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Table 2. Chemical composition of the NiCoCrAlY powder.

Element Ni Co Cr Al Y

wt.% 43.0 24.0 20.0 12.0 1.0
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Figure 1. Schematic diagram of pre-set powder layer before laser cladding.

The coated samples were cut into small samples of 8 mm × 8 mm × 8 mm by wire
cutting method, which were used to study the microstructure and corrosion resistance of the
coating. It should be pointed out that both the laser clad coating and Inconel 718 samples
have undergone processes such as silicon carbide sandpaper grinding, diamond abrasive
paste polishing, running water washing, cold air drying, and putting into a dryer for
standby use. The phase analysis of the coating was performed on X’ Pert PRO X-ray
diffractometer manufactured by PANalytical B.V. (Almelo, The Netherlands). The test
parameters were as follows: Cu target was used, start position 2θ was 20.0197◦, end position
2θ was 89.9467◦, step size 2θ was 0.0390◦, scan type was continuous, divergence slit size
was 0.4354◦. The microstructure of the cross-section coating etched with an aqua regia was
observed and analyzed by Quanta 650 scanning electron microscope with energy-dispersive
X-ray spectroscopy produced by FEI (Quanta 650 FEG, Eindhoven, The Netherlands).

The electrodynamic polarization curves of the coating and Inconel 718 substrate were
completed on the CS350H electrochemical workstation manufactured by Wuhan Corrtest
Instruments Co. Ltd. (Wuhan, China) A standard three-electrode test system was used
in the experiment, with the coating as the working electrode, platinum electrode as the
auxiliary electrode and saturated calomel electrode as the reference electrode. The effective
exposure area of the coating and Inconel 718 substrate samples was 64 mm2. 3.5 wt.% NaCl
aqueous solution was used for corrosion tests. Soak the sample for 30 min before starting
the measurement. The parameters used in the measurement were as follows: the scanning
speed was 1 mV/s, and the scanning range was −2.5 to 1.0 V.

The surface morphologies of the corroded specimens were observed using a Quanta
650 scanning electron microscope with an energy spectrum (FEI Quanta 650 FEG, Eind-
hoven, The Netherlands).

3. Results and Discussion
3.1. Microstructure

Figure 2 shows the SEM morphology of laser clad cross-section coating. Figure 3
shows the XRD patterns of the laser clad coating. In Table 3, the results of the elemental
EDS analysis of the laser clad coating at different positions are given. It can be seen from
Figure 2a that the laser clad coating is composed of a laser modified layer and a substrate,
of which the thickness of the laser modified layer is about 1738–2024 µm (The measurement
method provided in literature [31] was adopted.). According to Figure 2b–e and Table 3,
the laser modified layer is composed of the La2Zr2O7 layer and the laser alloying layer, of
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which the thickness of La2Zr2O7 layer is about 34–47 µm. The interface of La2Zr2O7 layer
and the laser alloying layer is well combined without cracks and pores. The alloying layer
is mainly composed of γ + Laves/δ phase eutectic structure. The reasons are as follows:

(1) Table 3 shows that EDS results at position D are mainly composed of O, Zr, and La.
Combined with XRD calibration results in Figure 3, it can be seen that the coating
is mainly La2Zr2O7 (JCPDS 01-073-0444) phase. The other small amounts of Al, Ni,
Nb, Cr, Ti, Fe, Co, Mo, and Y in position D should come from the laser-heated molten
bond coat NiCoCrAlY powder and partially melted Inconel 718 substrate. This is
caused by the rapid laser heating and solidification during laser cladding, and the
mixed alloy elements have no time to separate.

(2) Table 3 shows that the Nb content of Spot3 and Spot6 exceed 10 at.% and they are
probably Laves phases. Since Laves phase is generally A(Fe, Ni, Cr)2B(Nb, Mo, Ti)
type, they might be Cr2Nb phase in combination with EDS results of Spot3 and Spot6.
This is consistent with the results reported in literature [32–35].

(3) Table 3 shows that the Nb content of Spot2 and Spot4 is 8.51 at.% and 5.62 at.%,
respectively. They are probably δ phase (Ni3Nb). The reason is that the solidifi-
cation temperature of δ phase is 860–995 ◦C and Nb concentration requirement is
6–8 at.% [35]. This is consistent with the results reported in literature [32].

(4) Table 3 shows that Fe, Ni and Cr contents in Spot1, Spot5, and Spot7 are dominant,
which should be γ phase ((Fe, Ni, and Cr) solid solution).

(5) A large number of literature studies have shown [36–38] that the solidification process
sequence of Inconel 718 substrate is L→ γ→ γ + NbC (high temperature) eutectic
reaction→ γ + laves (low temperature) eutectic reaction. According to EDS results in
Table 3, in the laser cladding process, the chemical composition of the laser heating
melted preset powder layer, and partially melted Inconel 718 substrate deviated from
the chemical composition of Inconel 718 substrate due to mixing, but the degree of
deviation should be small, because the chemical composition of the added NiCoCrAlY
bond coat powder is basically the composition of Inconel 718 substrate. Therefore,
we believe that the solidification process of the laser modified layer is as follows:
The high melting point La2Zr2O7 (2300 ◦C) solidified first, and the remaining alloy
liquid followed the solidification sequence of Inconel 718 alloy: L→ γ→ (γ + NbC)
eutectic reaction→ (γ + Laves) eutectic reaction. In other words, the solidification
of remaining alloy liquid was mainly caused by L→ γ reaction at the beginning. As
time went on, Nb, Mo, Ti, C, and other elements were enriched between dendrites,
leading to the eutectic reaction L → (γ + NbC) and the consumption of a large
number of C atoms in the alloy. As the L→ γ reaction continued and progressed,
further enrichment of the interdendrite liquid solute atoms occurred until the eutectic
reaction L→ (γ + Laves) occurred and the solidification process was complete. At
the same time, due to the characteristics of rapid laser heating and fast solidification,
Nb element segregation was serious, and part of the regions with low Nb content
generated δ phase instead of Laves phase, because Nb content in δ phase is usually
6–8 at. %, while Nb content in Laves phase usually exceeds 10 at. % [32–35].

It should be pointed out that there exists a large temperature gradient on the upper and
lower surface of the molten pool during the laser action, thus forming an extremely steep
surface tension, which causes a strong convection in the molten pool, and the convection in
the molten pool can produce a strong stirring force, so that the liquid metal in the molten
pool mixed evenly. The convection in the molten pool mainly comes from three aspects:
First, the convection in the molten pool comes from the energy distribution of the laser
beam, and the Gaussian laser beam used in this experiment can cause severe convection
in the molten pool. The second factor is the protective gas that blows out to prevent the
oxidation of liquid metals at high temperature. This high-pressure protective gas produces
a stirring effect that promotes the diffusion of the liquid metal. Thirdly, at high temperature,
the liquid metal expands when heated to form a certain density difference in the molten
pool, thus generating buoyancy in the pool, the existence of which will cause the natural
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convection of the melt [39]. It is these three factors that make the multi-layer preset powder
mode also form the microstructure obtained by the single-layer preset powder mode, thus
reducing the mixing time of powder, and improving the production efficiency.
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Table 3. EDS results of the coating at different positions of Figure 2 (at.%).

Element O Zr La Ni Nb Cr Ti Fe Al Co Mo Y Possible Phase

Area D 58.2 20.4 15.6 0.1 0.0 0.4 0.8 0.1 3.5 0.0 0.0 0.9 La2Zr2O7
Spot1 11.5 4.1 0.2 32.2 0.4 18.1 0.4 30.5 1.9 0.1 0.5 0.1 γ
Spot2 21.1 5.2 0.2 22.8 8.5 14.8 1.8 21.2 2.8 0.1 1.0 0.5 δ
Spot3 28.0 4.9 0.2 13.6 11.0 19.4 1.2 14.6 2.1 0.2 4.3 0.5 Laves
Spot4 19.9 4.6 0.2 22.4 5.6 19.8 1.0 20.2 2.6 0.2 3.0 0.5 δ
Spot5 12.2 4.3 0.2 31.1 0.5 18.1 0.6 29.9 2.2 0.1 0.6 0.2 γ
Spot6 28.7 5.3 0.2 13.6 10.9 18.8 0.9 14.4 2.2 0.2 4.3 0.5 Laves
Spot7 13.3 4.5 0.2 31.2 0.6 18.0 0.5 28.7 2.1 0.0 0.7 0.2 γ

Finally, combining the results of Figures 2 and 3 and Table 3, we give a schematic
diagram of the phase distribution in different regions of the laser modified layer, as shown
in Figure 4.
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Figure 4. Schematic diagram of phase distribution in different areas of the laser modified layer.

3.2. Corrosion Properties

Figure 5 shows the potentiodynamic polarization curve of laser clad La2Zr2O7/NiCoCrAlY
coating and Inconel 718 substrate in 3.5 wt.% NaCl aqueous solution. Table 4 shows the cor-
rosion potential and current of the laser clad coating and Inconel 718 substrate in 3.5 wt.%
NaCl aqueous solution. It can be seen from Figure 5 and Table 4 that the corrosion potential
of laser clad coating is 0.22 V higher than that of Inconel 718 substrate, and the corrosion
current is about one eleventh of that of Inconel 718 substrate. According to the principle of
“the higher the corrosion potential of the material, the smaller the corrosion current and the
better the corrosion resistance”, the corrosion resistance of laser clad coating in 3.5 wt.%
NaCl aqueous solution is better than Inconel 718 substrate. The reason is that the surface
layer of laser clad coating (Figures 2b and 3) is mainly composed of dense La2Zr2O7 phase,
which has excellent corrosion resistance to 3.5 wt.% NaCl aqueous solution [30].
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Table 4. Corrosion parameters of different samples in 3.5 wt.% NaCl solution.

Specimen Ecorr (V) Icorr (A/cm2)

Inconel 718 −1.13 1.44 × 10−4

Laser clad coating −0.91 1.29 × 10−5

It should be noted that the corrosion potential and corrosion current of the pure
La2Zr2O7 coating prepared by plasma spraying in 3.5 wt.% NaCl aqueous solution are
−0.66 V and 5.4 × 10−7 A/cm2, respectively, as reported in literature [30]. However, in
the La2Zr2O7 coating prepared by laser cladding method in this paper, due to a small
amount of alloy elements dissolved in the coating (Table 3), the corrosion potential and
current are not as good as those reported in literature [30], but they are still better than
those of Inconel 718 substrate (Table 4). This indicates that the La2Zr2O7/NiCoCrAlY
coating prepared by laser cladding is more resistant to corrosion by 3.5 wt.% NaCl aqueous
solution than Inconel 718 substrate. This is also evidenced by the surface morphology after
corrosion in Figure 6. It can be seen from Figure 6 that the surface of Inconel 718 substrate
is seriously damaged after the corrosion of 3.5 wt.% NaCl aqueous solution (Figure 6a),
while the surface of laser clad coating is slightly damaged (Figure 6b). In addition, EDS
results in Table 5 show that oxygen elements appear in the surface chemical compositions
of both samples after corrosion in 3.5 wt.% NaCl aqueous solution. Combined with the
EDS results in Tables 1 and 5 and the SEM morphology after corrosion in Figure 6, it can be
seen that in Figure 6a, areas A and B should be the surface of the original Inconel 718 alloy
that has not been corroded by 3.5 wt.% NaCl aqueous solution and the exposed surface
of Inconel 718 alloy after being corroded by 3.5 wt.% NaCl aqueous solution, respectively.
The original La2Zr2O7 coating surface not corroded by 3.5 wt.% NaCl aqueous solution
should be at area C in Figure 6b. Among them, the oxygen in the surface of the laser
clad coating is mainly from La2Zr2O7 phase, while the oxygen in the corrosion surface of
Inconel 718 substrate is mainly from the electrochemical reaction (no oxidation film) or
chemical reaction (presence of oxide film) of Cr, Ni, Nb, Al, Co, Mo, Ti, and Fe elements in
Inconel 718 substrate in 3.5 wt.% NaCl aqueous solution containing oxygen. The detailed
electrochemical or chemical reactions of Inconel 718 substrate are as follows:

(1) When there is no oxidation film, the following electrochemical reactions occur in
3.5 wt.% NaCl aqueous solution containing oxygen for Cr, Ni, Nb, Al, Co, Mo, Ti, and
Fe elements in Inconel 718 substrate: For Cr element:

Negative: Cr − 3e− = Cr3+

Positive: O2 + 2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: 4Cr + 3O2 + 6H2O = 4Cr(OH)3.
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For Ni element:
Negative: Ni − 2e− = Ni2+

Positive: O2 + 2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: 2Ni + O2 + 2H2O = 2Ni(OH)2.
For Nb element:
Negative: Nb − 5e− = Nb5+

Positive: O2 + 2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: 4Nb + 5O2 + 10H2O = 4Nb(OH)5.
For Al element:
Negative: Al − 3e− = Al3+

Positive: O2 + 2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: 4Al + 3O2 + 6H2O = 4Al(OH)3. Due to the
instability of Al(OH)3, it is finally decomposed into water and alumina: 2Al(OH)3 =
Al2O3 + 3H2O.
For Co element:
Negative: Co − 2e− = Co2+

Positive: O2 + 2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: Co + O2 + 2H2O = Co(OH)4.
For Mo element:
Negative: Mo − 6e− = Mo6+ Positive: O2 +2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: 2Mo + 3O2 + 6H2O = 2Mo(OH)6.
For Ti element:
Negative: Ti − 4e− = Ti4+

Positive: O2 + 2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: Ti + O2 + 2H2O = Ti(OH)4.
For Fe element:
Negative: Fe − 2e− = Fe2+ Positive: O2 + 2H2O + 4e− = 4OH−

Total reaction equation of galvanic cell: 2Fe + O2 + 2H2O = 2Fe(OH)2. Fe(OH)2 can
also continue to react with oxygen in solution: 4Fe(OH)2 + O2 + 2H2O = 4Fe(OH)3.

(2) When there is oxidation film, the following chemical reactions occur in 3.5 wt.%
NaCl aqueous solution for Cr, Ni, Nb, Al, Co, Mo, Ti, and Fe elements in Inconel
718 substrate: Generally speaking, all metal elements will form oxide film on their
surface at room temperature. Table 6 is the Pilling–Bedworth (P-B) ratio of alloy
oxides of Cr, Ni, Nb, Al, Co, Mo, Ti, and Fe. According to the criterion that “the
integrity of metal oxide film is a necessary condition for its protection, while the P-B
ratio is greater than 1 is a necessary condition for the integrity of metal oxide film”, it
can be seen that the oxide film formed by these alloy-elements is complete. However,
if the P-B ratio is too large (such as more than 2), the internal stress of the oxide
film is large, and the oxide film is easy to break and lose protection or the protection
is very poor. Therefore, according to the results in Tables 1 and 6, the presence of
Nb and Mo may make the oxidation film formed on the local surface of Inconel 718
substrate worse.

Table 5. EDS results of corroded surfaces of the Inconel 718 substrate and the laser clad speci-
men (at.%).

Samples Position O Zr La Al Nb Mo Ti Cr Fe Co Ni Y

Inconel 718 Area A 15.0 0.0 0.0 2.2 5.3 0.7 0.7 17.0 39.5 0.2 19.4 0
Inconel 718 Area B 12.5 0.0 0.0 1.4 5.4 0.5 0.9 17.8 38.8 0.4 22.3 0
Inconel 718 Spot 1 10.6 0.0 0.0 1.4 5.3 0.8 0.7 17.6 42.4 0.2 21.0 0

Coating Area C 61.5 16.0 15.1 4.6 0.2 0.1 0.9 0.5 0.1 0.1 0.2 0.7
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Table 6. Pilling–Bedworth ratios of different metal oxides [40].

Metal Cr Ni Co Fe Fe Ti Nb Al Mo

oxide Cr2O3 NiO CoO FeO Fe2O3 TiO2 Nb2O5 Al2O3 MoO3

P-B ratio 2.07 1.65 1.86 1.70 2.14 1.73 2.68 1.28 3.4

On the one hand, all the surface metal oxide films will react with the water in 3.5 wt.%
NaCl aqueous solution as follows:

Cr2O3 + 3H2O→ 2Cr(OH)3 (1)

NiO + H2O→ Ni(OH)2 (2)

Nb2O5 + 5H2O→ 2Nb(OH)5 (3)

Al2O3 + 3H2O→ 2Al(OH)3 (4)

CoO + H2O→ Co(OH)2 (5)

MoO3 + 3H2O→Mo(OH)6 (6)

TiO2 + 2H2O→ Ti(OH)4 (7)

FeO + H2O→ Fe(OH)2 (8)

Fe2O3 + 3H2O→ 2Fe(OH)3 (9)

On the other hand, due to the presence of Cl− ions with a small radius in the NaCl
corrosion solution, Cl− ions will adsorb and penetrate into the metal surface oxidation
film and diffuse into the interior and have a chemical reaction with the internal metal (see
Equations (10)–(17)), thus reducing the protective effect of the outermost metal oxidation
film and increasing the corrosion rate of the Inconel 718 substrate. On the contrary, since
La2Zr2O7 is oxygen non-permeable material [2,7], and the radius of O2− ion is 140 pm,
and the radius of Cl− ion is 181 pm, Cl− cannot penetrate the dense La2Zr2O7 coating.
Therefore, the laser clad coating is more resistant to corrosion by 3.5 wt.% NaCl aqueous
solution than Inconel 718 substrate.

Cr(s) + 3Cl−(aq.) → CrCl3 (10)

Ni(s) + 2 Cl−(aq.) → NiCl2 (11)
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Nb(s) + 5Cl−(aq.) → NbCl5 (12)

Al(s) + 3Cl−(aq.) → AlCl3 (13)

Co(s) + 2Cl−(aq.) → CoCl2 (14)

Mo(s) + 6Cl−(aq.) →MoCl6 (15)

Ti(s) + 4Cl−(aq.) → TiCl4 (16)

Fe(s) + 3Cl−(aq.) → FeCl3 (17)

In conclusion, no matter whether oxidation film is formed on the surface of Inconel
718 substrate, chemical reaction (oxidation film exists), or electrochemical reaction (no oxi-
dation film exists) will occur in 3.5 wt.% NaCl aqueous solution, thus leading to corrosion
of Inconel 718 substrate. On the contrary, since Cl- ions could not penetrate the dense
La2Zr2O7 coating prepared by laser cladding, the corrosion resistance of the coating in
3.5 wt.% NaCl aqueous solution is superior to that of the Inconel 718 substrate.

4. Conclusions

In order to improve the seawater corrosion resistance of aircraft engines, turbines, and
turbine blades, a La2Zr2O7/NiCoCrAlY coating was prepared by using the pre-set powder
layer method and laser cladding, and the following two main conclusions are drawn:

(1) The outermost layer of the coating is La2Zr2O7 layer, and the secondary layer is
mainly composed of γ + laves/δ phase eutectic structure.

(2) The corrosion resistance of the coating is superior to that of Inconel 718 substrate in
3.5 wt.% NaCl aqueous solution, and the presence of La2Zr2O7 phase is the main
reason for the improvement of the corrosion resistance of the coating.
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