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Abstract: In this study, we reveal that the thermal budget of post-metal annealing not only determines
the formation of the ferroelectric phase and dipole domain but also the film quality of the gate
stack in a metal-ferroelectric-metal capacitor. The higher leakage current caused by defect traps
or grain boundaries within a gate stack would influence the stability of the ferroelectric domain
switching. Furthermore, the ferroelectric domain switching and polarization current also depend
on the ferroelectric capacitor area. We observe that a HfAlO ferroelectric capacitor can dominate
the transfer characteristics of a p-type SnO thin-film transistor through the modulation of series
capacitance in the gate stack based on a one-transistor one-capacitor series configuration. According to
experimental results, the memory hysteresis window can be improved significantly with the area
scaling due to the improvement of capacitance matching accuracy.
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1. Introduction

Recently, the research for the ferroelectric-based transistor materials has been focused on the
polycrystalline-doped hafnium oxide (HfO2) due to good thickness scalability and complementary
metal oxide semiconductor (CMOS) process compatibility. Since the discovery of ferroelectricity
in HfO2 material, the HfO2-based ferroelectric transistors and memories have been considered as one of
the most promising candidates to replace the conventional perovskite structure, such as PbZrTiO3 (PZT)
and strontium bismuth tantalite (SBT) [1]. These novel HfO2-based ferroelectric materials and related
devices exhibit fast switching speed, low power consumption, high scalability and long-endurance
cycling [2–4]. The related negative capacitor effect for reducing the switching power of the transistor
also attracts more and more attention [5,6]. Such numerous advantages show a great potential for
the applications of volatile memory, nonvolatile memory (NVM) and logic devices. In recent years,
the novel ferroelectric memories using HfZrOx (HZO) with zirconium doping have been reported and
investigated, frequently owing to the outstanding hysteresis polarization effect and extensive process
rangeability of doping concentration [7]. Although the HZO ferroelectric memory has the advantages
of good device scalability and a fast switching speed of sub-100ns, the poor thermal stability of Zr
doping, the leakage current issue and the small ferroelectric hysteresis window are the major concerns
with the thickness scaling [8–15]. As for another ferroelectric material of HfAlOx with a light Al
doping concentration (<10%), the leakage current can be improved due to the large bandgap of AlOx.
However, the hysteresis window modulation still faces a big challenge due to the limitation of Al
doping concentration [16,17].

The advantages of metal-oxide-based thin-film transistors (TFTs) over the silicon-based TFTs
include good transparency, reasonably high carrier mobility and a relatively low processing temperature.
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In recent years, the metal-oxide-based TFTs have been actively pursued for displays and other new
applications [18,19]. Although the hysteresis in transistors is undesirable in most circuit application,
it has been exploited to realize electronic memory elements due to the remnant polarization (Pr).
According to the type of the hysteresis, different memories based on oxide TFTs have been reported.
For the TFT-based ferroelectric hysteresis memory, one-transistor (1T) TFTs that use ferroelectric
polymer materials as the gate insulator have been proposed and investigated [20,21]. For the trapping
hysteresis, an NVM has been fabricated using a ZnO TFT with Ag nanoparticles embedded as charge
storage nodes at the insulator–ZnO interface [22]. We have previously proposed high-performance tin
oxide (SnO) TFTs for display application [23–25]. In this work, we fabricated one transistor and one
capacitor (1T-1C) device structure integrating a p-type SnO TFT and a ferroelectric HfZrO capacitor and
investigated the influence of the thermal annealing and capacitor area. The optimized characteristics
include an on/off state current ratio (ION/IOFF) of >103 and a larger memory window of 6 V under
an operating voltage of 6.5 V, which can be ascribed to the optimal capacitance matching and less
defect-induced leakage current.

2. Materials and Methods

First, the fabrication process of the p-type SnO TFT and ferroelectric MFM capacitor was described
as the following. For the ferroelectric HZO (FE HZO) MFM capacitor, a highly doped N+-type silicon
wafer was used as a bottom electrode. To avoid the silicon interface reaction during annealing,
a 1-nm-thick silicon dioxide buffer layer was deposited. Then, a 10-nm-thick HfZrO film with
an optimized zirconium concentration of 25% [26] was deposited on the buffer oxide by an atomic layer
deposition (ALD) system. Finally, the tantalum nitride (TaN) gate was deposited on the HZO film by
sputtering physical vapor deposition and then followed by a post-metal annealing (PMA) to enhance
the ferroelectric phase transition [26,27]. The dielectric HZO (DE-HZO) film deposited by ALD can be
transformed from tetragonal phase to orthorhombic phase by TaN metal capping. The Figure 1a,b
show the transmission electron microscope (TEM, JEOL, Tokyo, Japan) and fast fourier transform (FFT)
images of 10-nm-thick HZO film. The geometric phase analysis (GPA) images for x and y strain planes
simulated from TEM images are shown in the Figure 1c,d. From the GPA results, we can observe the
difference of strain field along x and y axis caused by ferroelectric phase transition during annealing,
which is important for TaN gate stress engineering.

To investigate the ferroelectric polarization and capacitance matching effect of an MFM capacitor,
the different capacitor areas were designed. The MFM capacitors were patterned by photolithography
with different areas. For the fabrication process of the p-type SnO TFT, we also adopted the highly-doped
N+-Si substrate as the bottom gate electrode. Next, a 1-nm-thick buffer oxide and a 10-nm-thick DE
HZO layer with 25% zirconium doping were grown. Subsequently, a 6-nm-thick SnO was grown
as the active channel layer, followed by a 200 ◦C annealing and fluorine plasma treatment [28].
Finally, a 50-nm-thick Ni metal was deposited as the source and drain contact electrodes by sputtering.
The p-type SnO TFT device has a channel width of 500 µm and a channel length of 50 µm. The schematic
device structures of the p-type SnO TFT using DE-HZ film as gate dielectric and a ferroelectric FE-HZO
MFM capacitor were shown in Figure 2a,b. The electrical properties and memory characteristics of
an MFM capacitor and TFT-based memory with 1T-1C series-connection design were simultaneously
measured for clarifying the mechanism of ferroelectric domain switching and the impact on the
memory performance of 1T-1C device structure under annealing temperature and area effect.
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Figure 1. (a) TEM and (b) FFT images of 10-nm-thick HZO film. Simulated strain field along the (c) x 

and (d) y axis. 
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Figure 2. Schematic plots of (a) a p-type SnO TFT and (b) a ferroelectric HZO MFM capacitor. 
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Figure 1. (a) TEM and (b) FFT images of 10-nm-thick HZO film. Simulated strain field along the (c) x
and (d) y axis.
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Figure 2. Schematic plots of (a) a p-type SnO TFT and (b) a ferroelectric HZO MFM capacitor.

3. Results and Discussion

Figure 3a shows the current–voltage curves of HZO MFM capacitors at various PMA temperature
conditions. We can clearly observe that the leakage current has no significant change in the positive
bias side but presents the temperature dependence of a leakage current in the negative bias side.
This small leakage variation in the positive bias side can be ascribed to the thermally stable SiO2

interface buffer layer with a large band gap, which is favorable to reduce the defect generation during
the PMA process and thus suppress the leakage current. However, the increased leakage current
with a PMA temperature measured at the negative bias side with electron gate injection is highly
correlated with interface quality between the stressed TaN gate and HZO film [11]. We believe that the
temperature-induced leakage current is mainly contributed to by interface defects near TaN gate and
grain boundaries. Figure 3b,c presents the hysteresis polarization (P-V) loops and the instantaneous
currents of HZO MFM capacitors under PMA temperatures from 600 to 800 ◦C. The ferroelectricity
of HZO film gradually enhances with the increase in the annealing temperature from 600 to 800 ◦C.
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However, we also find the slightly higher leakage current at 800 ◦C, which can be ascribed to the
increase in defects or leakage paths in the gate stack due to the change of grain size [12]. Figure 3d
shows the endurance cycling characteristic of HZO MFM capacitor with optimal PMA condition of
700 ◦C. We can clearly observe that the ferroelectric MFM capacitor can be stably switched up to
107 cycles under a low bias condition of 2 V. The stable endurance property and low voltage operating
are important for the development and application of low-power memory.
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Figure 3. (a) I-V curves, (b) P-E hysteresis loop and (c) instantaneous current (d) endurance cycling
characteristics of FE HZO MFM capacitors with different PMA temperatures.

To further characterize the ferroelectric properties of the HZO capacitor, the PUND (positive up
negative down) measurement was performed [13]. Figure 4a,b shows the PUND pulse waveform
and output response current results for the HZO capacitors with different areas. The principle of
PUND measurement is composed of a preset pulse, followed by two positive and two negative
consecutive pulses. The negative preset pulse is utilized to activate the polarization before double
pulse measurement [29]. Therefore, the current peak of Ip + c represents both the polarization switching
and capacitor charging currents. However, the current peak of Ic only includes the capacitor charging
current, since no polarization occurs during the second positive pulse. Thus, the polarization current
(Ip) can be estimated from the difference between Ip + c and Ic, according to the equation:

Ip = Ip + c − Ic (1)

To ensure that the HZO capacitor was fully polarized and prevent the leakage current, the switching
voltage, holding time and rising time were set as ±4 V, 50 and 10 µs, respectively. Figure 4c shows the
calculated polarization current for the HZO capacitors with different device areas. The ferroelectricity
in the HZO capacitors was confirmed. According to Equation (1), the polarization currents of the
HZO capacitors with the areas of 40,000, 10,000 and 2500 µm2 were 0.4, 0.3 and 0.065 mA, respectively,
indicating that the HZO capacitor with a larger area exhibits the stronger polarization. The larger area
the capacitor has, the more ferroelectric dipoles show up, resulting in the larger polarization current.
However, the HZO capacitor with a large area of 40,000µm2 also suffers from the leakage issue due to the
existence of more defect traps. Therefore, the large polarization current also contains the contribution
of a leakage-oriented component [14], which can significantly affect the ferroelectric domain switching,
especially under the operation environment of high electric field or high temperature.
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current as a function of pulse time for HAO MFM capacitor with different device areas.

Figure 5 shows the typical transfer drain current versus gate voltage (ID-VG) curves of the p-type
SnO TFT in the swept mode. The ION/IOFF ratio of the p-type SnO TFT shows 3 orders (~2 × 103) of
magnitude in the ID-VG curve, and the on-state and off-state currents are 2.8× 10−6 A and 1.3× 10−9 A at
VD = −1 V, respectively. It was observed that the hysteresis for the ID-VG curves under the forward and
reverse sweep is in the counterclockwise direction with a negative shift. This hysteresis phenomenon
can be ascribed to the trap defects near the SnO channel. It is well known that this charge trapping effect
is correlated with the interface quality between a vacancy-rich p-type SnO channel and a polycrystalline
HZO gate dielectric [24], which affects the transfer characteristic of the p-type TFT.

Figure 6a is the schematic plot of 1T-IC series configuration. Figure 6b shows the transfer
ID-VG curves of the 1T-1C device structure after integrating the ferroelectric HfZrO capacitor and
p-type SnO TFT. From the measured ID-VG curves, the clockwise hysteresis with a positive shift
was obviously observed, which was different from the ID-VG curves featuring a counterclockwise
trapping hysteresis of the p-type SnO TFT device. This difference in electrical behaviour could be
ascribed to the contribution of stronger ferroelectric domain dipoles in the FE-HZO MFM capacitor.
Besides, due to the effect of series capacitance, the threshold voltage (VT) was larger than that of the
original p-type SnO TFT device. Figure 6c shows the extracted memory window and ION/IOFF ratio
at VG = −0.2 V as a function of the ferroelectric capacitor area. When decreasing the ferroelectric
capacitor area from 40,000 to 2500 µm2, the memory window is apparently improved by 1.7 times
from 3.5 to 6 V and the ION/IOFF ratio is also increased by 2.6 times from 196 to 500. Therefore, we can
understand that both the memory window and ION/IOFF ratio can be improved significantly with the
area scaling of ferroelectric capacitor. This is because the defects in the gate stack of FE-HZO/SiO2

is gradually reduced with the area scaling of the MFM capacitor and thereby the gate leakage is
effectively suppressed in the smallest area condition of 2500 µm2. Figure 6d shows the ION/IOFF ratio
as a function of reading time for the SnO TFT in series configuration with different HZO capacitor
areas. We can also clearly observe that the smallest area condition of 2500 µm2 with a larger ION/IOFF

ratio has a better data retention capability compared to other conditions. This is because the leakage
current is correspondingly lower in the smallest area due to less leakage contribution from defect
traps of HZO gate stack. Thus, adopting a small MFM area for the integration with the p-type TFT,
the nanoscale domain dipoles in a low-leakage HZO film stack can be switched more effectively under
the operation of high electric field.
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Compared to 1T TFT-based ferroelectric memories [20,21] using ferroelectric polymer P(VDF-TrFE)
materials featuring a thick-film thickness of 200 nm and a large operating voltage range from 30 to
60 V, our TFT-based ferroelectric memory using 1T-1C series configuration using a correspondingly
thin 10-nm-thick HZO film shows the potential on the aspects of thick-film scaling and process
integration with modern semiconductor manufacturing technology. Most importantly, the low
operating voltage of 6 V is at least five times lower than those of 1T TFT-based ferroelectric polymer
memories mentioned above.
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Figure 6. (a) Schematic 1T-1C structure of a p-type SnO TFT in series configuration with a ferroelectric
HZO capacitor; (b) transfer ID-VG curves of the 1T-1C TFT structure of the p-type SnO TFT integrated
with the ferroelectric HZO MFM capacitor; (c) extracted memory window and ION/IOFF ratio at
VG = −0.2 V as a function of the ferroelectric capacitor area; (d) normalized current ratio as a function
of reading time for p-type SnO TFT in series configuration with different HZO MFM capacitor areas.

4. Conclusions

In this work, the ferroelectric polarization behaviors of HZO MFM capacitors are compressively
investigated under the consideration of various post-metal annealing temperatures and capacitor
areas. The best ferroelectric performance of an HZO MFM capacitor can be achieved at a PMA
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condition of 700 ◦C under the considerations of ferroelectric polarization and memory operation
characteristics. Under the design of 1T-1C series configuration, the ION/IOFF ratio of a p-type TFT
can be further enhanced with capacitor area scaling due to the defect reduction of the gate stack and
the improvement of the gate leakage current. Apparently, the smallest area condition of 2500 µm2

with a larger ION/IOFF ratio shows a better data retention capability compared to other area conditions.
Furthermore, the memory windows in the range from 3.5 to 6 V can also be appropriately modulated by
capacitor areas to gain a better series capacitance matching between the DE-HZO of a p-type SnO TFT
and the FE-HZO of an MFM capacitor. Thus, the optimization of PMA and the device area of an MFM
capacitor is necessary and beneficial for effectively improving the memory switching characteristics of
TFT-based ferroelectric memory with 1T-1C series configuration.
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