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Abstract: In order to investigate the effect of the structural layout of multilayered coatings on its
mechanical behavior, a three-dimensional elastic field solution is developed for multilayered solids
subjected to surface point contact loading, which is converted from the elastic field solution in
frequency domain by using a numerical conversion algorithm. The elastic field solution in frequency
domain is obtained by numerically solving a group of linear equations involving the unknown
constants in the general elastic field solution of layered material that is obtained by using Fourier
integral transform technique. The present solution is validated by comparing with the exact analytical
solution for uncoated solids and finite element solution for solids coated with 30 layers. Lastly,
the effect of structural layout of multilayered coatings is further investigated with present solution.
The result shows that the gradient structural layout with elasticity modulus decreasing gradually
from the top layer to the substrate, which is preferable to a larger friction coefficient for multilayered
solids subjected to surface line contact loading, is preferable for a smaller friction coefficient <0.1 for
multilayered solids subjected to surface point contact loading, and the gradient structural layout with
elasticity modulus increasing first in the top layers and then decreasing in the bottom layers, which is
preferable to a smaller friction coefficient for multilayered solids subjected to surface line contact
loading, is preferable for a friction coefficient >0.2.

Keywords: multilayered coatings; three-dimensional elastic field solution; solution in frequency
domain; stress analysis

1. Introduction

Advanced coating structures, such as multilayered coatings, gradient coatings etc., are employed
to improve the tribological performance and service life of tribo-parts because of its advantage of
anti-friction, anti-wear, anti-scuffing, and anti-corrosion, especially for those performing under severe
conditions [1-3]. No doubt, an insight into the mechanical behavior of a multilayered coatings subjected
to surface contact loading is essential to its optimal design and application [4,5].

Theoretical analysis of the mechanics of layered solids, linearly elastic theory used various
integral transform techniques to produce the elastic field solutions for both two-dimensional (2D) and
three-dimensional (3D) problems [6], since the independent variables in the elastic field governing
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differential equations can be reduced by using integral transform techniques. For 2D problems, the Airy
stress function is always used to produce the 2D elastic field solution in frequency domain by adopting
Fourier integral transform technique for developing a 2D contact model [7-9]. For 3D problems,
the Papkovich-Neuber potential functions are always used to produce the 3D elastic field solution
in frequency domain of coated solids by using Fourier integral transform technique for developing
various 3D contact model. Based on the 3D elastic field solution in frequency domain, O’Sullivian and
King [10] developed a sliding contact model between a spherical indenter and a monolayered solid.
Nogi and Kato [11] further developed a rough contact model and introduced fast Fourier transform
(FFT) technique to speed up the calculation speed. The 3D elastic field solution in frequency domain
were further employed to study the sliding contact or partial slip contact problem for solids coated with
monolayer or bilayers [12-15]. Besides the integral transform techniques, the finite element method
(FEM)-based commercial software [16-18] and image point method [19-21] were also used to explain
the failure mechanism of coatings subjected to contact loading based on the result of stress analysis.
In the past several decades, extensive meaningful researches have been carried out theoretically or
numerically to understand the mechanical behavior of coated solid mediums subjected to surface
contact loading by using different methods. However, most of them were focused on the problems of a
monolayer or a bilayers coating-substrate system, since the solving process for multilayered coatings
becomes more and more complicated with the increase of the layer number. An expression of the 3D
elastic field solution in frequency domain was given in term of recursion by using Papkovich-Neuber
potential functions [22], while the derivation process is very tedious, and the expression of the solution
in frequency domain is so lengthy and complicated that it is very inconvenient for researchers to
implement. The effect of the structural layout on the mechanical behavior of multilayered solids
subjected to surface line contact loading has been investigated and the preferable structural layout
is recommended for various friction coefficient [4,5]. However, the effect of structural layout on the
mechanical behavior of multilayered solids subjected to surface point contact loading, which may be
different from that of the multilayered solids subjected to surface line contact loading, still lacks a
systematic research.

In this paper, a 3D elastic field solution has been developed for numerical investigation on the
mechanical behavior of multilayered coatings with various structural layout, which is converted
from the 3D elastic field solution in frequency domain with a 2D Inverse Fast Fourier Transform
(IFFT) based conversion algorithm. The 3D elastic field solution in frequency domain for multilayered
coatings subjected to surface point contact loading is obtained by numerically solving a group of linear
equations involving the unknown constants in the general elastic field solution of layered material
that is obtained by using Fourier integral transform technique, and the group of linear equations is
established according to the boundary conditions and interface continuous conditions. The present
solution was validated by comparisons on the maximum shear stress with other approaches. Lastly,
the effect of the structural layout of multilayered coatings is further studied with the present solution,
and we found that the preferable structural layout of multilayered solids subjected to surface point
contact loading for various friction coefficient is different from that of multilayered solids subjected to
surface line contact loading.

2. Theoretical Formulation

2.1. Problem Description

The problem that a multilayered coating is subjected to the action of surface point contact loading,
as shown in Figure 1, is considered in this work. The normal and tangential traction applied on the
surface are denoted with p(x, y) and q(x, y) respectively, the number of the layers is denoted with N,
the elastic modulus and Poisson ratio are denoted with Ey and vy respectively for the kth layer, the layer
thickness is denoted with hy for the kth layer, and the zy that starts from the top surface of the kth layer
is the z axis for the kth layer. The substate and the layers are homogeneous and perfectively bounded
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to each other, and the strain of the multilayered solids due to the surface point contact loading is so
small that the linear elastic mechanic theory is applicable to analyze current problem.
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Figure 1. Schematic diagram of solids coated with multilayers subjected to surface point contact loading.

According to Hertz contact theory [23], the normal pressure, and tangential traction applied on
the surface are:

PH \/1 —[(/an)* + (y/an)?] 22+ y? <ay?
0 else

p(x,y) = (1)

upn 1= [(/an) + (y/an)?] 22+ <@

else

q(x,y) = )

where py and ay are the maximum contact pressure and contact radius of Hertz point contact
respectively, and y; is the friction coefficient.

2.2. General Solution of the Elastic Field Governing Equation

For 3D problems, the elastic field governing equations of a homogeneous layered material in the
multilayered system are [24]:

(k) (%)
(2w Puy P
di| 9x2 * dxdy + x0z Vi =0 ®)

1 82u,({k) 92“§k) 82u§k)

< 2, (k) _

dy| dxdy * y? * Yoz Vit =0 @)
2,0 52,0 5 (k)

L R L ®)

di | Ixozy + Yoz * ;2

where V2 = 92 /9x% + 92/ 8y2 +0%/0z%, d, =1 -2vy, uy(ck), u](/k) and ugk) represent the displacements of
kth layer in x, y, and z direction.
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Introducing a 2D Fourier integral transform and two intermediate variables:

—_— +Oo .
S(wx, wy) = f S(x, y)e_l(w"”w"y)dx (6)
rk) = Bu,(ck) /dy — Bu(k) /dx 7)
G® = oul® /ax + au ) /ay (8)

The elastic field governing equations become:

2F0) /92,2 — w2FK) =0 )
PG® 1922 - w?(1 + dp) G® — w2d i) /9z, = 0 (10)
1+ dp)*u 1922 — w21 + d,06® 9z, = 0 (11)

1 // ” V7
~

where the symbo is the imaginary unit, the symbo represents Fourier integral transform, wy

and wy, are the corresponding variables in frequency domain of the variables x and y in space domain,
1/2
and w = (wxz + wyz) .

(k) (k)

The displacement components u, " and 1, of the kth layer are:

7 = (10,5 + w0, F) /a2 1)
1) = i(w, G — w,FW)/w? (13)

The six stress components O‘,(C];), cr;ky), crg), (rg;), g;) and ng) of the kth layer are:
AV Wel LI W r O SR, WA (14)
E(yl;) = Aké(k) + Akaﬂik) /dzy + iZ]VLk(,nylﬁyk) (15)
G = NG® + (e + 2w /02 (16)
Eik) zuk(wyﬁ( ) 4+ wxﬂ{k)) (17)
5 — uk(aﬁ(yk)/(%k + iwﬁg")) (18)
0 _ pk(JLZik) /o7 + iwxiﬁz")) (19)

2.3. General Solution of the Elastic Field Governing Equation

Solving Equation (9), the general solution of the intermediate variable Fis:

F(k) _ Agk)e—wzk —i—Aék)ewzk (20)

where A&k) and Agk) are two unknown constants needed to be determined.

(k)

The general solution of the displacement #, ’ and the intermediate variable G® can be obtained
by solving Equations (10) and (11). Using the elimination method adopted in Ref. [25], the general

(k)

solution of the displacement u, ’ and the intermediate variable G® are:

’L‘ék) — ng)e—wzk + Bék)zke—wzk + Bék)ewzk + Bz(lk)zkeka (21)
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G(k) — Cik)e—wzk + Cgk)zke—wzk + Cgk)ewzk + Cik)zkewzk (22)

where ng), Bék), Bém, Bik), Cgk) , Cgk), Cék), and Cik) are unknown constants needed to be determined.

There are only six unknown constants needed to be determined for each layer in fact, since a
relationship between ng), Bék), ng), Bik) and Cik), Cék), Cék), Cik) can be established by substituting

Equations (21) and (22) into Equation (10) or Equation (11) as follows:

cl = wB® — (2/d +1)BY (23)
c = wBlM (24)
e = —wBl -~ (2/d; +1)BY (25)
c = —wBM (26)

where p, = Ei/[2(1 + vi)] is the shear modulus of the kth layer.
For the elastic substrate, AENH), BgNH), and BA(LNH) are zero since all the stress and displacement
components become zero when zy. tends to infinity. Therefore, there are only 6N + 3 unknown

constants needed to be determined for a multilayered system with N layers.

2.4. Determination of the Undetermined Constants

(k) k) (k) (k) (k) (k)

The stress and displacement components 0,,, 0,,", 0, Uy, 4, and u,* are continuous on all
interfaces of the multilayered system since the layers deposited on the elastic substrate are perfectively
bonded to each other. Therefore, the 6N + 3 unknown constants of the multilayered system with N
layers can be determined with the boundary conditions and interface continuous conditions listed

as follows:
—(1 —
gz) TP (27)
2170
~(1
oymﬂzo (28)
& = (29)
Z1 =0
G I (30)
zk=hy 2j41=0
~(k) _ =(k+1)
7y 2=he v 211 =0 1)
& =L (32)
zxk=hy 2j11=0
al| = (33)
zk=Mhy z41=0
~(k) _ ~(k+1)
"y a=he "y 2j41=0 (54)
) _ k) (35)
zxk=Mhy zjy1=0

where 1 < k < N, p and g are Fourier integral transform of the normal pressure p(x, y) and the tangential
traction q(x, y) respectively. Using the results given in Ref. [26,27], the Fourier integral transform of
normal pressure p(x, y) and tangential traction g(x, y) are:

27tpy [ sin(agw)

P=— " — cos(agw) (36)
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27py [ sin(agw)

2 o cos(an)} (37)

q=p
Substituting the Equations (12)—(19) into Equations (27)—(35), we have:

MG + (\ +2w)di /9z| =P (38)
=
pl(aE(U /92 — wzzﬂzl)) — —iwg (39)
Z]IO
woFW oz, o = —iwyg (40)
MGH) + (A + 24) 9 /3Zk| , A1 G 4 gy + 20441) Y 92044 , =0 @D
Z="k Zk+1~=
pk(ﬁa(k) / 0z — wzﬁgk)) - ukﬂ(&a(kﬂ) [0z i1 — w%”“) =0 (42)
zx=hy Zk+1=0
wdF® oz, ~we10F Y /02|, =0 (43)
Tk Tk+1 _
F( )lzk:hk - F( " )|Zk+1:0 - O (44)
cw|  _ g _0 (45)
Ze =My Zk+1=0
il .G —0 (46)
zk=hy zk41=0

Substituting Equation (9) into Equations (40), (43), and (44), a system of linear equations with
2N + 1 equations involving unknown constants marked with symbol A can be established and given
in a matrix form as follows:

Clon+x@n+1)Aen+1)x1=R1an11)xa (47)

Similarly, substituting Equations (9)-(11) into Equations (38), (39), (41), (42), (45), and (46), a system
of linear equations with 4N + 2 equations involving unknown constants marked with symbol B can be
established and given in a matrix form as follows:

C24N+1)x(aN+1)Ban+1)x1=R2(an+1)x1 (43)

The detail of the matrices Cl(on1)xan+1), C2an+1)x(@n+1), AaN+1)x1 Banixt Rlang1)x1s
and R2(4y1)x1 in the Equations (47) and (48) can be seen in the Appendix B. Instead of deducing the

analytical solution of the A oy 1)x; and Byn1)x1 with a complicated and tedious derivation process,
the algorithm Gaussian full pivoting elimination method seen in Ref. [4,28] is adopted to solve the
Equations (47) and (48) to keep the accuracy of its solution in this paper.

2.5. 2D IFFT Based Numerical Conversion Algorithm

After the 3D elastic field solution in frequency domain is determined, the elastic field solution in
space domain can be obtained with a 2D IFFT-based numerical conversion algorithm [10,29], which is
proposed originally to produce the influence coefficient matrix of stresses and displacements, which is
essential to establishing a contact model based on semi-analytical method. Take the calculation of the
stress component oy at any depth z for example, the basic procedures of the numerical conversion
algorithm based on 2D IFFT are:

e A rectangular area {(x, y)|xb Sx<Xe,Yp <Y< ye} is selected as the calculation domain and
divided uniformly into (N, —1) X (Ny - 1) elements. Both Ny, and Ny should be a positive
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integer power of 2. Usually x}, and yp, are —2ay, xe and ye are 2ay. Ay = (Xe —xp)/(Ny —1) and
Ay = (Ye—yb)/ (N y— 1) are the discretization size in x and y direction respectively.
e  The grid in frequency domain {(wx, wy)' —M< Wy ST, -7 < Wy < 71} is refined into N, X N,
elements, where N, = ANy, N w, = ANy and A should be a non-negative integer to the power 2.
e A two-dimensional matrix 6 is constructed by using the solution of o, in frequency domain:
— s AwyDwyNwyNwy, & = .
Ors [11 ]] = # Z Z o-rs(lA(ux - wawaC/ ]Awy - AwywaE)
(—x &=« (49)
~Nw,/2<i<Nw,/2, -Nw,/2 < j<Nw,/2

where Ay, = 7t/ Ax/Ny,, Awy =/ Ay / wa and « is an aliasing phenomenon control parameter.

e Another two-dimensional matrix oy is established by applying wrap-order operation to the

two-dimensional o as follows:

rsli, jl = Grsli+ New, /2-1,j+ Naw, /2-1| (1 i < N, /2+1,1 < i < No, /2 +1)
Grslii ] = Grs|i— New, /2= 1, j = No, /2~ 1| (Nawo, /242 < i < Nuo,, Ny, /2 +2 < i < Noo, ) (50)
Gysli, j] = Ors|i + Newy /2-1,j = Nw, /2= 1| (1 i < Nw,/2+1,Nu, /2 +2 sisty)
0ysli, jl = 0rs|i=New,/2-1,j+ Nw,/2-1| (Nw,/2+2<i <N, 1 sisty/2+1)
e Apply 2D IFFT to the matrix Oy
Ops= IFFT(&,S) (51)
e  On each element, the stress in the discrete space domain are:
Orsli j] = Trs|Newy = Nu/2+ i+ 1,Naw, =Ny /2 + j+1] (1< i <N /2-1,1 < j <N, /2-1)
s[i=Ne/241,j=Ny/2+ 1| (Ne/2 <i < Ne—1,Ny /2 < j < Ny - 1) 52)

5| Newe = Ne/2+i+1,j=Ny/2+1] (1 i <N/2-1,Ny /2 < j <Ny -1)
s[ii = Naw, /2+1,New, + Ny /24 j+1] (Ne/2<i <Ny -1,1 < j <Ny /2-1)

2
Il
al al al al

3. Validation of the Present Method

In order to validate the present solution, the maximum shear stress in subsurface of the present
solution is compared with that obtained by other approaches.

Figure 2 shows the comparison of the maximum shear stress T in x-0-z plane between the result of
present solution and that of the exact analytical solution for an uncoated half-space. For an uncoated
half-space subjected to Hertz-type contact pressure, an exact analytical solution of its stress field can be
found in Ref. [30]. Table 1 shows the input parameters of the present method to analyze an uncoated
half-space subjected to Hertz-type contact pressure, in which the elastic parameters of the layer and
the substrate are the same to those of the half-space. An excellent match of the maximum shear stress
distribution between the solution of present method and the exact analytical solution can be observed
as well as a relative error less than 0.05% of the peak value of the maximum shear stress.

Table 1. Input parameters of the present method for simulating an uncoated half-space of the substrate
material subjected to the surface point contact loading.

Pu ag N v;(1<i<N+1) E;(1<i<N+1) h;(1<i<N) ue
(MPa) (mm) ) ) (GPa) (m) )
977.75 0.07 2 0.3 200 ayg/N 0
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(a) Max: 303.05 MPa r(MPa) (b) Max: 303.20 MPa r(MPa)
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Figure 2. Comparison of the maximum shear stress in x-0-z plane between present solution and the
exact analytical solution, (a) the maximum shear stress of present solution, (b) the maximum shear
stress of the exact analytical solution.

In order to verify that the present solution has no limit on the layer number of the multilayered
systems, a comparison of the maximum shear stress T in x-0-z plane between the present solution
and the finite element solution is also conducted for multilayered system with 30 layers. The input
parameters of the present solution are shown in Table 2. The comparison of the maximum shear stress
is shown in Figure 3. It can be seen that the maximum shear stress in x-0-z plane obtained with present
solution shown in Figure 3b matches with that of the finite element solution shown in Figure 3a,
and the relative error of the peak value of the maximum shear stress is not more than 0.14%.

Table 2. Input parameters of the present method for simulating a half-space coated with 30 layers
subjected to the surface point contact loading. Note: AE = (Ex-1 — E1)/N.

Pu ayg N vi(1<i<N+1) Ex E; v;(2<i<N) h;(1<i<N) Y
(MPa) (mm) ) ) (GPa) (GPa) (GPa) (m) )
0,
0.2

977.75 007 30 03 200 100  E;=E; ;1 +AE ay/N

(a) Max:603.000MPa (b) Max:603.883MPa 27(MPa)

9.433
0.0 9.433 0.0
75.385
0.5 141.337 0.5
207.289
273241 x
I S0
339.192 N
405.144
1.5
& 471.096
537.048
5
20 20

2.0 1.0 603.000

75.483

141.533

207.583

273.633

z/ay
=

339.683
405.733

1471.783

]537.833

603.883

-2.0 -1.5 -1.0 -0.5 0.0
x%aH AyaH

Figure 3. Comparison of the maximum shear stress in x-0-z plane between present solution and that of
FEM solution, (a) maximum shear stress of present solution, (b) maximum shear stress of FEM solution.

The comparisons conducted above not only validate the present solution and its high accuracy,
but also show that the present solution is applicable to the stress analysis of multilayered systems with
various layer number.



Coatings 2020, 10, 838 9of 16

4. Numerical Investigation and Discussion

For an insight to the effect of the structural layout of the multilayered system on its mechanical
behavior, stress analysis on the multilayered systems with different elasticity modulus changing modes
from the top layer to the substrate is conducted based on the present solution. The maximum contact
pressure pyy and the contact radius ap of the surface mechanical loading are the same to those listed in
Tables 1 and 2.

The effect of the structural layout of the multilayered coatings on the maximum shear stress T/py
in x-0-z plane under various friction coefficients is shown in Figure 4, and the location of the symbol “*”
in Figure 4 is the position of the peak value of the maximum shear stress. The multilayered system
with elasticity modulus changing mode 1 shown in Figure 4a is a homogeneous hard monolayer, since
the elastic modulus of each layer is the same and differs from the substrate. Similar to the results of
Ref. [10,11], an significant discontinuity and stress concentration in the region close to the substrate is
observed in the contour plot, and the peak value of the maximum shear stress, which is located at the
bottom of the hard coating, reaches up to about 0.381py; when the friction coefficient i is 0, which
is recognized as a result of the sharp decrease of the elasticity modulus from the hard coating to the
substrate. When the friction coefficient pi; increases to 0.5, the peak value of the maximum shear stress
increases rapidly in the surface region because of the action of frictional traction, which leads to the
location of the peak value of the maximum shear stress shifts to the surface from the bottom of the
hard coating, and its value increases to 0.519py. The elasticity modulus changing modes of 2 to 4
shown in Figure 4a are designed as alternatives to avoid the sudden change of elasticity modulus
of mode 1 through a gradient change. The elasticity modulus of mode 2 decreases uniformly from
top to bottom by 80 GPa. The elasticity modulus of mode 3 decreases rapidly first by 225 GPa in the
top three layers, and then decreases slowly from the 3rd layer to the bottom layer by about 19 GPa.
The elasticity modulus of mode 4 increases first from the top layer to the 5th layer by 100 GPa, and then
decreases gradually from the 5th layer to the substrate by about 167 GPa. The significant discontinuity
observed in the maximum shear stress distribution of mode 1 does not exist in the maximum shear
stress distribution of mode 2 to 4, and slight discontinuity appears on the interface of multilayers with
structural layout of mode 2 to 4. It can be seen from Figure 4b that the peak value of the maximum
shear stress of mode 2 to 4 are 0.328, 0.322, and 0.359py respectively for i = 0, which are all smaller
than that of the mode 1. However, when the friction coefficient increases to 0.5, the peak value of the
maximum shear stress of mode 2 and 3 are 0.568 and 0.677py respectively, which are all larger than
that of mode 1. The peak value of the maximum shear stress of mode 4 is 0.518pyy, which is slightly
smaller than that of mode 1.

Figure 5 is the peak value of the maximum shear stress T/py and its depth of multilayered
coatings with different elasticity modulus changing modes under various friction coefficient. As shown
in Figure 5a, the peak value of the maximum shear stress of mode 2 to 4 are all smaller than that
of mode 1 when the friction coefficient pf ranges from 0 to 0.1. It implies that the maximum shear
stress concentration on the interface of the homogeneous hard monolayer can be avoided by using a
multilayered system with an elasticity modulus changing gradually, as shown in Figure 4. As a result,
an apparent decrease of the maximum shear stress of mode 2 to 3 in the region near the substrate
can be observed in Figure 4b, and the depth in which the peak value of the maximum shear stress
of mode 2 and 3 located is closer to the surface than that of the mode 1 and mode 4, as shown in
Figure 5b. Among the four changing modes of elasticity modulus, the peak value of the maximum
shear stress of mode 3 is the smallest when the friction coefficient tends to 0 and the peak value of the
maximum shear stress of mode 2 is the smallest when the friction coefficient tends to 0.1. That means
the maximum shear stress can be reduced by using a multilayered structural layout with elasticity
modulus decreasing gradually from the top layer to the substrate when the friction coefficient is not
smaller than 0.1. For example, the peak value of the maximum shear stress of mode 2 and 3 are about
14% and 15.5% smaller than that of mode 1 respectively when the friction coefficient is 0. It has been
commonly recognized in previous research [4,5,8,11] that the maximum shear stress or von Mises
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equivalent stress increases with the increases of friction coefficient and its location moves toward to
the surface, since the maximum shear stress in the surface region increases due to the increase of the
surface frictional traction. The increase of the maximum shear stress in the surface region, which is
caused by the increase of tangential traction applied on the surface, also strongly depends on the
structural layout of multilayered system. For ¢ = 0, the peak value of mode 2 and 3 is about 9.4% and
30.4% larger than that of mode 1 respectively, however the peak value of mode 4 is still smaller than
that of mode 1. The shifting of the maximum shear stress to the surface during the increase of friction
coefficient also strongly depends on the elasticity modulus changing mode of multilayered systems.
It can be observed in Figure 5b that the friction coefficient value to make the maximum shear stress of

mode 2 and 3 shift to surface is smaller than that of mode 1 and 4.

(b, =0

@EE) Max:0.381 , Maxosto  (©#4 =05 ,
1500 : 0.0 e o1 0.0 i 002
5 ;_«? Multilayers |Substrate 0.5 l0:07 0.5 IO.ll
25 1000 - & 1o bz &0 o1
SR 00 S 019 % 027
500 |= 15 0.26 15 0.35
Io.32 0.44
0 20 20
0.0 05 1.0 15 20 -0 00 1.0 20 038 20 -0 00 1.0 20 052
z/aH )c/aH x/aH
Max:0.328 Max:0.568
1500 ‘eﬁﬁﬂ - Py 00 2% P,
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Figure 4. The maximum shear stress 7/py in x-0-z plane of multilayered coatings with different
elasticity modulus changing modes under various friction coefficients, (a) elasticity modulus changing

H

mode, (b) maximum shear stress for p; = 0, (¢) maximum shear stress for p = 0.5.
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Figure 5. The peak value of the maximum shear stress T/py and its depth of multilayered coatings
with different elasticity modulus changing modes under various friction coefficients, (a) the peak value

of the maximum shear stress, (b) the depth of the peak of the maximum shear stress.



Coatings 2020, 10, 838 11 of 16

Figure 6 is the stress oy along z axis of multilayered coatings with different elasticity modulus
changing modes when the friction coefficient ¢ is 0. Actually, the stress oy, along z axis of each
elasticity modulus changing mode is the same under various friction coefficient, since the stress oyy in
the x-0-z plane caused by tangential traction applied on the surface is asymmetrical at the two sides of
z axis. It can be observed that the stress oy, along z axis is markedly different for multilayered coatings
with different elasticity modulus changing mode. For mode 1, which represents a homogeneous hard
coating, the stress component oy is tensile in the region close to the substrate and the maximum tensile
stress oy, located at the bottom of the coating reaches up to about 0.48py, which is closely related
to the cracks initiated at the bottom of the coating. For mode 2 to mode 4, which represent various
multilayered hard coatings with gradient structural layout, the stress oy, is tensile too in the region
close to the substrate, however the maximum tensile stress oy, is much smaller than that of mode 1,
and the maximum tensile stress oy, decreases successively in the order of mode 4, mode 2 to mode 3.

0.0
05 Mode 1 \‘; .
| ----Mode?2 N

321.0— ------ Mode 3 TN
N Mode 4

1.5+

2.0 : ! : ! : :

-1.5 -1.0 -0.5 0.0 0.5

O-xx/p H

Figure 6. The stress oy, along z axis of multilayered coatings with different elasticity modulus changing
modes when friction coefficients i is 0.

Figure 7 is the stress oy, along x axis of multilayered coatings with different elasticity modulus
changing modes under various friction coefficients. The stress oy, along x axis is tensile at the tail-edge
of loading area under various friction coefficients, which is believed to be responsible to the cracks
initiated on the surface. The tensile stress oy, at the tail-edge of the loading area increases with the
increase of friction coefficient [8,10,11], while the maximum tensile stress oy, at the tail-edge not only
depends on the friction coefficient but also strongly depends on the elasticity modulus changing mode
of multilayered system. As indicated in Figure 7, the maximum tensile stress oy, at the tail-edge
of loading area decreases in the order of mode 3, mode 2, mode 4 to mode 1 under various friction
coefficients, and the maximum tensile stress oy at the tail-edge of mode 4 is almost the same to that of
mode 1. Under relatively small friction coefficient such as 0 and 0.1, the maximum tensile stress at the
tail-edge of mode 2 and mode 3 as shown in Figure 7a,b are smaller than the maximum tensile stress
oy along z axis of mode 1 as shown in Figure 6, although they are slightly larger than the maximum
tensile stress oy at the tail-edge of mode 1 and mode 4. When the friction coefficient increases to a
value larger than 0.3, the maximum tensile stress oy at the tail-edge of mode 2 and mode 3 becomes
remarkably larger than the maximum tensile stress oy at the tail-edge of mode 1 and mode 4 as well
as the maximum tensile stress oy, in the region close to the substrate of mode 1.

Based on the numerical results presented above, it is confirmed that the structural layout has a
strong influence on the mechanical of multilayered coatings subjected to surface point contact loading.
The concentration of the maximum shear stress and the tensile stress oy, in the region close to the
substrate of homogenous hard coatings can be effectively eliminated by using hard coatings with
gradient structural layout. The structural layout of hard coatings with elasticity modulus decreasing
gradually from the top layer to the substrate such as mode 2 and 3 is better than that with elasticity
increasing first in the top layers and then decreasing in the bottom layers such as mode 4 in terms of
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relieving the concentration of the maximum shear stress and the tensile stress oy, in the region close to
the substrate. However, the latter is much better than the former in terms of depressing the increase of
the maximum shear stress and the increase of the tensile stress oy, caused by the increase of frictional
traction applied on the surface. By synthetically considering the influence of the structural layout of
multilayered hard coatings on the tensile stress oy, at the tail-edge of loading area and in the region
near substrate as well as the peak value of the maximum shear stress, the gradient structural layout
with elasticity modulus decreasing gradually from the top layer to the substrate, which is preferable
to a larger friction coefficient for multilayered solids subjected to surface line contact loading [4,5],
is preferable for a smaller friction coefficient <0.1 for multilayered solids subjected to surface point
contact loading, and the gradient structural layout with elasticity modulus increasing first in the top
layers and then decreasing in the bottom layers, which is preferable to a smaller friction coefficient for
multilayered solids subjected to surface line contact loading [4,5], is preferable for a friction coefficient
>0.2 for multilayered solids subjected to surface point contact loading.

(a) 05 (b) 05
0.0 [ozore —I\I\;[Iogeé St [.....-2 %  ——Model
OF = -~~-Mode — | 00F X ----Mode2 P
s N Modes 1 i Ve Mode3 [
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Figure 7. The stress oy, along x axis of multilayered system with different elasticity modulus changing
modes under various friction coefficients, (a) us = 0, (b) e = 0.1, (c) g = 0.3, (d) pug = 0.5.

5. Conclusions

A 3D elastic field solution has been promoted and validated for multilayered solids subjected to
the surface point contact loading in this paper. A numerical investigation on the mechanical behavior
of multilayered solids with various structural layout has also been performed with the present method.
The following conclusions are drawn as follows:

e A 3D elastic field solution of multilayered solids which has no limit on the layer number of
multilayered coatings is developed and validated.

e The disadvantages of homogeneous hard coatings can be effectively overcome by adopting a
proper gradient structural layout of multilayered coatings.

e  The preferable structural layout of multilayered coatings subjected to surface point contact loading
for specific friction coefficient is different from that of multilayered coatings subjected to surface
line contact loading. For multilayered solids subjected to surface point contact loading, the
gradient structural layout with elasticity modulus decreasing gradually from the top layer to the
substrate is preferable for a friction coefficient smaller than 0.1 and the gradient structural layout
with elasticity modulus increasing first in the top layers and then decreasing in the bottom layers
is preferable for a friction coefficient larger than 0.2.
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Appendix A
According to the relationship between displacement components uik), ugk) and the intermediate

k) a{yk)

variables F®), G®) | shown in Equations (12) and (13), the displacements u, ’ and can be obtained

as follows:

= —i[wx(ng") ~2/dg+1)B + B wzk) + wyAY‘)]e—ka /w? A
1
—i[wx(—ngk) —(2/dp + 1)Bik) — wBik)zk) + wyAgk)]e“’Zk/w2
ﬁ{yk) = —i[wy(ngk) —(2/dp + 1)B§k) + a)ng)zk) - wagk)]e—ka/wZ
(A2)

_i[wy(_wBék) - (2/dx + 1)Bik) - wB(k)Zk) - waék)]eka/wz

According to the relationship between stresses and displacements, shown in Equations (14)—(19),

R R N )

the stress components of kth layer oy, 0y, 02,", 03y, 0y, S are:

0= [Ak(Bg") —(2/dy + 1)B§">) T 2wy wx(ng’” — (2/d+1)BY + zka<k)) + wyA

A3
+M(BE - @/ + DB )+ 2o won 0B - @2/ + DB - zwB ) + @Al |/ w?en (A9
G = [Ak(B§k> - @/d+ 1)B§")) + 2pkwy[wy(wB§” —(2/d, +1)BY + zkag")) — w0, AN |/ @2 e Ad
+[>\k(Bff> —/d+ 1)Bff>) + zukwy[wy(—ng") — (2/d+1)BY - zkaff)) - w, A |/ @?[ew
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= it w20l - 2/ + 1B + 220 ) - B + w,al e )
—i—i%[wx(ZwBék) + (2/d; + 1)Bik) + ZkaBik)) + waflk) - wyAék) e®
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Appendix B

For clarity and concise of description, the matrices C1on1)x(2n+1), A(an+1)x1- and Rl (on41)x1 In
Equation (47) are composed with sub-matrices as follows:

(1)
C11><2

) )
Cl2><2 C12><2

Cl( )

C1(2N+1)x(2N+1) = 2x2 Cléx)z (A9)

(N) (N)

Cl2><2 Cl2><2

(N+1) (N+1)
C12><2 Cl2><l

T

A(2N+1)><1 = [ Agﬁ A§I§<)1 Ag:g A§1>\<]1+1) ] (AlO)
T

Rl 2pa = [ RID) R - RIG - R | (A1D

The sub-matrices of matrices C1on 4 1)x(2n+1), A(2N+1)x1, and R1 (o 1)x1 in Equations (A9)-(A11)

are listed as follow:

_1 — —

(1) (k) O - (k) “Hks1 Higt
C11><2 [ —wow ] Cl2><2 [ 0, elzlk ] Cl2><2 [ 1 -1 ]'
w1 [ v -3 (N+1) _ | —HN+1
Cl2><2 - eN 9;]1N Cl2><1 =1 ’

*) k 01T ANHD _ [ (N+1) T
Alef[Ag) Aé)] (1<k<N), A, *[A1 ]

ngi)l = [‘iwﬁ/ ”1]T'

where [ = pe1 /(1 <k < N).

RiY =[0 0] @<k<N+1).

Similarly, the matrices C2(yn12)x(an+2), Bant2)x1, and R2yn2)xq in Equation (48) composed
can be listed in form of sub-matrices as follows:

1)
C22><4
(2) (2)
C24><4 C24><4
C2uNnt2)x(aN+2) = C2i124 C2$24 (A12)
(N) (N)
C24><4 C24><4
(N+1) (N+1)
C24><4 C24><2
_ 1 k N N+1) 17
Bn-2)a _[ Bz(;x)1 Bz(Lx)l Bixi ngl ) ] (A13)
T
S S S R (s
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where
B, — [ AN AP A AP [ sk, B0 <[ AN 400 T
R =[ -p/2m —iwsq/ (2mw) ]T, R2Y =[0 0 0 0 ]T 2<k<N+1),
CZ(l) _ [ -—w 1-2v; w 1-2vq ]
2x4 -w 2-2vi —w 2vi-2
—wl —(2vi— 1+ whe)0  wb !t —(2ve—1— why )6,
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