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Abstract: The in-service life of ASTM A36 welded steel pipes in power plants is often shortened by
ash corrosion. During the heating condition, the ash deposition on the welded steel pipes gradually
reduces the thickness of the pipes, thus, reducing the lifetime. Instead of replacing the pipes with new
ones, the cost could be significantly reduced if the lifetime could be further extended. Weld cladding
was the method selected in this study to temporarily extend the service life of welded pipes. This paper
performed the mechanical investigations of A36—A36 welded steel plates after coating the surfaces
with 309L stainless steel with a cladding method. The residual stress was also tested to observe the
internal stresses developed during the welding processes of A36—A36 specimens. The comparison
between the coated and non-coated surfaces of welded steels was performed by using the tensile
tests (at room and elevated temperatures), corrosion (pitting corrosion, intergranular corrosion,
and weight-loss corrosion) tests, and wear (shot blasting) tests. The life-extension of both coatings
was evaluated based on the tensile tests and the corrosion and wear tests provided the qualitative
evaluations of the coating performance. The results showed that surfaces coated by cladding could
be used to temporarily extend the life of ASTM A36 welded steel under the studied conditions.

Keywords: ASTM A36; cladding; corrosion; shot blasting; stainless steel; wear; welding

1. Introduction

ASTM A36 is a carbon structural steel generally used in welded constructions and power plants [1].
In coal-fired and biogas power plants, ash can deposit on steel surfaces and cause severe corrosion [2,3].
Under cyclic thermal conditions coupled with ash corrosion, the lifetime of these structural components
is significantly reduced [4], and one of the main reasons is the thickness reduction or weight loss on
steel surfaces [5]. The corrosion consequences can lead to component failures, safety and environment
hazards, downtime, and high maintenance costs. One of the standard techniques to prevent such
failures or extend the lifetime is surface coating [6]. Stainless steels have been widely coated on
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their surfaces in many applications and conditions due to the resulting superior microstructural and
mechanical properties [7–16].

The process of bonding stainless steels on steel surfaces is called cladding, which can be carried
out by using welding or hard facing [17–22], laser cladding [23–30], and rolling [31]. The performance
of these cladding coatings is highly influenced by the microstructures and alloys of the surfacing
materials [32–35]. In general, these coated surfaces provide wear resistance characteristics [36–43].
They are also commonly exposed to the systems having both mechanical and corrosion wear
phenomena [44–48]. Most importantly, they must operate at elevated temperatures for a long
time without thermal fatigue [49] and creep [50] failures.

Since many structural components in power plants are welded together, the stainless steel
cladding overlays on welded steel joints is a significant concern and must be well understood [51].
One research study found that a two-layer weld overlay was recommended to achieve better corrosion
resistance [52]. Different overlay coatings and processes were also investigated to observe the interface
bonding metallurgy and strengths [53]. Hardness and tensile tests were also performed to observe
the stainless steel coating on steel welds [54]. Nevertheless, it is still unclear if welded steel joints
overlayed with stainless steel coatings would survive and perform under the operating conditions.
This study aimed to investigate the mechanical properties of the stainless steel cladding surfaces
of steel welds. Note that purpose of the addition of cladding was only to temporarily extend the
lifetime of the welded components, which could significantly save power plants’ downtime costs.
However, the coated surfaces must also work under the required conditions without failures. As a result,
tensile tests were carried to observe the bonding interfaces’ strengths at room and elevated temperatures.
Corrosion and wear tests were also performed to determine if these cladding surfaces could withstand
corrosive environments.

2. Materials and Methods

2.1. Weld Materials Preparation

The scope of this research was to investigate the extended lifetime of the A36—A36 welded joint
by coating its surface by cladding it with 309L stainless steel. The substrate workpiece was prepared
by welding two ASTM A36 plates together, as shown in Figure 1.

Coatings 2020, 10, x FOR PEER REVIEW 2 of 19 

 

and environment hazards, downtime, and high maintenance costs. One of the standard techniques 
to prevent such failures or extend the lifetime is surface coating [6]. Stainless steels have been widely 
coated on their surfaces in many applications and conditions due to the resulting superior 
microstructural and mechanical properties [7–16]. 

The process of bonding stainless steels on steel surfaces is called cladding, which can be carried 
out by using welding or hard facing [17–22], laser cladding [23–30], and rolling [31]. The performance 
of these cladding coatings is highly influenced by the microstructures and alloys of the surfacing 
materials [32–35]. In general, these coated surfaces provide wear resistance characteristics [36–43]. 
They are also commonly exposed to the systems having both mechanical and corrosion wear 
phenomena [44–48]. Most importantly, they must operate at elevated temperatures for a long time 
without thermal fatigue [49] and creep [50] failures. 

Since many structural components in power plants are welded together, the stainless steel 
cladding overlays on welded steel joints is a significant concern and must be well understood [51]. 
One research study found that a two-layer weld overlay was recommended to achieve better 
corrosion resistance [52]. Different overlay coatings and processes were also investigated to observe 
the interface bonding metallurgy and strengths [53]. Hardness and tensile tests were also performed 
to observe the stainless steel coating on steel welds [54]. Nevertheless, it is still unclear if welded steel 
joints overlayed with stainless steel coatings would survive and perform under the operating 
conditions. This study aimed to investigate the mechanical properties of the stainless steel cladding 
surfaces of steel welds. Note that purpose of the addition of cladding was only to temporarily extend 
the lifetime of the welded components, which could significantly save power plants’ downtime costs. 
However, the coated surfaces must also work under the required conditions without failures. As a 
result, tensile tests were carried to observe the bonding interfaces’ strengths at room and elevated 
temperatures. Corrosion and wear tests were also performed to determine if these cladding surfaces 
could withstand corrosive environments. 

2. Materials and Methods 

2.1. Weld Materials Preparation 

The scope of this research was to investigate the extended lifetime of the A36—A36 welded joint 
by coating its surface by cladding it with 309L stainless steel. The substrate workpiece was prepared 
by welding two ASTM A36 plates together, as shown in Figure 1. 

 
Figure 1. The substrate specimen preparation process: (a) Specimen dimensions; (b) A36—A36 
specimens; (c) A36—A36 welded plate; (d) Welding processes; (e) Post-weld heat treatment. 
Figure 1. The substrate specimen preparation process: (a) Specimen dimensions; (b) A36—A36
specimens; (c) A36—A36 welded plate; (d) Welding processes; (e) Post-weld heat treatment.



Coatings 2020, 10, 844 3 of 17

Before welding, two A36 plates were pre-heated at 148 ◦C to avoid recrystallization, which could
lead to hydrogen-induced cracking. The first two layers were welded by gas tungsten arc welding
(GTAW) with 99.9% argon shielding gas, and layers 3 to 13 were joined by using shielded metal arc
welding (SMAW). Note that the weld groove angle in the SMAW process was 75◦ with a 3 mm root
height and a 3 mm root gap. The specific conditions of the two welding processes are listed in Table 1.
The chemical and mechanical properties of the substrate and filler materials used in the welding
processes are described in Tables 2 and 3, respectively.

Table 1. Welding process conditions for weld specimens preparation.

Welding Process Number of Layers Filler Metal Current Type and Polarity Current (Amp) Voltage (V) Travel Speed (mm/min)

GTAW 1–2
ER70S-6
(2.4 mm

Diameter)
DCEN 90–140 10–15 50–100

SMAW 3–13
E7016

(3.2 mm
Diameter)

DECP, AC 90–130 22–30 60–120

Table 2. Chemical compositions of the considered materials in this study.

Chemical Composition (wt.%)

Material C Mn Cr Si Mo Ni Cu S P

ASTM A36 0.250 max. 0.850–1.350 – 0.400 max. – – – 0.030 0.030

ER70S-6 0.100 1.560 0.020 0.860 <0.010 0.010 0.240 0.012 0.012

E7016 0.080 0.940 0.020 0.600 <0.100 0.010 – 0.006 0.004

E309L-16 0.040 0.500–2.500 22.000–25.000 1.000 0.750 12.000–14.000 0.750 0.030 0.040

Table 3. Mechanical properties of the considered materials in this study.

Mechanical Properties

Material Yield Strength (N/mm2) Tensile Strength (N/mm2) Elongation (%)

ASTM A36 250 400–550 23
ER70S-6 420 550 35

E7016 420 520 33
E309L-16 420 520 30

The welded plate’s macrostructure was then examined to determine the weld quality, as illustrated
in Figure 2. Three main zones could be observed in the cross-section of the A36—A36 weldment: base,
heat affected zone (HAZ), and weld metal.Coatings 2020, 10, x FOR PEER REVIEW 4 of 19 
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2.2. Cladding Process and Residual Stress Measurements

The welded plate was then coated by cladding its surface with 309L stainless steel (E309L-16),
as demonstrated in Figure 3.
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Figure 3. The schematic of the cladding process: (a) Shielded metal arc welding (SMAW); (b) A36—A36
welded substrate; (c) Hard facing overlay; (d) Grinding; (e) Cladding surface.

SMAW was carried out to create a hard-facing overlay of 2.8–3.0 mm. Note that the cladding
direction was perpendicular to the weld direction or A36—A36 weldment. The detailed information
about the SMAW process is described in Table 4. After the entire surface was coated with 309L stainless
steel, the top surface (overlay) was ground to have approximately 2.8 mm thickness.

Table 4. Cladding process condition.

Welding
Process

Number of
Layers Filler Metal Current Type

and Polarity Current (Amp) Voltage (V) Travel Speed
(mm/min)

SMAW 1 E309L-16
(3.2 mm diameter) DECP, AC 80–86 20–24 144–174

The residual stress measurements were carried out on the welded plates both before and after
cladding to evaluate the internal stresses that resulted from the welding processes. A non-contact
surface scanner (µ-X360s Portable X-ray Residual Stress Analyzer by PULSTEC, Hamamatsu, Japan)
was used to measure the residual stress. Figure 4 displays the measurement locations (B1 to B9, and A1
to A4). Before the cladding, the residual stresses in all three zones (base, HAZ, and weld metal) were
measured (Figure 4a). However, the residual stresses were checked in only the HAZ and weld metal
zones of the cladding surface because these zones were vulnerable to heat.

2.3. Tensile Tests

Since the coated plate’s service life depended on its mechanical strength, each layer of cladding
workpiece was extracted and tested by the tensile test, as described in Table 5, to determine its strength
at elevated temperatures. Figure 5 shows the locations of the tensile testing specimens that were
machined out of the cladding surface and substrate. The specimens in the cladding layer were cut
into flat samples having a 50 mm gauge length and 12.5 mm width. The substrate specimens were
machined into rod specimens with a 50 mm gauge length and 8.0 mm diameter. The Instron 1000 HDX
machine ((Instron, Norwood, MA, USA) was used to carry out the tensile tests, and the pulling speed
was 5 mm/min. Note that the tensile testing procedure followed the ASTM E8 standard [55].
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Figure 5. The tensile testing specimens: (a) Tensile (flat) specimens location on cladding surface;
(b) Tensile (rod) specimen location on A36—A36 welded plate.

Table 5. Considered conditions in the tensile tests.

Test Numbers Layers Orientations Materials Thickness (mm) Temperatures (◦C)

CD11-25 Cladding Cladding Direction
309L Stainless Steel 2.5

25
A36 Steel 2.5

CD12-25 Cladding Cladding Direction
309L Stainless Steel 2.5

25
A36 Steel 5.0

CD11-500 Cladding Cladding Direction
309L Stainless Steel 2.5

500
A36 Steel 2.5

CD12-500 Cladding Cladding Direction
309L Stainless Steel 2.5

500
A36 Steel 5.0

WD-25 Cladding Weld Direction 309L Stainless Steel 2.8 25

WD-500 Cladding Weld Direction 309L Stainless Steel 2.8 500

SB-500 Substrate Rolling Direction A36 Steel (Base Material) 8.0 (diameter) 500

SW-500 Substrate Welding Direction A36—A36 Welded Steel 8.0 (diameter) 1 500
1 The rod specimen was notched at the weldment to ensure breaking at low strain.

2.4. Corrosion Tests

Since the actual operating conditions were significantly affected by corrosion, three major corrosion
tests were considered, as described in Table 6. The sites investigated for the corrosion tests are displayed
in Figure 6.
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Table 6. Considered conditions in the corrosion tests.

Tests Standards Layers Materials

Pitting Corrosion ASTM G48 A [56]

Cladding Layer over Weldment (P1) 309L Stainless Steel
Cladding Layer (P2) 309L Stainless Steel

Cladding-Substrate Layer (P3) 309L Stainless Steel—A36 Steel
Substrate Layer (P4) A36 Steel

Intergranular Corrosion ASTM 262 E [57] Cladding Layer over Weldment (G1) 309L Stainless Steel
Cladding-Substrate Layer over Weldment (G2) 309L Stainless Steel—A36 Steel

Weight Loss Corrosion None
Substrate Layer (W1) A36 Steel
Cladding Layer (W2) 309L Stainless Steel—A36 Steel
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In the pitting corrosion tests, the specimens were cut to 25 mm along the weld and 50 mm across the
weld. Prior to the test, all surfaces of the samples were ground wet by 120-grit polishing. Pickling was
performed for 5 min at 60 ◦C in a solution of 20% HNO3 and 5% HF. The specimens were cleaned
by rinsing with water, then dipping in acetone, and being air-dried. Afterward, the samples were
immersed in the 6% FeCl3·6H2O solution at a constant temperature of 50 ◦C for 24 h. Then specimens
were cleaned, and the pitting evaluation was carried out by using the microscope. Figure 7a,b
demonstrates the pitting corrosion test setup.

Figure 7c,d show the intergranular corrosion tests. Each specimen was machined to be 25 mm
(width) by 100 mm (length) to achieve a smooth surface. Prior to or the test, the samples were cleaned
with alcohol in the ultrasonic cleaner. In each intergranular corrosion test, a specimen was filled
with a layer of copper shot on the bottom of the test flask and immersed in the dissolved 100 g of
CuSO4·5H2O in 700 mL of distilled water. Then, 100 mL of sulfuric acid was added and filled with
distilled water to acquire 1000 mL test solutions. The specimen in the test solution was then boiled for
24 h. Afterward, the specimen was cleaned in the ultrasonic cleaner and was air-dried. The face bend
weld test was also carried out by bending the tested sample 180◦ over a mandrel with a radius not
exceeding the specimen’s thickness.

The third corrosion test was to measure the weight loss of the base material (A36 steel) and the
cladding layer (309L stainless steel—A36 steel). Each specimen was cut to a 25 mm (width) and 25 mm
(length) size. The surface was ground wet by 120-grit and cleaned with alcohol in the ultrasonic cleaner.
The specimen was then immersed in the 30% Nital test solution at constant room temperature for 24 h.
Then, the sample was cleaned, and the weight loss measurement was performed.
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2.5. Wear Tests

In the coal-fired power plants, structural systems were typically under worn out by erosion.
As a result, a shot blasting experiment was carried out to observe the wear performance of the
cladding surfaces, as seen in Figure 8. Two types of specimens were considered here: a substrate
(A36—A36 welded plate), and a cladding (309L stainless steel). Each sample was cut to have dimensions
of 50 mm in width, 75 mm in length, and 6 mm in thickness. In the shot blasting process, the specimen
was placed into the chamber (Figure 7b), and the sands (250–425 µm in diameter) were blasted with
0.6 MPa using a nozzle having 6.25 mm in diameter. Three levels of shot blasting times were carried
out (Table 7) and the accumulated weight loss after each time was measured.

Table 7. The considered conditions in the shot blasting tests.

Parameters Considered Conditions

Materials Substrate (A36—A36 welded plate), Cladding (309L stainless steel)
Shot blasting time (s) 150, 270, 390
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Figure 8. The shot blasting wear test: (a) Shot blasting machine; (b) Specimen placement in the shot
blasting machine; (c) Weight loss measurement after shot blasting.
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3. Results

The results section is divided into three parts, as follows.

3.1. Residual Stress Measurement Results

The X-ray diffraction method used here provided the in-plane principal stresses in the weld
direction (WD) and the cladding direction (CD), as illustrated in Figure 9. After the A36—A36 plates
were welded together, the material within the welded plate started to shrink as it cooled down, and the
residual stresses developed. The negative values were compressive stresses, and the positive values
were tensile stresses. The high-stress concentration sites should be paid attention to because they
could lead to reduced fatigue resistance. Before cladding (Figure 9a,b), the high compressive stress
locations were mainly found in the weld metal and HAZ zones in the center area. Figure 9c,d shows
the residual stress distributions in the concerned areas (weld metal and HAZ) after cladding. Since the
X-ray diffraction measurement depth was shallow, the residual stresses after cladding were mainly
caused by the hard facing overlay (309L stainless steel). The overall stress distribution was considered
typical and would not lead to lower fatigue resistance.
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3.2. Tensile Testing Results

The stress-strain plots of the tensile tests are presented in Figure 10. The strengths of the cladding
layers (flat specimens) are shown in Figure 10a, and those of the substrate layers (rod specimens) are
displayed in Figure 10b.

At room temperature, the cladding layer (CD11-25) having 309L stainless steel (2.5 mm) and A36
steel (2.5 mm) offered the highest tensile strength (548 MPa) and elongation (37%). The addition of A36
steel thickness to 5.0 mm in CD12-25 provided slightly less tensile strength (540 MPa) and the same
elongation. Only the 309L stainless steel layer in WD-25 provided lower tensile strength (522 MPa) and
much lower elongation (6%). However, the cladding layer having only 309L stainless steel (WD-500)
provided the highest tensile strength (376 MPa) and lowest elongation (26%) in comparison to the
other cases at 500 ◦C. The cladding layer (CD11-500) having the same ratio of 309L stainless steel and
A36 steel had a higher tensile strength (333 MPa) and slightly lower elongation (34%) than that of the
case (CD12-500) having the ratio of 309L stainless to A36 steel of 1:2, which had a 306 MPa tensile
strength and 37% elongation.

In Figure 10b, the tensile strength of the base material (SB-500) was 238 MPa with a 40% elongation.
The tensile strength of the A36 welded plate (SW-500) provided a tensile strength of 288 MPa. Note that
this condition’s elongation was very low since the sample was notched at the weld area to force
breaking at low strain. The increased strength of the A36—A36 welded plate was still lower than the
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strengths of those with cladding layers in Figure 10a. Also, it could be observed that the addition of
2.5 mm 309L stainless steel to A36 substrate (CD11-550) could increase the tensile strength up to 16% at
500 ◦C in comparison with the A36—A36 welded plate (SW-500).
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3.3. Corrosion Testing Results

The investigated areas (P1 to P4) of the pitting corrosions were observed in Figure 11 to detect if
there existed any localized cavities or holes, which could lead to severe corrosion damage. On the
cladding sites (P1 and P2), pitting corrosion occurred both on the 309L stainless steel layer. The sampled
pitting corrosion sites could be seen in Figure 12, and the dimensions of a pitting site were displayed
in Figure 13. These images were taken by using the high-resolution digital microscope (VHX-7000,
Keyence, Itasca, IL, USA, 20 to 6000×magnification). Note that rust occurred on the surfaces shown in
Figures 12 and 13 because these samples were rested in the air for an extended period prior to the
surface inspection.
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At P3 (Figure 11), the localized cavities only appeared on the cladding layer (309L) but could not
be observed on the base material side (A36). No pitting corrosions could be observed at P4 even after
using the high-resolution digital microscope. As a result, 309L cladding provided pitting corrosion
resistance to both the A36 base and A36—A36 weld material because localized corrosion attacks could
not penetrate through the cladding layer. These results were consistent with Wang et al.’s that 309L
did not corrode in the pitting corrosion tests [58].
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When reheating a welded component, particularly in stainless steel welding, chromium (Cr)-rich
grain boundary precipitates could lead to a local depletion of Cr adjacent to the precipitates, which
could lead to a corrosive attack. In the heat-affected zone (HAZ), titanium or niobium could react
with carbon to form carbides, causing intergranular corrosion or the so-called “knife-line” attack
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because these carbides build-up could not diffuse due to rapid cooling of the weld metal. Figure 14
shows the intergranular corrosion tests’ results in the HAZ areas (G1 and G2). Although the A36 base
materials seemed to be significantly corroded, no intergranular (carbides build-up) were detected
in both locations. As a result, the 309L stainless steel cladding could also be used as a protective layer
for intergranular corrosion resistance.
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Figure 14. The intergranular corrosion testing results: (a) Cladding layer over weldment (G1);
(b) Cladding-substrate layer over weldment (G2).

Figure 15 shows the weight-loss corrosion test results observed at the base material (A36) and the
cladding material (309L and A36). The observed corrosions seemed to be uniform for both sites (W1 and
W2). The calculated weight losses for the A36 plate was 14.51, and 11.11 mg/mm2 for the cladding layer.
The cladding layer could reduce the corrosion weight loss on the A36 plate by approximately 24%.

Overall, the 309L stainless steel cladding was effective in the corrosion resistance of the A36—A36
welded plate because no pitting and intergranular were noticed in the A36 areas. Moreover, the addition
of the cladding layer could help slow down weight loss corrosion.
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3.4. Wear Testing Results

The wear performance of the cladding surface could be observed in Figure 16. This figure compares
the weight loss at varying shot blasting time between the substrate and the cladding. Increasing shot
blasting time led to the increased weight loss of both surfaces since the top surface layers were eroded
over time.
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Figure 16. The results of the shot blasting wear tests.

It could be noticed that the weight loss of the cladding surface was lower than that of the substrate
over time. Since the density of A36 steel was 7.85 g/mm3 and the density of 309L stainless steel was
7.97 g/mm3, the calculated volume losses of the substrate and cladding were 0.248 and 0.226 mm3/h,
respectively. The 309L stainless steel cladding surface reduced the volume loss by approximately 9%,
which could provide improved surface protection and a longer lifetime to the A36—A36 welded steel,
particularly in the erosion environment.

Figure 17 shows the top and cross-section views of the shot blasted surfaces. The surface roughness
values of these surfaces were measured in Figures 18 and 19. The less abrasive surface could be found
on the 309L stainless steel cladding (Ra = 1.92 µm) than on the A36—A36 substrate (Ra = 4.08 µm),
which corresponded to the 9% less volume loss.

Coatings 2020, 10, x FOR PEER REVIEW 14 of 19 

 

approximately 9%, which could provide improved surface protection and a longer lifetime to the 
A36—A36 welded steel, particularly in the erosion environment.  

Figure 17 shows the top and cross-section views of the shot blasted surfaces. The surface 
roughness values of these surfaces were measured in Figures 18 and 19. The less abrasive surface 
could be found on the 309L stainless steel cladding (Ra = 1.92 μm) than on the A36—A36 substrate 
(Ra = 4.08 μm), which corresponded to the 9% less volume loss. 

 

Figure 17. The images of the shot blasted surfaces: (a) 309L cladding; (b) A36—A36 substrate. 

 
Figure 18. The measured surface roughness values of A36—A36 substrate. 

Figure 17. The images of the shot blasted surfaces: (a) 309L cladding; (b) A36—A36 substrate.



Coatings 2020, 10, 844 13 of 17

Coatings 2020, 10, x FOR PEER REVIEW 14 of 19 

 

approximately 9%, which could provide improved surface protection and a longer lifetime to the 
A36—A36 welded steel, particularly in the erosion environment.  

Figure 17 shows the top and cross-section views of the shot blasted surfaces. The surface 
roughness values of these surfaces were measured in Figures 18 and 19. The less abrasive surface 
could be found on the 309L stainless steel cladding (Ra = 1.92 μm) than on the A36—A36 substrate 
(Ra = 4.08 μm), which corresponded to the 9% less volume loss. 

 

Figure 17. The images of the shot blasted surfaces: (a) 309L cladding; (b) A36—A36 substrate. 

 
Figure 18. The measured surface roughness values of A36—A36 substrate. Figure 18. The measured surface roughness values of A36—A36 substrate.Coatings 2020, 10, x FOR PEER REVIEW 15 of 19 

 

 
Figure 19. The measured surface roughness values of 309L cladding. 

4. Discussion 

Based on the results, the cladding of 309L stainless steel on the A36—A36 welded steel plate 
offered higher tensile strength at elevated temperature, corrosion resistance, and wear performance 
compared to the cases with no cladding (A36—A36 only). Since the primary purpose of the cladding 
was only to extend the lifetime of the welded components temporarily, the evaluations carried out in 
this work indicated that the coating method was proven effective. The cladding layer of 309L stainless 
steel provided an approximately 16% increase in the tensile strength at 500 °C and offered a suitable 
protection layer to prevent any pitting and intergranular corrosions. The results obtained from this 
study agree with other existing studies suggesting that stainless steel weld cladding could be coated 
on a steel surface to prevent corrosion [55]. The findings from this study also confirmed that the 309L 
stainless cladding could be temporarily coated onto the A36—A36 welded components, particularly 
for the elevated temperature under such corrosive environments. This work’s implication was the 
significant cost-saving by simply cladding the welded pipes with 309L stainless steel. 

The next step following this work would be looking at the appropriate ratios between the 
welded steel and cladding material. Thus, the chemical analysis would be necessary. Besides, the 
shear tests would be examined to evaluate the shear strengths of these coated materials. The creep 
performances of the coated materials must also be performed to determine if the cladding surfaces 
could be operated under the thermal-fatigue conditions. Our research group also planned to develop 
a buffer layer to increase the oval performance and extend the coated materials’ lifetime. The 
immediate implication of these studies was to apply the same coating technique in dissimilar welds, 
which were also commonly used in power plants. 

5. Conclusions 

This study evaluated the mechanical properties of the 309L stainless steel cladding on the A36—
A36 welded plate. The welded samples were prepared by the GTAW and SMAW processes, and the 
cladding layer was coated onto the welded plate by SMAW. The residual stress measurements were 
carried out to observe the stress distributions after welding. The tensile strengths of the cladding 

Figure 19. The measured surface roughness values of 309L cladding.



Coatings 2020, 10, 844 14 of 17

4. Discussion

Based on the results, the cladding of 309L stainless steel on the A36—A36 welded steel plate
offered higher tensile strength at elevated temperature, corrosion resistance, and wear performance
compared to the cases with no cladding (A36—A36 only). Since the primary purpose of the cladding
was only to extend the lifetime of the welded components temporarily, the evaluations carried out
in this work indicated that the coating method was proven effective. The cladding layer of 309L
stainless steel provided an approximately 16% increase in the tensile strength at 500 ◦C and offered
a suitable protection layer to prevent any pitting and intergranular corrosions. The results obtained
from this study agree with other existing studies suggesting that stainless steel weld cladding could
be coated on a steel surface to prevent corrosion [55]. The findings from this study also confirmed
that the 309L stainless cladding could be temporarily coated onto the A36—A36 welded components,
particularly for the elevated temperature under such corrosive environments. This work’s implication
was the significant cost-saving by simply cladding the welded pipes with 309L stainless steel.

The next step following this work would be looking at the appropriate ratios between the welded
steel and cladding material. Thus, the chemical analysis would be necessary. Besides, the shear tests
would be examined to evaluate the shear strengths of these coated materials. The creep performances
of the coated materials must also be performed to determine if the cladding surfaces could be operated
under the thermal-fatigue conditions. Our research group also planned to develop a buffer layer to
increase the oval performance and extend the coated materials’ lifetime. The immediate implication of
these studies was to apply the same coating technique in dissimilar welds, which were also commonly
used in power plants.

5. Conclusions

This study evaluated the mechanical properties of the 309L stainless steel cladding on the
A36—A36 welded plate. The welded samples were prepared by the GTAW and SMAW processes,
and the cladding layer was coated onto the welded plate by SMAW. The residual stress measurements
were carried out to observe the stress distributions after welding. The tensile strengths of the cladding
samples at various layers were also investigated by using the tensile tests. Different sites of the cladding
samples were also observed under the pitting, intergranular, and weight loss corrosive conditions.
Finally, the shot blasting tests were conducted to determine the wear resistance performance of the
coated surfaces. The key findings of this study were as follows:

• The high compressive stress locations were mainly found in the Weld Metal and HAZ zones
in the center area of the cladding surface. However, the overall stress distribution was considered
typical and would not lead to lower fatigue resistance.

• The increased tensile strength of 16% at 500 ◦C could be obtained by cladding 309L stainless steel
on the A36—A36 welded plate.

• No pitting and intergranular corrosions could be observed on A36 base material if coated with
309L stainless steel cladding. Also, the cladding layer improved weight loss corrosion by 24%.

• The 309L stainless steel cladding provided less volume loss of 9% compared to that of the A36—A36
welded plate with no coating under the shot blasting wear tests.

The obtained results indicated that the 309L stainless steel cladding could be used to temporarily
extend the lifetime of A36—A36 welded components in elevated temperature under corrosive and
erosive conditions.
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