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Abstract: Plasmonic metal nanoparticle (NP)-decorated thin films of biobased and biocompatible
polymers provide significant opportunities in various biomedical applications. Inspired from the
adhesive proteins of the marine mussels, polydopamine (PDA) serves as a versatile, biocompatible,
and simple thin-film material and enhances cell growth and proliferation. Herein, we report the
fabrication of the gold NPs (AuNPs) or silver NPs (AgNPs)-deposited thin films of PDA and their
employment in cell growth and proliferation. PDA thin film with its numerous functional groups
enabled well-controlled adsorption of NPs. The number density of NPs was manipulated simply by
tuning the deposition time. Cell viability test for human lung cancer (A549) and human colon cancer
(CaCO2) cell lines indicated that a thin layer of PDA film remarkably enhanced the cell growth and
proliferation. The lower number density of NPs for the 24 h of the culture time resulted in a higher
proliferation rate. However, the increase in both the number density of NPs and culture time led to
a decrease in cell growth.

Keywords: polydopamine thin films; cell proliferation; gold nanoparticles; silver nanoparticles;
cell viability

1. Introduction

The adhesive proteins of marine mussels facilitate the attachment of these organisms to the rocks
and ships in seawater [1]. In the seminal work by Messersmith group, polydopamine (PDA) was
proposed to mimic adhesive proteins of mussels, and various surfaces were deposited with these
bioinspired polymers by simply oxidative polymerization of dopamine in alkaline conditions [2].
The PDA layer with its numerous functional groups provides many advantages in terms of versatility,
biocompatibility, and simplicity [3]. With these unique characteristics, PDA was employed in various
biological and medical applications, including drug carrier systems, tissue engineering, and vascular
stents [3–8]. Due to its high level of biocompatibility and inconsiderable toxicity against biological
structures such as cells, it can be used as a surface coating to enhance cell adhesion and proliferation [9].
Various studies demonstrated that PDA facilitated cell growth and proliferation on polyethylene
and silicon rubber surfaces where the cell attachment was low [10,11]. In another study, Lee et al.
investigated the adhesion of the bone marrow cells and fibroblasts onto the PDA-coated substrates [2].
While fibroblast cells showed significant performance in terms of cell adhesion and proliferation, these
performances of bone marrow cells remained limited, indicating the cytophobic or cytophilic nature of
PDA depending on the cell line. Additionally, the Park group reported the proliferation of human
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umbilical vein endothelial cells onto the PDA-coated electrospun polycaprolactone nanofibers [12].
The employment of the PDA layer remarkably increased the cell adhesion, number density of the
cells, and cell viability, indicating the PDA-coated nanofibers as an ideal system for vascular tissue
applications. Additionally, Ku et al. reported the PDA coated onto the pattern of poly(dimethylsiloxane)
(PDMS) and the attachment and proliferation of different cell lines, including fibrosarcoma, mouse
preosteoblast, and mouse fibroblast [13]. They observed that the cells were aligned in the direction of
the patterned PDA substrate. Based on the previous studies, coating of the surfaces and nanoparticles
with PDA helps to improve their biocompatibility and bioactivity, which will enhance their use in
biological and biomedical applications [14–16].

Plasmonic metallic nanostructures such as gold nanoparticles (AuNPs) and silver nanoparticles
(AgNPs) having unique properties due to their interaction with electromagnetic radiation provide
various opportunities in biological and medical applications [17–19]. These plasmonic NP systems are
utilized in a wide range of bio-applications, such as imaging, diagnostics, and therapeutics [20–22].
Despite their undoubted advantages, metallic NPs still have substantial toxicity problems that limit
their employment, especially in cell adhesion and proliferation [23–25]. It is clear that novel and
creative approaches are urgently required to extend and enhance their applications by increasing their
biocompatibility and bioactivity.

The thin films of bio-based materials serve superior capabilities for biological and medical
applications [26,27]. Mechanical properties, surface morphology, and the chemical composition of
these films can be manipulated by combining macro- or nanoscale materials for cell growth and
proliferation applications [28–31]. Despite the employment of the PDA thin films in various biomedical
applications, the reports on plasmonic NPs and their cell interaction in terms of cell viability, adhesion,
and proliferation are still limited. In this study, we propose the fabrication of the AuNPs or AgNPs
decorated with PDA thin films and their usage in cell growth and proliferation of different cell lines
including human lung cancer (A549) and human colon cancer (CaCO2). In our previous research,
we observed that a thin layer of PDA onto the AgNPs dramatically reduced the cytotoxicity of NPs in
two different cell lines [32]. PDA thin film with its numerous functional groups enabled well-controlled
adsorption of NPs over time. It was detected that the PDA film remarkably contributed to the
improvement in both cell growth and proliferation. The lower number density of NPs for the 24 h
of the culture time resulted in a higher proliferation rate. However, the increase in both the number
density of NPs and culture time led to a decrease in cell growth. In light of these findings, we strongly
believe that the proposed system can be used in diverse biological and medical applications.

2. Experimental Section

2.1. Synthesis of AgNPs and AuNPs

We employed a citrate-reduction method to synthesize AgNPs with some modifications according
to our earlier reports [32,33]. In brief, the proper amount of aqueous solution of AgNO3 (25 mL, 1 mM)
was heated to boiling under vigorous stirring through a magnetic bar in a three-neck round-bottom
flask. The silver ions were reduced by the addition of a drop-by-drop tri-sodium citrate solution
(1%, 1.65 mL). After the termination of the conversion in 1 h, the heater was turned off and the
AgNPs suspension was cooled to ambient temperature. The AgNPs were purified by centrifugation at
15,000 rpm for 20 min, and redispersed in deionized (DI) water.

Similarly, AuNPs were prepared according to the well-known citrate-reduction method with
some modifications, which was shown in our earlier reports [34–39]. Briefly, the proper amount of
aqueous solution of HAuCl4 (50 mL, 1 mM) in a three-neck round bottom flask was heated to boiling
under vigorous magnetic stirring. Afterward, 1.65 mL of 0.1 M trisodium citrate solution was added to
the boiling mixture for the reduction of the gold ions. The resultant ruby-red colored AuNPs were
observed in 30 min, and the reaction was terminated by turning off the heater. The AuNP suspension
was cooled to room temperature, centrifuged at 15,000 rpm for 20 min, and re-dispersed in DI water.
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2.2. Preparation of PDA, PDA@AgNP, PDA@AuNP1, and PDA@AuNP2 Thin Films

Before the fabrication of the thin films, the glass slides with a 15 mm diameter that exactly fit 24-well
plates were cleaned by sonicating consecutively in ethanol and acetone for 20 min. Then, the slides were
immersed into a mixture of H2SO4 and H2O2 with a volume ratio of 3:1 for 2 h. Finally, the surfaces
were washed with DI water and stored in ethanol until the next step. Before the thin film fabrication,
the glass slides were dried with N2 gas flow. The PDA thin film was prepared by simply immersing
the slides into a dopamine solution (pH 8.5, 2 mg/mL in 10 mM Tris buffer) at ambient conditions for
2 h. Afterward, the coated slides were rinsed with DI water and dried with N2 flow. For the decoration
of metallic NPs, the PDA deposited surfaces were treated with NP suspensions of AgNPs and AuNPs
(both in 50 ppm) for 3 h. These NPs decorated slides were denoted as PDA@AgNP, PDA@AuNP1.
For the comparison, a group of PDA-coated slides were immersed into the AuNP suspension for 24 h
(denoted as PDA@AuNP2). Finally, the NP-deposited thin films were rinsed with DI water and dried
with N2 flow.

2.3. Characterization of NPs and Thin Films

The UV-Vis absorption spectra of NP suspensions and NP-deposited thin films were obtained
through a Shimadzu 3600 Plus UV–Vis–near-IR spectrophotometer (Shimadzu, Kyoto, Japan).
Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images were collected
from Hitachi HighTech HT7700 (Hitachi, Tokyo, Japan) and Zeiss Sigma 300 (Zeiss, Oberkochen,
Germany), respectively. The size distributions and surface coverage density of NPs onto the thin PDA
films were calculated via freeware ImageJ software (1.8.0, The National Institutes of Health, Bethesda,
MD, USA). The formation of the PDA thin film onto the glass slides was also analyzed through Fourier
transform infrared spectroscopy (FT-IR, Bruker VERTEX 70v, Billerica, MA, USA).

2.4. Cell Culture and Cell Adhesion to Thin Films

Human lung cancer (A549) and colon cancer (CaCO2) cell lines were employed for cell culture
studies to determine cell adhesion and following cell viability on the surfaces. A549 and CaCO2
cells were grown in RPMI 1640 and Dulbecco’s Modified Eagle’s Medium (DMEM), respectively.
The media were supplemented with 10% Fetal Bovine Serum (FBS) and 1% Penicillin/Streptomycin.
The culture flasks were incubated in an incubator for 24 h maintaining 5% CO2 and 90% humidity
for proper cell growth. After cell proliferation on the culture, flasks reached 85%–90% confluency;
the cells were detached from culture flasks with 0.25% trypsin ethylene-diamine-tetraacetic acid (EDTA).
The as-prepared glass surfaces (PDA, PDA@AgNP, PDA@AuNP1, and PDA@AuNP2) were cleaned by
soaking into 70% ethanol. Surfaces were immediately sterilized under UV light for 5 h. Sterile surfaces
were placed into 24-well plates, and 7500 cells/mm2 in 150 µL medium were seeded onto the surfaces.
Then, the surfaces were kept at 37 ◦C in a 5% CO2 and 90% humidified incubator for 24 and 48 h via
renewing the media every day. Coated specimens were washed with phosphate-buffered saline (PBS),
and cells were fixed with a 4% paraformaldehyde solution for 1 h. The specimens were stained with
crystal violet dye and fluorescent DAPI stain for checking the cellular morphology, and unattached
dye was washed with distilled water. After the coatings were dried, cell images were obtained with
an inverted light microscope (Zeiss Primovert, Oberkochen, Germany) and a confocal laser scanning
microscope (Zeiss LSM 710, Oberkochen, Germany) at different magnifications.

2.5. Cell Viability (MTT Assay)

Colorimetric MTT assay was performed to investigate the cellular viability on coated glass
surfaces. The method is based on the fact that the living cells are capable of reducing the yellow-colored
tetrazolium salts into intensely purple-colored formazan crystals. This reduction requires functional
mitochondria, which is a cellular indicator for intact cells.
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Briefly, 7500 cells/mm2 were seeded onto surfaces and grown at 37 ◦C in a 5% CO2 and 90%
humidified incubator for 24 and 48 h. After the incubation period, the medium was removed and
unattached cells were rinsed with PBS. The cells on the surfaces were treated with 100 µL of MTT
(3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide salt) containing media and incubated
for 4 h in CO2 incubator. At the end of the incubation period, the MTT solution was taken away
from the surfaces and the formed purple-colored formazan crystals were dissolved with 200 µL of
dimethylsulfoxide (DMSO). The supernatants were transferred into 96-well plates, and the absorbance
was measured at 570 nm using an ELISA reader (Epoch Microplate Reader, Vinooski, VT, USA) for
determination of the cellular viability.

All the experiments were performed in triplicate and independently repeated at least three times.
The results were shown as the mean ± standard error of the mean (SEM) for triplicates of cultures.
One way ANOVA test (GraphPad Prism 6.0, San Diego, CA, USA) was used to detect the effect of
different surface modifications on growth and metabolic activity of A549 and CaCO2 cells (a value of
p < 0.05 was considered as significant).

3. Results and Discussion

3.1. Characterization of NPs and Thin Films

Firstly, for the characterization of NPs, we employed the UV-Vis absorption spectra and TEM
analysis (Figure 1). Both AuNPs and AgNPs showed absorption maxima at 522 and 421 nm, respectively
(Figure 1a). TEM images depicted that the size of AuNPs was in the range of 15–40 nm, and the
average size was found to be 26 nm (Figure 1b). The size of AgNPs was ranged from 30 to 80 nm with
an average size of 53 nm (Figure 1c). Additionally, we employed the freeware ImageJ software for the
analysis of the NPs, and relevant NP size histograms were given in Figure S1. From these data, we
can conclude that both AuNPs and AgNPs were prepared efficiently with required morphology and
appropriate size distributions.
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After oxidative polymerization of dopamine, a thin layer of PDA was deposited onto the glass
slides. The oxidative polymerization of the dopamine and deposition of the PDA onto the glass slides
led to the emergence of the dark/brown color, which was observed by naked-eye. Our earlier studies
depicted that a 2 h-polymerization time could create a PDA film with 8 ± 1 nm thickness [32–36,40].
SEM images indicated the presence of a continuous, smooth, and thin layer of PDA film (data not
shown). For further analysis, we obtained the FT-IR spectra of the PDA thin films summarized
in Figure S2. We noticed broad bands in the range of 2800–3200 cm−1 for ν (N−H) and ν (O−H)
strong bands centered at 1282 and 1490 cm−1, which are ascribed to the ν (C=C) and ν (C–N) of the
polydopamine coating, respectively [41,42]. The treatment of PDA-coated slides with metallic NPs led
to the decoration of the NPs. Figure 2 summarizes the SEM images of PDA@AuNP1, PDA@AuNP2,
and PDA@AgNP thin films and their relevant UV-Vis absorption spectra. It is clear that PDA thin
film with its numerous functional groups such as amine, imine, and catechol efficiently adsorbs NPs.
The deposition of AuNPs for 24 h (PDA@AuNP2) resulted in higher surface coverage in comparison to
3 h-deposition time (PDA@AuNP1). The 3h-deposition time formed rare and well-distributed AuNPs.
However, for the case of PDA@AuNP2, the higher deposition led to the emergence of agglomeration
of the AuNPs. The number density analysis of PDA@AuNP1 and PDA@AuNP2 thin films through
ImageJ software for each 1 × 1 µm2 area was calculated to be 172 and 1980 NPs/µm2, respectively.
Similar to the AuNPs, the AgNPs were well-distributed onto the PDA films. The number density of
AgNPs was calculated to be 185 NPs/µm2. Furthermore, we performed the UV-Vis spectra to analyze
the thin films (Figure 2). Due to the lower deposition of NPs, no distinctive absorption peak was
detected for the PDA@AuNP1 and PDA@AgNP thin films. However, for the case of PDA@AuNP2,
a broad absorption spectrum with a maximum at 555 nm was noticed. Both red-shift and broadening
in spectra are attributed to the change in dielectric constants and the agglomeration of the AuNPs.
In our previous study, we detected that the existence, position, and intensity of the absorbance spectra
of the plasmonic NPs decorated PDA thin film is highly dependent on the number of the deposited
NPs [38]. We observed that as the number density of the deposited NPs were increased, both the
intensity and degree of the red-shift with broadening in the absorption was increased, as well. In light
of these data, we can conclude that the PDA layer can be decorated with AuNPs or AgNPs and the NP
surface coverage can be manipulated simply by tuning the deposition time.
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3.2. Biocompatibility Testing of Thin Films

As the preliminary study, we tested the initial number of both cell lines onto the bare glass and
PDA-coated glass. This analysis indicated that 7500 cells per well is satisfying for optimum cell growth
and proliferation. The optic images of the preliminary analysis are summarized in Figure S3.

To determine the biological response of various surface coatings, human lung (A549) and colon
cancer (CaCO2) cells were selected and seeded onto the surfaces. After 24 and 48 h of cell growth,
the cellular morphology was examined through crystal violet and DAPI staining, which was shown in
Figure S4 and Figures 3 and 4. It was detected that the cellular morphology of the attached cells onto
PDA and PDA@AuNP1 surfaces was almost the same as the uncoated glass surfaces. The DAPI stain
was penetrated healthy fixed cells. The cellular viability through the integrity of cell membranes was
also demonstrated. The unchanged cell morphology and the interactions of cells with each other also
contributed to understanding the cell behavior on the coated surfaces [43].
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The cytotoxic effects of different surface coatings on A549 and CaCO2 cells were investigated by
MTT assay after 24 and 48 h of culture. The MTT assay was performed to identify the cellular viability
by measuring the optical density of solubilized formazan crystals at 570 nm (Figure 5). Cell proliferation
on PDA-coated surfaces was significantly higher than glass surfaces for both cell types. For 24 h
cell culture time, cell viability values were determined to be 146% ± 3.3% and 118% ± 2.9% for A549
and CaCO2 cell lines, respectively. Further, an increase in cell culture time (48 h) led to higher cell
viability for the PDA-coated glass slides (149 ± 1.1 for A549 and 151 ± 2.1 for CaCO2). This data
depicts the high biocompatibility of bio-inspired PDA thin film [32]. PDA@AuNP1 surfaces did not
decrease the number of viable cells when compared to the uncoated glass surfaces. For the case of
PDA@AuNP1 surfaces at 24 h cell culture time, cell viability values were determined to be 97.3% ± 1.5%
and 104% ± 5.1% for A549 and CaCO2 cell lines, respectively. However, the cellular viability began to
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decline at a high concentration of AuNPs for the case of the PDA@AuNP2 surface. Additionally, there
was a significant decrease in viability on PDA@AgNP surfaces for the 24 and 48 h of the treatment.
The employment of the PDA@AgNP surfaces resulted in lower cell viability values for 48 h cell culture
time such as 25% ± 3.5% and 27% ± 1.9% for A549 and CaCO2 cell lines, respectively. For further
analysis, we measured the number of adhered cells onto each thin film and summarized these results
in Table S1. These data showed a high correlation between cell viability and adhered cell number
density. Most of the cellular processes for adherent cells such as regulation of growth, proliferation,
and cell survival partially or fully depend on the attachment of cells to a surface and contact with each
other [44,45]. The affinity of cells to the substrate is crucial for the maintenance of cells on this substrate.
Cell adhesion is followed by the spreading of cells on the substrate and an increase in cell number by
proliferation. These results implicate that the attachment of the cells to the PDA deposited surfaces
supported by the better viability of the cells on these thin films. Our findings demonstrated that
a high concentration of Au and Ag was significantly reduced cell metabolism as compared to that of
uncoated and PDA-coated surfaces. PDA-coated surfaces have been shown to possess lower cytotoxic
effects and higher biocompatibility. It has been reported that surfaces and nanoparticles modified with
PDA can promote cell adhesion and viability [46,47]. Accordingly, PDA and PDA@AuNP1 surfaces
exhibited satisfactory cell adhesion and proliferation due to the potent adhesive characteristic of PDA.
In contrast, the remarkable cytotoxicity of PDA@AuNP2 and PDA@AgNP coatings can be ascribed to
the over-deposition of AuNPs and high cytotoxicity of AgNPs, respectively [32].

Coatings 2020, 10, x FOR PEER REVIEW 9 of 12 

 

of growth, proliferation, and cell survival partially or fully depend on the attachment of cells to a 
surface and contact with each other [44,45]. The affinity of cells to the substrate is crucial for the 
maintenance of cells on this substrate. Cell adhesion is followed by the spreading of cells on the 
substrate and an increase in cell number by proliferation. These results implicate that the attachment 
of the cells to the PDA deposited surfaces supported by the better viability of the cells on these thin 
films. Our findings demonstrated that a high concentration of Au and Ag was significantly reduced 
cell metabolism as compared to that of uncoated and PDA-coated surfaces. PDA-coated surfaces have 
been shown to possess lower cytotoxic effects and higher biocompatibility. It has been reported that 
surfaces and nanoparticles modified with PDA can promote cell adhesion and viability [46,47]. 
Accordingly, PDA and PDA@AuNP1 surfaces exhibited satisfactory cell adhesion and proliferation 
due to the potent adhesive characteristic of PDA. In contrast, the remarkable cytotoxicity of 
PDA@AuNP2 and PDA@AgNP coatings can be ascribed to the over-deposition of AuNPs and high 
cytotoxicity of AgNPs, respectively [32]. 

 

Figure 5. MTT assay of CaCO2 and A549 cells onto different surfaces after 24 and 48 h of cell culture. 
The number of asterisks indicates the significance of the alterations in the cell viability. 

4. Conclusions 

In summary, we sufficiently fabricated the AuNP or AgNP decorated the PDA thin films. The 
films were tested on two different cancer cell lines to determine cell viability, growth, and 
proliferation. We detected that the PDA layer remarkably enhanced cell growth and proliferation. 
The NP decorated films indicated that cell growth and proliferation is highly dependent on both the 
type and the number density of NPs. The highest cell viabilities were determined for the PDA-coated 
glass slides at 48 h cell culture time to be 149% ± 1.1% and 151% ± 2.1% for A549 and CaCO2 cell lines, 
respectively. However, the employment of the PDA@AgNP surfaces led to lower cell viability values 
for 48 h cell culture time such as 25% ± 3.5% and 27% ± 1.9% for A549 and CaCO2 cell lines, 
respectively. We envision that the proposed strategy can be extended to the various biomedical 
applications for the fabrication of biomedical devices and biomaterials with their flexible properties 

Figure 5. MTT assay of CaCO2 and A549 cells onto different surfaces after 24 and 48 h of cell culture.
The number of asterisks indicates the significance of the alterations in the cell viability.

4. Conclusions

In summary, we sufficiently fabricated the AuNP or AgNP decorated the PDA thin films. The films
were tested on two different cancer cell lines to determine cell viability, growth, and proliferation.
We detected that the PDA layer remarkably enhanced cell growth and proliferation. The NP decorated
films indicated that cell growth and proliferation is highly dependent on both the type and the number
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density of NPs. The highest cell viabilities were determined for the PDA-coated glass slides at 48 h cell
culture time to be 149% ± 1.1% and 151% ± 2.1% for A549 and CaCO2 cell lines, respectively. However,
the employment of the PDA@AgNP surfaces led to lower cell viability values for 48 h cell culture time
such as 25% ± 3.5% and 27% ± 1.9% for A549 and CaCO2 cell lines, respectively. We envision that
the proposed strategy can be extended to the various biomedical applications for the fabrication of
biomedical devices and biomaterials with their flexible properties and functionality. AuNP or AgNP
decorated the PDA thin films with their versatility, biocompatibility, and simplicity, and may provide
opportunities in the fabrication of 3D tissue engineering scaffolds for bone or muscle regeneration,
cell-based drug screening devices, and drug carriers in the vascular stents and analysis of cell–material
interactions. Additionally, the surface plasmon resonance (SPR) nature of the AuNPs or AgNPs will
pave the way for novel sensing systems such as surface-enhanced Raman spectroscopy (SERS) and
surface-enhanced infrared spectroscopy (SEIR).

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-6412/10/9/802/s1,
Figure S1: Nanoparticle size distribution of AuNPs (a), and AgNPs (b); Figure S2: FT-IR spectrum of PDA thin
film onto the glass slide; Figure S3: The preliminary study for the cell number optimization and optic images of
A549 and CaCO2 cell lines incubated with an initial cell number of 7500 cells per well onto the bare and PDA
coated glass; Figure S4: violet staining of A549 and CaCO2 cell lines onto different thin films at 20×magnification;
Table S1: The number density of adhered cells onto the different substrates.
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