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Abstract: Aluminizing is a common protective coating for aeroengine turbine blades, but there
is no method to accurately measure the aluminized thickness. X-ray fluorescence nondestructive
testing technology is a method which can basically realize the measurement of all coatings on
the metal substrate. However, the aluminized coating structure is completely different from the
conventional coating structure, which causes great difficulties in measuring the aluminized thickness
by conventional calculation models. Therefore, to realize the measurement of aluminized thickness,
a new modeling method based on radial basis function (RBF) neural network by X-ray fluorescence
(XRF) is proposed. By comparing two calculation models of RBF and principal component analysis
(PCA)-RBF, the results show that both models can realize the measurement of aluminized thickness,
but the accuracy of PCA-RBF is better than that of RBF, and the average relative error of the predicted
results is 3.99%; the predicted results of the PCA-RBF model fit the training values better, and its
predictability is better.
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1. Introduction

The turbine blade is an important component ensuring the safe operation of aeroengines, but it is
also one of the components with the most severe working environment on aeroengines. Therefore,
ensuring the safe and stable operation of turbine blades plays a crucial role in the safety and reliability
of aeroengine. At present, nickel-based superalloy is a common turbine blade casting material because
of its internal strengthening phase (γ′-phase) [1,2]. K403 nickel-based superalloy is a common one.
However, owing to the long-term impact and erosion of high-temperature gas on turbine blades,
protective measures must be performed to improve its performance in practical use [3]. Aluminizing is
a common protection process, and its quality will also greatly affect the performance of turbine blades.

The uniformity of the aluminized thickness on the surface of turbine blades is one of the most
important parameters affecting the performance. Nonuniform thickness will lead to nonuniform
heat and stress on the turbine blades, which will cause great potential safety risks for the use of the
aeroengine. The aluminized coating is composed of a variety of elements whose content constantly
changes from outside to the inside, and the element types in the aluminized coating are identical to
those in the substrate, which are completely different from the conventional coating structure. In a
conventional coating structure, the coating and substrate are usually composed of different materials
and elements. Therefore, conventional nondestructive testing methods, such as ultrasonic testing,
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eddy current testing, magnetic testing, and so on, are restricted by the properties of coating and
substrate materials and cannot achieve the measurement of aluminized thickness [4,5]. At present,
the cross-section observation method is a commonly used method for measuring the aluminized
thickness of the turbine blades by scanning electron microscope, but it is a destructive method and
cannot realize the comprehensive inspection of the aluminized coating on the surface. In addition,
with the development of nuclear technology, the radiographic testing method is widely used in the
thickness measurement of various coatings on the metal substrate, among which X-ray is most widely
used [6–11]. Cao et al. [12] carried out a theoretical analysis on the thickness measurement of thin layer
by X-ray fluorescence absorption method and validated the correctness of relevant theories by using
experimental data. Mashin et al. [13] successfully measured the thickness of aluminum coating on
steel by X-ray fluorescence. Trojek et al. [14] measured the thickness of historical materials by X-ray
fluorescence, and the results showed that the measured value was in good agreement with the actual
value. Giurlani et al. [15] realized the measurement of precious metal films by combining spectral
acquisition of energy dispersion microanalysis with the Monte-Carlo simulation, and proposed a
calculation model of secondary calibration curve. Lopes et al. [16] realized the thickness measurement
of gilded layer on cultural relics by using partial least squares regression (PLS) based on X-ray
fluorescence. Guilherme et al. [17] also realized the measurement of paint thickness on steel plate
by means of partial least squares regression model. Wan et al. [18] designed an X-ray fluorescence
thickness measurement system based on wavelet analysis, which effectively improved the accuracy of
thickness measurement of sheet metal. It can be seen that the thought of nonlinear calibration and
multivariate synthetic analysis has been widely applied to X-ray fluorescence thickness measurement.
However, due to the special structure of aluminized coating, conventional calculation models are also
not fit for the measurement of such coatings. Moreover, although the neural network model is a widely
used nonlinear modeling method in the field of nondestructive testing [19–22], there is no application
in the X-ray fluorescence coating thickness measurement. Therefore, based on the existing research
of coating thickness measurement by X-ray fluorescence, a multivariate nonlinear model based on a
neural network by X-ray fluorescence was proposed to measure the aluminized thickness in this paper.

In order to measure the thickness of aluminized coating nondestructively, the structure model was
simplified according to its microstructure, firstly. Then, the samples with different thicknesses were
prepared, and the X-ray fluorescence spectral data were collected. Moreover, the prediction model
of the diffused aluminized layer was established by a radial basis function neural network. Finally,
the accuracy of the prediction model was studied.

2. Materials and Models

2.1. Materials

The K403 nickel-based superalloy after aluminizing was used in the experiment. The K403
superalloy formed by the comprehensive strengthening of various elements was used to be the substrate.
In addition, the main chemical components of K403 alloy are shown in Table 1 [23].

Table 1. Chemical components of K403 superalloy (wt.%).

Element Ni Cr Co Mo Ti

Content Bal. 10.1–12.1 4.4–6.1 3.8–4.4 2.1–2.6
Element W Fe Al C Mn
Content 4.7–5.9 <2.0 5.5–5.8 0.11–0.19 <0.5

2.2. Experimental Schemes and Testing Methods

In order to realize the measurement of the aluminized thickness, the aluminized samples with
different thicknesses were selected in this paper, as shown in Table 2. The thickness of each sample was
calibrated by SEM (scanning electron microscope, Hitachi, Tokyo, Japan), and the size of each sample
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was 10 mm × 3 mm × 1 mm, as shown in Figure 1. The orange area in Figure 1 shows the position
of aluminizing, and the area of X-ray fluorescence detection is within 1 mm of the cross-section of
SEM observation.

Table 2. Samples with different thicknesses and their numbers.

Number Thickness/µm Number Thickness/µm Number Thickness/µm

1 0 11 38.1 21 41.7
2 20.2 12 38.3 22 41.8
3 24.4 13 38.9 23 42.3
4 25.1 14 39.0 24 42.7
5 25.3 15 39.6 25 42.9
6 27.6 16 40.2 26 43.1
7 27.6 17 40.3 27 43.2
8 28.4 18 40.5 28 43.5
9 29.8 19 40.8 29 44.1
10 37.3 20 41.2 30 45.2
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Figure 1. Diagrammatic sketch of samples.

Moreover, to realize the measurement of the experimental data, the following equipment was used.
The thickness of aluminized layer was calibrated by Hitachi SU-1510 scanning electron microscope

(Hitachi, Tokyo, Japan).
Fluorescence detection was operated by Elite Instruments XAU X-ray Fluorescence Coating Gauge.

We selected tube voltage 25 KV, collimator Φ 0.5 mm. The measuring time of a single point was 30 s.
We measured 10 times for each sample, and the fluorescence intensity of each sample was recorded as
the average of the values of the 10 measurements.

2.3. Calculation Model

2.3.1. Model Simplification and Measurement Principles

The morphology and component distribution of elements along the depth of K403 superalloy
after aluminizing were analyzed by means of a scanning electron microscope (SEM) (Hitachi, Tokyo,
Japan) and energy dispersive spectrometer (EDS) (Oxford Instruments, Oxford, British), which were
shown in Figure 2. It can be seen from Figure 2 that the morphology of the substrate is different
from that of the aluminized area. Therefore, it can be considered that the substrate and coating are
composed of different compounds, and the K403 superalloy after aluminizing can be simplified into the
substrate–coating structure. The simplified diagram is shown in Figure 3a. The material of substrate is
K403 superalloy, and the material of coating is Al alloy whose aluminum content changes continuously
along depth. Here, the coating could be subdivided by the aluminum content, and the aluminized
coating can be divided into countless layers of Al alloy coating with different aluminum contents. It is
assumed that the thickness of each layer is x.
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Figure 3. Simplified structural model. (a) refers the simplified coating structure; (b) refers the divided
layers of aluminized coating.

According to the simplified coating structure in Figure 3a and X-ray fluorescence absorption
method, the calculation method of aluminized thickness can be obtained, as shown in Equation (1).

Id = I0 · e−µt (1)

I0 represents the fluorescence intensity of the excited elements in the substrate; Id represents the
fluorescence intensity received by the detector; µ represents the absorption coefficient of the coating,
which is only related to the materials of coatings and the excited elements; t represents the
aluminized thickness.

Based on this linear model, Giurlani et al. [15] proposed a quadratic calibration curve model.
The model considered not only the absorption of coating but also the absorption of fluorescence by
instruments, air, and so on, as shown in Equation (2).

Id = I0 · e−At2
−Bt (2)
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Here, I0, Id and t represent the same meanings as Equation (1); A represents the absorption
coefficient caused by air, instrument and other factors; B represents the absorption coefficient of
the coating.

Dividing the both sides of Equations (1) and (2) by I0, it could be found that the coating thickness is
only related to the value of Id/I0. SupposingR = Id/I0 and defining R as relative intensity, the equations
could be written as Equation (3) {

R = Id/I0 = e−µt

R = Id/I0 = e−At2
−Bt (3)

According to the above analysis, fluorescence is affected by many factors in the transmission process,
and the absorption calibration curve cannot be a specific calculation model. Therefore, we propose a
nonlinear calibration calculation model denoted by f (x) in this paper. Then, according to the simplified
structure model shown in Figure 3b, the divided coatings which contain the same elements could be
regarded as aluminum alloy. Therefore, we assume that the divided coatings have the same type of
absorption calibration model, that is, the same type of f (x).

Based on the above conditions, the formula for calculating the thickness of the divided coatings is
shown in Equation (4) 

R1 = Id1/I0 = e f1(x)

R2 = Id2/Id1 = e f2(x)

...
R(n−1) = Id(n−1)/Id(n−2) = e f(n−1)(x)

Rn = Id/Id(n−1) = e fn(x)

(4)

Multiply each equation in the Equation (4) to obtain Equation (5). According to Figure 3b,
due tox = t/n, f1(x) = f ′1(nx), . . . . . ., fn(x) = f ′1(nx). Therefore, f1(x) + f2(x) + . . . + fn(x) =

f ′1(nx) + f ′1(nx) + . . .+ f ′1(nx). Here, we assume f ′1(nx) + f ′1(nx) + . . .+ f ′1(nx) = g(nx) = g(t), where,
t represents the aluminized thickness.

R = Id/I0 = e f1(x)+ f2(x)+...+ fn(x) = eg(nx) = eg(t) (5)

According to Equation (5), the aluminized thickness is only related to the value of relative intensity
Therefore, the corresponding relationship between relative intensity (R) and aluminized thickness (t)
could be established, and the measurement of the aluminized thickness could be realized by the law of
change between them.

2.3.2. Principal Component Analysis (PCA)

Principal component analysis (PCA) was first proposed by Pearson [24] in 1901. His main point
was to use mathematical transformation to recombine the input original data variables (X) into several
“new variables” that can explain the main information of the original variables, and these “new
variables” were called principal components. These principal components which are independent to
each other can effectively lower the dimension of original variables and improve the modeling speed,
so the accuracy of prediction results could be effectively improved [25].

Assuming the original variables have n sequences, that is, Xi = (X1, X2, . . . , Xn), then the principal
components Fi = (F1, F2, . . . , Fm) can be obtained by principal component analysis, which are shown
in Equation (6). 

F1 = c11 ·X1 + c21 ·X2 + . . .+ cn1 ·Xn

F2 = c12 ·X1 + c22 ·X2 + . . .+ cn2 ·Xn
...

Fm = c1m ·X1 + c2m ·X2 + . . .+ cnm ·Xn

(6)
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F1, F2, . . . , Fm are the substitution variables of the original variables, namely the principal
components; cnm is the load factor of principal component.

To realize the selection of principal components shown in Equation (6), the input data needs to be
standardized, as shown in Equation (7).

x̂i j =
(xi j − x j)

S j
(7)

where x j is the mean value of the observed data and S j is the standard deviation of xi j. Then,
the correlation coefficient matrix Vp×p of the normalized independent variables, the eigenvalues
λi(i = 1, 2, . . . p) of the correlation coefficient matrix and the corresponding eigenvectors ai of the
correlation coefficient matrix are all solved. Finally, the cumulative contribution rate is calculated,
as shown in Equation (8).

r =

m∑
i=1

λi

p∑
i=1

λi

, (i = 1, 2, . . . , m, . . . , p) (8)

where m(m C p) represents the principal components with the largest contribution. When r B 85%,
these components basically reflect the overall information of the original variables. The load factor of
principal component numbered m is the standard orthogonalized eigenvector of λm.

2.3.3. Radial Basis Function (RBF) Neural Network

Radial basis function neural network has the optimal approximation effect of arbitrary complex
function and can effectively avoid the occurrence of local minimum. RBF neural network is generally
composed of three layers: input layer, hidden layer and output layer. The relation diagram is shown in
Figure 4.
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In Figure 4, Wi shows the connection weight between the hidden layer and the output layer.
In general, the Gaussian function is often used as the transport function in the hidden layer, as shown
in Equation (9).

βi(x) = exp[−
‖Mi −Zi‖

2∂2 ] (9)

where, Mi represents the input value of the node numbered i in the hidden layer; Zi represents the
central vector of the Gaussian function of the hidden node numbered i, which is a column vector
with the same dimension as the input data; ∂ represents the normalized constant of the hidden node
numbered i.
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2.3.4. Experimental Data

According to the content of the main elements in the K403 superalloy shown in Table 1,
the fluorescence intensity of Ni, Cr, Co, Ti and Mo were selected as the main experimental data
recorded in this paper. The recorded values were the average value of the results of 10 experiments and
were shown in Table 3. In the study on the calculation model of the aluminized thickness, three sets of
data with the thickness of 25.1/38.1/43.2 µm were randomly selected to verify the established model,
and the rest data were used to establish the calculation model.

Table 3. Fluorescence intensity of main elements in samples with different thicknesses.

Thickness/µm Cr Ti Co Ni Mo

0 624.7071 101.7332 309.4308 3765.884 38.53389
20.2 293.2677 47.96101 247.7351 3328.567 31.47411
24.4 297.5915 50.81117 262.224 3617.338 33.55606
25.1 263.0195 36.00701 247.1321 3381.207 32.12911
25.3 256.054 31.49028 217.7013 3000.038 30.03988
27.6 268.4416 29.79269 245.2438 3393.103 31.61946
27.6 227.5506 24.98131 208.443 2861.764 25.9218
28.4 238.6764 33.34391 222.3146 3103.322 29.10874
29.8 323.5831 53.58238 267.939 3651.129 35.29104
37.3 232.7834 50.01579 201.5398 2743.924 22.80447
38.1 270.6113 62.20418 238.2002 3150.548 27.85035
38.3 270.5394 60.28608 237.3122 3227.51 27.69389
38.9 278.973 59.39031 250.7445 3450.395 29.78455
39.0 261.4657 55.15724 217.6103 2990.993 28.28293
39.6 275.6828 75.85441 248.3237 3324.763 30.55129
40.2 261.0089 63.6314 210.2344 2660.022 25.14679
40.3 234.8192 63.61527 216.6794 2999.977 24.51302
40.5 247.4827 57.6592 228.2574 3020.608 27.08641
40.8 247.1819 60.17707 220.9751 2931.231 26.48152
41.2 230.7498 52.91202 203.0792 2761.33 23.36633
41.7 229.006 62.00185 213.7183 2915.896 24.9006
41.8 246.9938 58.62607 233.5622 3114.483 24.4966
42.3 238.722 59.26103 216.2902 2935.454 24.22472
42.7 257.2055 71.8453 236.8516 3256.075 29.52851
42.9 227.9333 54.65655 214.5674 2895.517 24.30659
43.1 321.5272 77.55881 285.6264 3936.336 34.22172
43.2 291.9116 61.20275 248.7034 3380.121 30.026
43.5 236.8401 55.62551 208.4275 2740.238 24.70673
44.1 241.2549 63.69221 238.3664 3220.682 30.92202
45.2 219.665 55.43128 198.6655 2720.106 23.9862

Moreover, the relative intensity (R) of the main elements was calculated and was shown in Table 4.
Here, the fluorescence intensity of the sample with the thickness of 0 micron was taken as I0, which was
mainly based on the following two reasons: (i) the intensity of the primary X-ray is high enough to
penetrate much deeper than the aluminized thickness; (ii) the fluorescence intensity of the selected
elements is also high enough to penetrate much deeper than aluminized thickness.
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Table 4. Relative intensity (R) of each element.

Thickness/µm RCr RTi RCo RNi RMo

0 1 1 1 1 1
20.2 0.469448374 0.471439012 0.80061547 0.883873917 0.816790258
24.4 0.47636969 0.499454996 0.847439668 0.960554915 0.870819206
25.1 0.421028497 0.353935581 0.798666827 0.897852001 0.833788169
25.3 0.409878506 0.3095378 0.703553995 0.796635658 0.779570205
27.6 0.42970792 0.292851155 0.792564147 0.901010959 0.820562283
27.6 0.36425163 0.245557055 0.67363368 0.759918267 0.672701157
28.4 0.38206133 0.327758302 0.718462999 0.824062056 0.755405994
29.8 0.517975672 0.526694901 0.865909188 0.969527603 0.915843989
37.3 0.372628133 0.491636709 0.651324312 0.728626781 0.591802982
38.1 0.433181145 0.611444039 0.76980114 0.83660248 0.722749467
38.3 0.433065986 0.592589837 0.766931182 0.857039248 0.718689052
38.9 0.446566011 0.583784767 0.810341119 0.916224527 0.772944185
39.0 0.418541263 0.542175268 0.703259962 0.794233887 0.73397539
39.6 0.441299246 0.745620803 0.802517563 0.882863924 0.792841963
40.2 0.417810061 0.62547314 0.679422881 0.706347332 0.652588835
40.3 0.375886939 0.625314572 0.700251508 0.796619615 0.63614171
40.5 0.39615791 0.56676854 0.737668524 0.802097869 0.702924365
40.8 0.395676447 0.591518261 0.714133972 0.778364681 0.687226785
41.2 0.369372702 0.520105558 0.656299319 0.733248801 0.606383783
41.7 0.366581341 0.609455175 0.690681818 0.774292624 0.646199799
41.8 0.395375408 0.576272596 0.754812263 0.827025614 0.635715711
42.3 0.382134229 0.582513946 0.698993739 0.779485939 0.628660076
42.7 0.411721713 0.706212652 0.765442657 0.864624308 0.766299713
42.9 0.364864287 0.537253654 0.693426036 0.768881066 0.63078466
43.1 0.514684677 0.76237441 0.923070352 1.045262089 0.888093857
43.2 0.467277513 0.601600411 0.803744824 0.897563708 0.779210018
43.5 0.379121801 0.546778147 0.673583552 0.72764808 0.64116888
44.1 0.386188746 0.626070793 0.770338106 0.855225991 0.802462807
45.2 0.351628709 0.544868937 0.642035216 0.722302044 0.622470114

3. Results and Discussion

3.1. Calculation Model of Radial Basis Function (RBF) Neural Network

According to Equation (5), the aluminized thickness is only a function related to the
relative intensity (R) and the aluminized thickness (t). Therefore, it is necessary to establish a
mathematical model of thickness and relative intensity to achieve the accurate measurement of the
aluminized thickness. In this paper, the relative intensity (R) of Ni, Cr, Co, Ti and Mo and the
aluminized thickness (t) were selected to establish calculation model. A total of six observations and
30 groups of data were selected. Among them, 27 groups of data were selected as training samples and
three groups of data were selected as prediction samples. The RBF neural network prediction model
was established to obtain the predicted results, using the relative intensity (R) of Ni, Cr, Co, Ti and Mo
as input and the aluminized thickness (t) as output.

In this paper, the newrb (P, T, goal, spread, MN, DF) function was selected as the programming basis.
In this function, P and T respectively represent the input and output samples; the spread is the expansion
speed of the radial basis function; the goal is the mean squared error; MN is the maximum number
of neurons; DF is the number of neurons added between displays with a default value of 25. The value
of spread is particularly important in this model, whose value is closely related to the change rate
of the function. The larger the spread is, the smoother the approximation process will be, but the
approximation error will be larger; the smaller the spread, the less smooth the approximation will be,
but the approximation error of the function will be more accurate. Therefore, in the actual modeling
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process, the value of spread should be constantly changed so that the calculation model can achieve
the best predicted results.

After repeated tests, when the spread is 0.1, the relative error of the predicted results is the smallest,
and the mean square error of the training network is 0.0096, which is less than the set mean square
error goal (0.01). Changing the spread again, when the mean square error is small enough and its
order of magnitude reaches 10−29, the spread is 0.03. The predicted results of the above two expansion
speeds are shown in Table 5.

Table 5. Output results of the RBF neural network.

Spread Actual
Thickness/µm

Predictive
Thickness/µm Relative Error/% Average Relative

Error/%

0.1
25.1 23.17 7.69

6.1038.1 37.36 1.94
43.2 39.45 8.68

0.03
25.1 1.24 95.06

67.8838.1 20.91 45.12
43.2 15.78 63.47

It can be seen from Table 5 that the relative error of the model changes constantly with the
expansion speed change. When the expansion speed is 0.03, the mean square error of the training
network is relatively low, but the average relative error reaches 67.88%, which could not meet the
requirements of thickness testing. This is mainly because the expansion speed is small, which results
in the non-smooth fitting process and makes it impossible to obtain the variation rule between the
aluminized thickness and the relative intensity. However, with the change of the expansion speed,
the mean square error of the training network increases, but the average relative error of the predicted
values decreases. When the expansion speed is 0.1, the average relative error of the predicted results
is 6.1%, which is the lowest and could basically meet the requirement of measurement accuracy on
aluminized thickness. Under this condition, the mean square error of the training network is 0.0096,
meeting the set target value 0.01. Therefore, under the condition that the set mean square error target
value is met, the expansion speed is selected to be 0.1, so that the error of the predicted results meets
the requirement of thickness testing.

3.2. Calculation Model of the PCA-RBF Neural Network

3.2.1. Select Variables via Principal Component Analysis

According to the steps of principal component analysis (PCA) in Section 2.3.2, principal
component analysis was performed on the relative intensity (R) of Ni, Cr, Co, Ti and Mo.
After calculation, two principal components were obtained, whose cumulative contribution rate
was 92.65%, higher than 85%, and the relative intensity of Cr was the most influential factor. Therefore,
the principal components could basically explain the information of original variables. The two
principal components are shown in Equation (8).{

F1 = 0.4502RCr + 0.2853RTi + 0.5113RCo + 0.4776RNi + 0.4758RMo

F2 = −0.2551RCr − 0.8463RTi + 0.0958RCo + 0.2941RNi + 0.3508RMo
(10)

According to Equation (8), the relative intensity of five elements in Table 4 can be converted into
two principal components, as shown in Table 6.
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Table 6. The transformed principal component variables.

Thickness/µm F1 F2 Thickness/µm F1 F2

0 2.2002 −0.3607 40.2 1.3888 −0.1006
20.2 1.5659 0.1044 40.3 1.4347 −0.0276
24.4 1.6633 0.1249 40.5 1.4108 −0.0631
25.1 1.5244 0.2261 40.8 1.2889 −0.0431
25.3 1.3839 0.2086 41.2 1.3693 −0.0887
27.6 1.5029 0.2713 41.7 1.4258 −0.0501
27.6 1.3858 0.2013 41.8 1.4127 −0.0658
28.4 1.7250 0.1115 42.3 1.3670 −0.0737
29.8 1.2706 −0.0268 42.7 1.5558 −0.1063
37.3 1.5074 −0.0343 42.9 1.3394 −0.0339
38.1 1.5065 −0.0546 43.1 1.8429 −0.0691
38.3 1.5873 0.0103 43.2 1.5924 −0.0140
38.9 1.4312 0.0072 43.5 1.3237 −0.0560
39.0 1.6206 −0.1289 44.1 1.5366 −0.0215
39.6 1.3618 −0.1342 45.2 1.2832 −0.0585

3.2.2. Establish PCA-RBF Calculation Model

The simplified two principal components are used as the input of the RBF neural network instead
of the original five variables. Here, newrb (P, T, goal, spread, MN, DF) function was also used to
establish the model in the same way as the RBF neural network model in Section 3.1. Through
repeated tests, the optimal expansion speed is determined to be 0.08, and the mean square error of the
training network is 3.57 × 10−24. The predicted results of the network output are shown in Table 7.

Table 7. The output results of the calculation model by principal component analysis (PCA)-RBF
neural network.

Actual Thickness/µm Predictive
Thickness/µm Relative Error/% Average Relative

Error/%

25.1 26.04 3.75
3.9938.1 37.16 2.47

43.2 45.69 5.76

It can be seen from that the relative error of the predicted results is 3.99% under the model of
PCA-RBF, which reached a comparatively low level. The relative error under different thicknesses is
also relatively stable, without fluctuating greatly.

3.3. Comparative Study on the Two Models

In order to analyze the advantages and disadvantages of the two models, this paper carries out a
comparative study on the output results of the two models. Firstly, Table 8 shows the optimal mean
square error of the training network and the best predicted results of the two calculation models.
By comparing the effects of different expansion speeds on model performance, it is found that: (i) in
the R2BF model, when the mean square error of the training network is low, the error of the predicted
results is high; (ii) in the PCA-RBF model, when the mean square error of the training network is
the lowest, the error of the predicted results is also the lowest. Then, the relative errors of the predicted
results of the two models are studied, and the results are shown in Figure 5. It can be seen from Figure 5
that the relative error of the predicted results obtained by the two calculation models is less than 10%.
The relative error of the thin and thick aluminized layers is relatively high, and the relative error of the
medium aluminized layer is the lowest. However, it is also clear from Figure 5 that the relative error of
the PCA-RBF calculation model is more stable and will not fluctuate significantly, and the average
relative error (3.99%) of all predicted results brought by the PCA-RBF calculation model is smaller
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than the that (6.1%) obtained by the RBF model. Finally, the change trend of the predicted results and
the training values of the two calculation models is compared, as shown in Figure 6. By comparing
Figure 6a with Figure 6b, it can be seen: (i) under the RBF neural network model, the predicted results
and the training values vary with the relative intensity (R) in a disorderly manner, and there is no
obvious uniform trend; (ii) under the PCA-RBF neural network model, the predicted results and the
training values are basically consistent with the change trend of the two principal component variables,
and the change curve of the predicted results basically fits in the training values.

Table 8. The best mean square error and predicted results.

Model
RBF PCA-RBF

Spread = 0.1 Spread = 0.03 Spread = 0.08

Mean square error (MSE) 0.0096 2.48 × 10−29 3.57 × 10−24

Average relative error/% 6.1 67.88 3.99
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In conclusion, the PCA-RBF neural network model can not only obtain high accuracy, but also fit
into the training network well. Therefore, when solving practical problems, the performance of the
PCA-RBF neural network model is better than that of the RBF neural network, and it is more suitable
for the measurement of aluminized thickness.
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4. Conclusions

By the X-ray fluorescence nondestructive testing method, a new nonlinear modeling method of
coating thickness measurement based on radial basis function neural network was proposed in this paper.
Additionally, by comparing the results of RBF and PCA-RBF neural network calculation model,
the results show:

(1) Both RBF and PCA-RBF models can realize the measurement of the aluminized thickness under
suitable expansion speed. The optimal average relative error of the predicted results is 6.1% and
3.99% respectively, which shows that the PCA-RBF model can obtain better predicted results in
the calculation of aluminized thickness.

(2) The relative error of the predicted results of different aluminized thicknesses displayed by the
PCA-RBF model is more uniform and does not fluctuate greatly, which means that PCA-RBF
model has better stability.

(3) The change rule of the predicted results in the PCA-RBF model is more significantly consistent
with the change rule of the training values, and the PCA-RBF model can better reflect the change
rule of the aluminized thickness with the relative intensity.

To sum up, after data preprocessing, the calculation accuracy of the model can be improved
effectively. Moreover, the new nonlinear modeling method proposed in this paper better realized
the measurement of aluminized thickness, which provides a new idea for measuring the coating
thickness of non-conventional structures. However, as far as the data sizes are concerned, the data
sizes selected in this paper are still limited, and more data should be prepared in the future. With an
increase in data size, the accuracy of the predicted results and the stability of the model are expected to
be further improved.
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