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Abstract: The in vitro antifungal activity of various generally recognized as safe (GRAS) salts against
Colletotrichum gloeosporioides, the causal agent of citrus postharvest anthracnose, was evaluated as
mycelial growth reduction on potato dextrose agar (PDA) dishes amended with salt aqueous solutions
at different concentrations. The most effective treatments [0.2% ammonium carbonate (AC), 2%
potassium sorbate (PS), 0.2% potassium carbonate (PC), 0.1% sodium methylparaben (SMP), 0.1%
sodium ethylparaben (SEP), 2% sodium benzoate (SB) and 2% potassium silicate (PSi)] were selected as
antifungal ingredients of composite edible coatings formulated with hydroxypropyl methylcellulose
(HPMC)-beeswax (BW) matrixes. Stable coatings containing these salts were applied in in vivo
curative experiments to “Nadorcott” mandarins and “Valencia” oranges artificially inoculated with
C. gloeosporioides and those containing 2% PS, 2% SB and 2% PSi were the most effective to reduce
anthracnose severity with respect to control fruit (up to 70% on mandarins). The effect of these
selected coatings on the quality of non-inoculated and cold-stored “Valencia” oranges was determined
after 28 and 56 days at 5 ◦C and 90% RH, followed by 7 days of shelf life at 20 ◦C. None of the coatings
significantly reduced weight loss of coated oranges, but they modified their internal atmosphere,
increasing the CO2 content. Overall, the coatings did not adversely affect the physicochemical and
sensory attributes of the fruit.

Keywords: food additives; mandarins; oranges; non-polluting postharvest decay control;
cold-stored fruit

1. Introduction

Citrus (Citrus spp., Rutaceae) are grown in many countries with tropical and subtropical climate
and are among the most important crops produced for human consumption in the world. Total
worldwide production of fresh fruits exceeded 130 million tons in 2018 and the most important
citrus-producing countries are China, Brazil, India, the United States of America (USA), Spain, Mexico,
Egypt, Turkey, Iran, Italy, Argentina, South Africa and Morocco, among others. In terms of international
trade, Spain is the leading exporter of citrus fruits for fresh consumption and Valencia is the most
important citrus growing region in Spain [1].

Postharvest diseases are one of the most important problems affecting both fresh and juice citrus
industries and are mainly caused by fungal pathogens. Fungi can infect the fruit before, during or after
harvest, but disease develops when the fruit has been picked, causing important economic losses to
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the industry in many countries [2–5]. Depending on the climate of the production area where citrus
are grown, the importance of the main postharvest diseases varies. In high summer rainfall areas, such
as Brazil or Florida, latent infections initiated in the fruit before harvest are the most relevant and
are typically caused by the genera Colletotrichum, Lasiodiplodia, Phomopsis, Alternaria and Phytophthora,
among others. In contrast, in areas with low summer rainfall, such as Spain and other Mediterranean
countries, California or South Africa, wound pathogens that infect the fruit through injuries inflicted
during harvest or after harvest are more prevalent, especially those belonging to the genera Penicillium,
the cause of green and blue molds, and Geotrichum, the cause of sour rot [3,6].

Postharvest anthracnose of citrus fruits, caused by different species of Colletotrichum, especially
Colletotrichum gloeosporioides (Penz.) Penz. & Sacc. (C. gloeosporioides sensu stricto), is an important
disease in both types of production areas. Citrus anthracnose can also be a field disease, typically
caused by Colletotrichum acutatum J.H. Simmonds, which can affect leaves and twigs and also cause
post bloom fruit drop. C. gloeosporioides is a weak pathogen on citrus fruits. Conidia are produced
abundantly in acervuli on dead plant parts and are spread over short distances, by rain or overhead
irrigation, to the developing fruits. In contrast, ascospores are less numerous but airborne, taking
part in long distance dispersal. The spores germinate giving rise to appressoria that generally remain
latent on the fruit surface [3,7]. In general, temperatures surrounding 25 ◦C and relative humidity (RH)
higher than 95% are optimal environmental conditions that favor C. gloeosporioides germination and
appressorium formation [8]. Fruit colonization and decay usually occur after harvest, mostly on tissues
weakened due to other factors such as sunburn, overripeness or excessively prolonged cold storage.
However, the disease may also develop on early season fruit treated with ethylene for degreening
purposes [7]. Symptoms of postharvest anthracnose appear after prolonged wet periods (important in
summer-rainfall areas) that favor the production and dispersal of inoculum and the incidence in the
field of fruit latent infections. Symptoms associated with weakened fruit are firm, dry, brown to black
spots (1.5 mm or more in diameter). Under humid conditions, conidial masses, pink to salmon in color,
appear on the lesion surface. Symptoms on ethylene-treated fruits are larger, firm, flat, silver gray
lesions with a leathery texture. As the lesion extends, it becomes darker and may affect much of the
rind and lead to a brown to black soft rot [3,7].

Postharvest applications of synthetic chemical fungicides have been used for many years as the
main tool to control postharvest diseases of citrus fruits, especially green and blue molds. Some of
these chemicals, such as thiabendazole (TBZ) and sodium o-phenylphenate (SOPP), have also shown
some effect against diseases caused by latent pathogens, particularly against Diplodia and Phomopsis
stem-end rots and anthracnose [3,9]. However, the proliferation of resistant fungal strains and the
increasing public concerns about the deleterious effect of chemical residues on human health and the
environment are factors limiting this practice. Therefore, the adoption of non-polluting alternatives to
control citrus postharvest diseases, including anthracnose, is needed [10,11]. Among them, the use of
edible coatings formulated with food-grade antifungal compounds allows coating the fruit directly
with a thin layer of edible material in order to extend product shelf life [12]. This type of antifungal
coatings could be a cost-effective substitute for the use of citrus commercial waxes containing chemical
fungicides [13]. Polysaccharides, proteins and lipids are the main ingredients used to formulate
composite edible coatings. These ingredients are mixed to reduce gas and water exchange between the
fruit and the environment and to improve fruit mechanical and sensorial properties [14].

Antimicrobial ingredients used for the formulation of edible coatings should be classified as
generally recognized as safe (GRAS) and approved for their use as food additives by the United
States Food and Drug Administration (US FDA) or the European Food Safety Authority (EFSA) [15].
Food additives are widely used as preservatives for controlling food pH, taste or other qualities.
Among them, various organic and inorganic salts have antimicrobial action and may offer a good
alternative to the use of synthetic fungicides [10,16]. The main advantages of using GRAS salts include
their availability, relatively low cost and high solubility in water [17]. In previous works at the IVIA
CTP, we have developed and characterized hydroxypropyl methylcellulose (HPMC)-lipid edible
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coatings containing GRAS salts with activity against fungal pathogens causing postharvest diseases of
plums [18,19] or cherry tomatoes [20,21]. Furthermore, on citrus fruits, this type of coatings has also
been effective against green and blue molds [10,22–25] and Lasiodiplodia stem-end rot [26]. Antifungal
edible coatings have been successfully used to reduce postharvest anthracnose caused by Colletotrichum
spp. on different fresh fruit commodities, such as mango, avocado, papaya and strawberry [27–29].
However, to our knowledge, there is no information available on the development of edible coatings
with antifungal food additives to control citrus postharvest anthracnose caused by C. gloeosporioides.

The aims of this research were: (1) to evaluate the in vitro activity of various GRAS salts, at different
concentrations, against C. gloeosporioides and (2) to develop novel stable HPMC-lipid composite coatings
containing the most promising salts and concentrations. The ability of the coatings to control citrus
anthracnose was assessed in in vivo experiments with mandarins and oranges artificially inoculated
with the pathogen. The effects of selected antifungal edible coatings on physico-chemical and sensorial
quality was also determined on oranges stored at 5 ◦C for up to two months.

2. Materials and Methods

2.1. GRAS Salts

The name, acronym, food additive E-number, molecular formula and molecular weight of the
antifungal salts used in this work are given in Table 1. Ammonium carbonate (AC) and ammonium
bicarbonate (ABC) were purchased from Thermo Fisher Scientific (Leicestershire, UK); potassium
bicarbonate (PBC), potassium carbonate (PC) and sodium benzoate (SB) from Carl Roth® GmbH
+Co. KG (Karlsruhe, Germany); potassium sorbate (PS), sodium ethylparaben (SEP) and sodium
methylparaben (SMP) from Merck® kGaA (Darmstadt, Germany); potassium silicate (PSi) was acquired
from Alfa Aesar® GmbH and Co. KG (Karlsruhe, Germany) and sodium propionate (SP) from Merck
Life Science S.L.U (Madrid, Spain).

Table 1. Characteristics of antifungal GRAS salts tested in vitro to inhibit Colletotrichum gloeosporioides
and in vivo as ingredients of edible coatings to control citrus anthracnose.

GRAS Salt Acronym Molecular Formula E-Number 1 MW 2

Ammonium bicarbonate ABC NH4HCO3 E-503 (ii) 79.06
Ammonium carbonate AC (NH4)2CO3 E-503 (i) 114.10
Potassium bicarbonate PBC KHCO3 E-501 (ii) 100.12
Potassium carbonate PC K2CO3 E-501 (i) 138.21

Potassium silicate PSi K2SiO3 E-560 154.26
Potassium sorbate PS C6H7O2K E-202 150.22
Sodium benzoate SB C7H5O2Na E-211 144.11

Sodium ethylparaben SEP C9H9NaO3 E-215 188.16
Sodium methylparaben SMP C8H7NaO3 E-219 174.13

Sodium propionate SP CH3CH2COONa E-281 96.06
1 E-number: codes for substances permitted as food additives within the European Union. 2 Molecular weight (g/mol).

2.2. Fungal Pathogen

The strain C. gloeosporioides NAV-1 was used in the present work. It is an isolate obtained from
decayed oranges from a local citrus packinghouse in the Valencia region (Spain). This fungal strain
was isolated, purified, molecularly identified and maintained in the culture collection of postharvest
pathogens of the IVIA CTP. It was also deposited in the Spanish Type Culture Collection (CECT,
University of Valencia, Valencia, Spain) with the accession number CECT 21107. Before the experiments,
the fungal isolate was incubated on potato dextrose agar (PDA) (Scharlab S.L., Barcelona, Catalonia,
Spain) Petri dishes at 25 ◦C for 7–14 d.
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2.3. In Vitro Antifungal Activity of GRAS Salts

The effect of ABC, PBC, PSi, SEP, SMP and SP on radial mycelial growth of C. gloeosporioides was
evaluated as previously described by Guimarães et al. [26]. In brief, 90-mm plastic Petri dishes with
PDA medium were amended, at 40–50 ◦C, with sterile aqueous solutions of the salts to achieve final
concentrations of 0.2%, 1% and 2% (v/v) for ABC, PBC, PSi and SP and of 0.01%, 0.05% and 0.1% (v/v)
for the paraben salts. PDA Petri dishes without salt served as controls. The center of each Petri dish
was inoculated with a 5-mm diameter mycelial plug, obtained with a sterilized cork-borer, from 7
to 14-d-old cultures of C. gloeosporioides. The plates were incubated in a growth chamber at 25 ◦C
in the dark. Radial mycelial growth was determined in each plate by calculating the mean of two
perpendicular fungal colony diameters. Results after 3, 5 and 7 d of incubation are presented. Four
replicates, each one corresponding with one plate, were used for each salt and concentration. Results
are expressed as percentage of mycelial growth inhibition: [(dc − dt)/dc] × 100, where dc = average
diameter of the fungal colony on control plates and dt = average diameter of the fungal colony on Petri
dishes amended with the salts.

2.4. Preparation of Antifungal Edible Coatings

HPMC-beeswax (BW) composite edible coatings (ECs) were prepared combining the hydrophilic
phase (HPMC) with the hydrophobic phase (BW) suspended in water. Glycerol was used as a plasticizer
and stearic acid (Panreac Química SA, Barcelona, Catalonia, Spain) as an emulsifier. HPMC (Methocel
E15) was purchased from Dow Europe GmbH (Dow Chemical Co., Stade, Germany), glycerol from
VWR International (Leuven, Belgium) and BW and stearic acid were supplied by Guinama S.L.U.
(La Pobla de Vallbona, Valencia, Spain). All the formulations contained 1.3% HPMC (w/w, wet basis,
wb) and 3% BW (wb). Ratios of HPMC-glycerol (2:1) and BW-stearic acid (3:1) and a total solid
concentration of 6% were kept constant for all coatings. GRAS salts and concentrations were selected
according to the results of the in vitro tests described above and also from the minimum effective
concentration reported for C. gloeosporioides in previous literature references [30–36]. Then, selected
salts and concentrations (w/v) were tested for compatibility with the HPMC-BW coating matrix and
only those forming stable emulsions were eventually selected: AC (0.2%), PS (2%), PC (0.2%), SMP
(0.1%), SEP (0.1%), SB (2%) and PSi (2%). The pH and viscosity (cP) values of HPMC-BW composite
emulsions formulated with these GRAS salts were the following: 6.83 and 46.2 cP, respectively, for
AC coating; 6.27 and 51.2 cP for PS coating; 7.15 and 50.0 cP for PC coating; 7.15 and 46.7 cP for SMP
coating; 7.03 and 45.9 cP for SEP coating; 6.07 and 46.7 cP for SB coating and 9.50 and 60.0 cP for
PSi coating.

Formulations were prepared as previously described by Guimarães et al. [26]. Briefly, an aqueous
solution of HPMC (5%, w/w) was prepared by dispersing the HPMC in hot water at 90 ◦C and later
hydration at 20 ◦C. Water, BW, glycerol and stearic acid were added to the HPMC solution and heated
at 98 ◦C to melt the lipids. In the case of the coating formulated with SP, Tween® 80 (Panreac-Química
S.A., Barcelona, Spain) was used as emulsifier instead of stearic acid. Samples were homogenized
with a high-shear probe mixer (Ultra-Turrax IKA® model T25, IKA-Werke, Staufen, Germany) for
1 min at 12,000 rpm and 3 min at 22,000 rpm. After adding the corresponding salts, formulations were
cooled under agitation (heating magnetic plate, Falc Instruments, F60, Treviglio, Italy) to a temperature
lower than 25 ◦C by placing them in an ice bath and agitation continued for 25 min to ensure complete
hydration of the HPMC.

2.5. Fruit

In vivo disease control experiments were conducted with “Nadorcott” hybrid mandarins (Citrus
reticulata × Citrus sinensis) and “Valencia” oranges [Citrus sinensis (L.) Osbeck], whereas quality
assessments on coated fruits were performed with cold-stored “Valencia” oranges. Mandarins and
oranges were collected from commercial orchards in the Valencia area (Spain) and transported to
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the IVIA CTP facilities. No commercial postharvest treatments were applied. Fruits were selected,
randomized, surface disinfected (5-min dips in diluted commercial bleach, 0.5% sodium hypochlorite),
rinsed with tap water and allowed to air-dry at room temperature to be used the following day in
the experiments.

2.6. In Vivo Anthracnose Control of Antifungal Coatings

For inoculation, conidia from 7 to 14-d-old cultures were taken from PDA plates with a sterilized
inoculation loop and transferred to a sterile aqueous solution of Tween® 80 (0.05%, w/v). Conidial
suspension was filtered through two layers of cheesecloth and the density of the suspension was
measured with a hemocytometer. Dilutions with sterile water were done to obtain an exact inoculum
density of 2 × 106 spores/mL. Being a weak pathogen on citrus, to prepare the final inoculum of C.
gloeosporioides, 5 mg/L of cycloheximide (Carl Roth GmbH + Co. KG, Karlsruhe, Germany) were added
to the spore suspension in order to inhibit the possible lignification of the inflicted rind wounds.

Each fruit was wounded and inoculated simultaneously, at one point in the equatorial zone,
using the tip of a stainless-steel rod (1 mm wide and 2 mm in length) previously immersed in
the aforementioned conidial suspension. Inoculated fruits were incubated for 24 h at 25 ◦C and
95% RH. After this period, fruits were individually coated to assess the curative activity of the
coatings. Three hundred microliters of coating material were pipetted onto each fruit and rubbed
with gloved hands to simulate the application of coating machinery on roll-conveyors in commercial
citrus packinglines [26,37]. Coated fruits were allowed to air-dry at room temperature. Inoculated but
uncoated mandarins or oranges served as controls. For each citrus species, four replicates of 10 fruits
each were used per treatment. Every trial was repeated once. Treated fruits were arranged on plastic
cavity sockets on plastic trays and incubated at 25 ◦C and 95% RH.

Anthracnose development was assessed as disease severity (lesion diameter) after 7 and 15 d of
incubation. Results after 15 d are presented as the percentage of severity reduction with respect to the
control treatments.

2.7. Effect of Coatings on Quality of Cold-Stored Fruit

HPMC-BW coatings containing the following GRAS salts and concentrations were selected to
evaluate their effect on postharvest quality of non-inoculated and cold-stored oranges: PS, PSi and
SB, all at 2% (w/v). These coatings were the three most effective among those previously tested for
antifungal activity. “Valencia” oranges were selected, washed, coated and stored at 5 ◦C for four and
eight weeks, followed by a shelf-life period of 7 d at 20 ◦C. Uncoated oranges were used as controls.
The following fruit quality attributes were determined at harvest and after cold storage and shelf life.

2.7.1. Weight Loss

Twenty fruits were used to evaluate orange weight loss during storage. After treatment, each
fruit was individually numbered and weighed with a calibrated analytical balance (Alessandrini® P30,
Modena, Italy). Measurements were performed at the beginning and at the end of each storage period.
Results were expressed as the percentage loss of initial weight by using the formula: % WL = [(Wi −
Wf)/Wi] × (100), where % WL = percentage of weight loss, Wi = initial fruit weight (g) and Wf = final
fruit weight (g).

2.7.2. Fruit Firmness

Firmness of 20 oranges per treatment was determined as percentage of rind deformation, related
to initial diameter, with an Instron Universal testing machine (Model 3343, Instron Corp., Canton, MA,
USA), according to Valencia-Chamorro et al. [24].
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2.7.3. Juice Quality

Soluble solids concentration (SSC, %), titratable acidity (TA, % of citric acid) and maturity index
(MI = SSC/TA) were determined as described by Palou et al. [38] in 5 mL juice samples (three replicates
of five oranges each per treatment). TA was determined with an automatic titrator (Titrator T50, Mettler
Toledo, Switzerland) and SSC was measured using a digital refractometer (model ATC-1, Atago® Co.,
LTD, Tokyo, Japan).

2.7.4. Internal Gas Concentration

Concentrations of CO2 and O2 (%) in the internal cavity of 10 oranges per treatment were
determined using a gas chromatograph (GC) (Thermo Trace, Thermo Fisher Scientific, Inc., Waltham,
MA, USA) following the methodology described by Valencia-Chamorro et al. [24].

2.7.5. Ethanol Content (EtC) and Acetaldehyde Content (AcC)

The content of these volatile compounds (mg/L) in the headspace of 10-mL vials filled with 5 mL
juice samples (three replicates of five oranges each per treatment) was analyzed by gas chromatography
according to Valencia-Chamorro et al. [39].

2.7.6. Sensorial Evaluation

Overall taste (1–9 scale, from 1 = very poor to 9 = optimal), the presence of off-flavours (1–5 scale,
from 1 = absence to 5 = very pronounced) and external appearance (1–3 scale: 1 = bad, 2 = acceptable
and 3 = good) of four coated oranges per treatment were evaluated by a panel of 10 trained tasters
following the procedures described by Valencia-Chamorro et al. [24].

2.8. Statistical Analysis

Data from in vitro tests, in vivo trials and fruit quality assessments were subjected to analyses of
variance (ANOVA). Since the experiment was not a significant factor, means of repeated experiments
are presented. Data on percent inhibition of mycelial growth was subjected to one-way ANOVA with
the concentration of the different GRAS salts as dependent variable. Disease reduction with respect to
control fruit was calculated as percentage. When appropriate, means separation was performed by
Fisher’s protected LEAST SIGNIFICANT DIFFERENCE test (LSD, P = 0.05). All statistical analyses
were performed with the software Statgraphics Centurion XVII (Statgraphics Technologies Inc., The
Plains, VA, USA).

3. Results

3.1. In Vitro Antifungal Activity of GRAS Salts

Table 2 shows the radial growth inhibition of colonies of C. gloeosporioides compared to control
treatment (fungal growth on PDA not amended with GRAS salts) after 3, 5 and 7 d of incubation at
25 ◦C. Significant differences were found among treatments and the effect of each salt was dependent
on the concentration at which it was applied. ABC and SEP were the most effective salts and completely
inhibited fungal growth after 7 d of incubation at the intermediate concentrations (1 and 0.05%,
respectively). In a second group, SMP also completely inhibited the growth of C. gloeosporioides after
7 d at the highest dose of 0.1% and inhibition with PBC exceeded 90% at the highest concentration of
2%. Growth inhibition with 2% SP after 7 d was about 80%, while the least effective GRAS salt was PSi,
with 50% of growth inhibition after 7 d at the highest concentration. None of the salts was effective
after 7 d of incubation at the lowest concentration tested. SMP, PBC and SP inhibited fungal growth by
more than 60% at the intermediate dose tested.
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Table 2. Percentage of radial growth inhibition of Colletotrichum gloeosporioides on PDA Petri dishes
amended with GRAS salts at different concentrations after 3, 5 and 7 d of incubation at 25 ◦C.

GRAS Salt 1 Concentration (%)
Inhibition of C. Gloeosporioides (%) 2

Day 3 Day 5 Day 7

ABC
0.2 61.44 de 60.49 d 33.43 g
1 100 a 100 a 100 a
2 100 a 100 a 100 a

PBC
0.2 20.92 h 26.80 f 23.53 h
1 98.04 a 87.14 b 76.46 c
2 100 a 100 a 92.89 b

PSi
0.2 16.99 h 6.43 g 9.22 i
1 58.50 e 47.32 e 33.72 g
2 88.56 b 76.57 c 56.96 e

SEP
0.01 40.33 f 36.04 f 35.22 g
0.05 100 a 100 a 100 a
0.1 100 a 100 a 100 a

SMP
0.01 30.8 g 29.38 f 29.58 gh
0.05 100 a 95.72 ab 87.08 b
0.1 100 a 100 a 100 a

SP
0.2 68.9 d 51.41 de 44.77 f
1 79.0 c 71.34 c 64.67 d
2 93.53 ab 76.5 c 79.96 c

1 See Table 1 for acronym definitions. 2 Colony diameter reduction with respect to control treatments (non-amended
PDA dishes). Means in columns with different letters are significantly different by Fisher’s protected LSD test (P <
0.05) applied after the ANOVA.

3.2. In Vivo Anthracnose Control of Antifungal Coatings

The curative effect of coating application [HPMC-BW coatings containing AC (0.2%), PS (2%),
PC (0.2%), SMP (0.1%), SEP (0.1%), SB (2%) or PSi (2%)] to control citrus anthracnose after 15 d of
incubation at 25 ◦C and 90% RH is shown in Figure 1. In a first set of experiments with “Nadorcott”
mandarins, average data from two trials showed that all inoculated fruits developed decay and all
the tested antifungal coatings reduced the severity of the disease (lesion size) between 45% and 70%
with respect to uncoated fruits. Coatings formulated with PSi, SB and PS were the most effective,
with severity reductions of 70%, 63% and 61%, respectively (Figure 1A). Similarly, in a second set of
experiments with “Valencia” oranges, average data from two trials showed a significant reduction in
anthracnose severity on coated oranges compared to control fruits. However, this reduction in severity
was lower than in “Nadorcott” mandarins, with percentages between 10% and 35%. The most effective
coating was that containing SB, followed by those formulated with PS and PSi (Figure 1B). Hence,
among all tested coatings, those containing 2% PSi, SB and PS were the most effective to control citrus
anthracnose, both in mandarins and oranges, with no significant differences in severity reduction
among them.
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Figure 1. Percentage reduction of anthracnose severity (lesion diameter) with respect to control fruits 
on “Nadorcott” mandarins (A) and “Valencia” oranges (B) artificially inoculated with Colletotrichum 
gloeosporioides and coated 24 h later with hydroxypropyl methylcellulose (HPMC)-beeswax (BW) 
composite edible coatings containing GRAS salts and incubated for 15 d at 25 °C and 90% RH. 
Represented GRAS salts and concentrations are: 0.2% ammonium carbonate (AC), 2% potassium 
sorbate (PS), 0.2% potassium carbonate (PC), 0.1% sodium methylparaben (SMP), 0.1% sodium 
ethylparaben (SEP), 2% sodium benzoate and 2% potassium silicate (PSi). Average data from two 
trials with each citrus species. In every trial, each treatment was applied to four replications of 10 
fruits each. Average severity of uncoated controls was: A) mandarins = 47.29 mm, B) oranges = 15.2 
mm. Columns with different letters are significantly different according to Fisher’s protected LSD test 
(P < 0.05) applied after the ANOVA. 

3.3. Effect of Coatings on the Quality of Cold-Stored Oranges 

Composite coatings (HPMC-BW) containing PS, PSi or SB at 2% were selected for fruit quality 
evaluation due to their higher control of anthracnose severity in the previous in vivo trials. Table 3 
shows the quality attributes of uncoated (control) and coated “Valencia” oranges at harvest and after 
cold storage at 5 °C followed by a shelf-life period of 7 d at 20 °C. Weight loss ranged from 2.1% to 
2.6% after 28 d of cold storage and from 3% to 4% after 56 d of cold storage, both periods followed by 
7 d of shelf life. None of the coatings significantly reduced weight loss compared to uncoated oranges. 
In the case of the coating formulated with PS, weight loss was even higher than on control fruit after 
the 28-d storage period. After 56 d, no significant differences were observed between the different 
coatings and the controls. Fruit firmness, expressed as percentage of rind deformation, decreased 
after storage (i.e., higher rind deformation) compared to the value at harvest, but no significant 
differences were found between 28 and 56 d of cold storage and between coated and uncoated fruits, 
remaining low for all treatments (in the range of 2.5% to 3%).  

Regarding juice quality, SSC and TA decreased and MI increased after cold storage and shelf life 
compared to values at harvest. In general, oranges coated with HPMC-BW-SB and HPMC-BW-PSi 
coatings had lower SSC than control fruit after both storage periods and no significant differences in 
TA and MI were observed between control and coated fruits (Table 3). On the other hand, EtC and 
AcC in “Valencia” oranges increased during storage compared to the values at harvest and reached 
values after 56 d that ranged from 400 to 700 mg/L of ethanol and from 5 to 8 mg/L of acetaldehyde. 

Figure 1. Percentage reduction of anthracnose severity (lesion diameter) with respect to control fruits
on “Nadorcott” mandarins (A) and “Valencia” oranges (B) artificially inoculated with Colletotrichum
gloeosporioides and coated 24 h later with hydroxypropyl methylcellulose (HPMC)-beeswax (BW)
composite edible coatings containing GRAS salts and incubated for 15 d at 25 ◦C and 90% RH.
Represented GRAS salts and concentrations are: 0.2% ammonium carbonate (AC), 2% potassium
sorbate (PS), 0.2% potassium carbonate (PC), 0.1% sodium methylparaben (SMP), 0.1% sodium
ethylparaben (SEP), 2% sodium benzoate and 2% potassium silicate (PSi). Average data from two trials
with each citrus species. In every trial, each treatment was applied to four replications of 10 fruits
each. Average severity of uncoated controls was: A) mandarins = 47.29 mm, B) oranges = 15.2 mm.
Columns with different letters are significantly different according to Fisher’s protected LSD test (P <

0.05) applied after the ANOVA.

3.3. Effect of Coatings on the Quality of Cold-Stored Oranges

Composite coatings (HPMC-BW) containing PS, PSi or SB at 2% were selected for fruit quality
evaluation due to their higher control of anthracnose severity in the previous in vivo trials. Table 3
shows the quality attributes of uncoated (control) and coated “Valencia” oranges at harvest and after
cold storage at 5 ◦C followed by a shelf-life period of 7 d at 20 ◦C. Weight loss ranged from 2.1% to
2.6% after 28 d of cold storage and from 3% to 4% after 56 d of cold storage, both periods followed by
7 d of shelf life. None of the coatings significantly reduced weight loss compared to uncoated oranges.
In the case of the coating formulated with PS, weight loss was even higher than on control fruit after
the 28-d storage period. After 56 d, no significant differences were observed between the different
coatings and the controls. Fruit firmness, expressed as percentage of rind deformation, decreased after
storage (i.e., higher rind deformation) compared to the value at harvest, but no significant differences
were found between 28 and 56 d of cold storage and between coated and uncoated fruits, remaining
low for all treatments (in the range of 2.5% to 3%).
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Table 3. Quality attributes of “Valencia” oranges coated with hydroxypropyl methylcellulose (HPMC)-beeswax (BW) edible composite coatings containing GRAS salts
and stored at 5 ◦C followed by 7 d of shelf life at 20 ◦C.

Quality Attributes 1

Storage Conditions and Treatments 2

At Harvest
28 d 5 ◦C + 7 d 20 ◦C 56 d 5 ◦C + 7 d 20 ◦C

Control HPMC-BW-PS HPMC-BW-SB HPMC-BW-PSi Control HPMC-BW-PS HPMC-BW-SB HPMC-BW-PSi

WL (% ± SE) – 2.25 ± 0.09 b 2.59 ± 0.10 a 2.24 ± 0.08 b 2.12 ± 0.06 b 3.48 ± 0.12 ab 3.71 ± 0.13 a 3.91 ± 0.22 a 2.97 ± 0.11 b

F (% deformation ± SE) 2.03 ± 0.09 2.58 ± 0.09 a 2.78 ± 0.14 a 2.50 ± 0.07 a 2.56 ± 0.14 a 2.66 ± 0.13 a 2.87 ± 0.15 a 2.47 ± 0.12 a 2.46 ± 0.13 a

SSC (% ± SE) 12.42 ± 0.08 11.70 ± 0.17a 11.37 ± 0.50 ab 10.28 ± 0.55 bc 10.05 ± 0.22 c 11.60 ± 0.26 a 11.20 ± 0.21 a 10.20 ± 0.15 b 10.02 ± 0.23 b

TA (% citric acid ± SE) 1.34 ± 0.01 1.08 ± 0.06 a 1.23 ± 0.10 a 0.97 ± 0.07 a 0.98 ± 0.09 a 0.90 ± 0.04 a 0.84 ± 0.04 a 0.83 ± 0.04 a 0.98 ± 0.04 a

MI (average ± SE) 9.24 ± 0.08 10.85 ± 0.47 a 9.31 ± 0.38 a 10.59 ± 0.24 a 10.36 ± 0.70 a 12.95 ± 0.63 a 13.28 ± 0.07 a 12.28 ± 0.49 a 10.29 ± 0.52 b

EtC (mg/L ± SE) 221.05 ± 10.42 412.35 ± 40.5 c 533.65 ± 16.21 ab 439.51 ± 23.70 bc 628.01 ± 50.27 a 441.49 ± 24.62 c 606.90 ± 29.78 ab 543.17 ± 80.63 bc 699.63 ± 48.35 a

AcC (mg/L ± SE) 3.16 ± 0.21 5.78 ± 0.26 b 6.51 ± 0.22 b 6.17 ± 0.07 b 7.39 ± 0.39 a 5.72 ± 0.23 c 6.88 ± 0.16 b 7.47 ± 0.31 ab 7.72 ± 0.33 a
1 WL: weight loss, F: firmness, SSC: soluble solids content, TA: titratable acidity, MI: maturity index, EtC: ethanol content, AcC: acetaldehyde content. Means in rows with different letters
are significantly different according to Fisher’s protected LSD test (P < 0.05) applied after the ANOVA. 2 Control: uncoated fruits; HPMC-BW coatings containing: PS: potassium sorbate,
SB: sodium benzoate, PSi: potassium silicate.
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Regarding juice quality, SSC and TA decreased and MI increased after cold storage and shelf life
compared to values at harvest. In general, oranges coated with HPMC-BW-SB and HPMC-BW-PSi
coatings had lower SSC than control fruit after both storage periods and no significant differences in
TA and MI were observed between control and coated fruits (Table 3). On the other hand, EtC and
AcC in “Valencia” oranges increased during storage compared to the values at harvest and reached
values after 56 d that ranged from 400 to 700 mg/L of ethanol and from 5 to 8 mg/L of acetaldehyde.
Uncoated samples and samples coated with HPMC-BW-PSi had the lower and higher volatile contents,
respectively (Table 3).

Figure 2 shows the internal CO2 and O2 concentrations of uncoated and coated oranges after
storage. At the end of the 28-d and 56-d storage periods, all tested coatings modified the internal
atmosphere of “Valencia” oranges with an increase of internal CO2 and a decrease of internal O2

compared to uncoated fruit, and the concentrations of internal CO2 and O2 on coated oranges reached
values around 4–6 and 15–17 kPa, respectively.Coatings 2020, 10, 730 10 of 19 
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Figure 2. Internal CO2 (A) and O2 (B) concentrations of “Valencia” oranges uncoated (CON) or coated
with antifungal hydroxypropyl methylcellulose (HPMC)-beeswax (BW) composite edible coatings and
stored at 5 ◦C followed by 7 d at 20 ◦C. Coatings contained 2% potassium sorbate (PS), 2% potassium
silicate (PSi) or 2% sodium benzoate (SB). For each storage period, columns with different letters are
significantly different according to Fisher’s protected LSD test (P < 0.05) applied after the ANOVA.

The HPMC–BW coatings containing GRAS salts did not modify the flavor of “Valencia” oranges
during cold storage, compared to uncoated samples, as determined by the trained judges of the
sensory panel (Table 4). Off-flavors ranged between 1.0 (absence) and 1.8 (very slight), with the coating
containing 2% SB showing the poorest overall taste and the highest presence of off-flavors after the
56-d storage period, although no significant differences were observed with the control samples (P
> 0.05). Coating appearance in a 1–3 scale was evaluated according to the presence or absence of
cracks, blemishes, stains, and homogeneity of the coating. In general, the appearance of all coated
oranges ranged between acceptable and good (1.6–2.7) after both periods of cold storage. However,
the incorporation of 2% PS and 2% SB to the HPMC-BW coating matrixes negatively affected the
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appearance of coated oranges, with the SB-based coating the worst evaluated. The coating containing
2% PSi was the best evaluated in terms of external appearance, without significant differences with the
uncoated samples (Table 4).

Table 4. Sensory quality attributes of “Valencia” oranges coated with hydroxypropyl methylcellulose
(HPMC)-beeswax (BW) composite edible coatings containing GRAS salts and stored at 5 ◦C followed
by 7 d of shelf life at 20 ◦C.

Treatments 2

Storage Conditions and Sensory Attributes 1

28 d 5 ◦C + 7 d 20 ◦C 56 d 5 ◦C + 7 d 20 ◦C

Overall Taste
(1–9 Scale) 3

Off-Flavours
(1–5 Scale) 4

Appearance
(1–3 Scale) 5

Overall Taste
(1–9 Scale) 3

Off-Flavours
(1–5 Scale) 4

Appearance
(1–3 Scale) 5

Control 6.43 ± 0.43 a 1.00 ± 0.00 a 2.43 ± 0.20 a 5.70 ± 0.63 a 1.38 ± 0.16 a 2.38 ± 0.24 a
HPMC-BW-PS 5.71 ± 0.56 a 1.71 ± 0.19 a 1.58 ± 0.20 b 5.50 ± 0.54 a 1.33 ± 0.22 a 1.63 ± 0.16 b
HPMC-BW-SB 6.43 ± 0.20 a 1.00 ± 0.00 a 2.00 ± 0.22 b 5.30 ± 0.58 a 1.80 ± 0.36 a 1.88 ± 0.26 b
HPMC-BW-PSi 5.83 ± 0.28 a 1.57 ± 0.20 a 2.71 ± 0.18 a 5.61 ± 0.41 a 1.33 ± 0.16 a 2.63 ± 0.24 a

1 Means in columns with different letters are significantly different according to Fisher’s protected LSD test applied
after the ANOVA (P < 0.05). 2 Control: uncoated fruits; HPMC-BW coatings containing: PS: potassium sorbate,
SB: sodium benzoate, PSi: potassium silicate. 3 Flavour ranked from 1 (very poor) to 9 (optimum). 4 Off-flavours
ranked from 1 (absence) to 5 (presence). 5 Coating/fruit appearance ranked from 1 (bad) to 3 (good).

4. Discussion

The present work highlights the antifungal activity of different GRAS salts or food preservatives
against C. gloeosporioides and their potential use as ingredients of antifungal composite edible coatings
for the control of postharvest anthracnose of citrus fruits. Our in vitro results showed that, among
all GRAS salts tested, ABC and SEP were the most effective to inhibit the mycelial growth of C.
gloeosporioides. Previous works have reported the potential of carbonate salts to reduce the in vitro
mycelial development of different Colletotrichum spp. Aqueous solutions of the salts AC at 3% [36] and
sodium bicarbonate (SBC) at 2% [34] completely inhibited the mycelial growth of C. gloeosporioides
isolated from papaya, while SBC significantly reduced the mycelial development of the species
Colletotrichum musae (Berk. & Curtis) Arx. isolated from banana. Similarly, other researchers have
also identified ABC as the most effective salt, at all concentrations tested (0.2, 1.0 and 2.0%), to inhibit
the growth on PDA dishes of other important postharvest pathogens such as Monilinia fructicola (G.
Wint.) Honey [19] and Lasiodiplodia theobromae (Pat.) Griffon & Maubl. [26]. In addition, various salts,
mainly carbonates, were effective to inhibit the in vitro radial growth of Botrytis cinerea Pers. [40,41],
Geotrichum citri-aurantii (Ferraris) Butler [42] and Penicillium expansum L. [43]. Likewise, the salt
SEP effectively inhibited the growth of different fungi causing major postharvest diseases on fresh
horticultural produce, such as B. cinerea, Alternaria alternata (Fr.) Keiss. [20] and L. theobromae [26].

The present results and former research clearly show that some GRAS salts have a broad spectrum
of antifungal activity since they are able to inhibit the in vitro growth of a variety of fungal pathogens.
The in vitro toxicity of a GRAS salt is influenced by many factors, such as the pathogen species and
strain, the salt components (ions) and concentration, the pH, the culture medium and the incubation
conditions [15,44,45]. General antifungal mechanisms of action of GRAS salts include the alteration of
the integrity and permeability of the fungal cell membranes, interferences in the transport of nutrients
and energy metabolism and collapse of hyphae or spores [42,44,46]. It is known that the addition of
inorganic or organic salts to the medium modifies its pH and, in general, the antifungal activity of the
salt is higher as the pH increases [19,47]. However, the pH alone cannot explain the toxicity of these
compounds as different salts with the same pH can affect the same fungal strain differently [26,45].
Moreover, the salt cations and anions also play an important and complex role. In fact, sodium,
potassium or ammonium forms of the same salt can show large differences in their toxicity to a
particular fungal strain [19,36,48].
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Salts and concentrations to be used as ingredients of HPMC-BW edible coatings were selected
according to previous in vitro results and their capability to form stable emulsions with appropriate
characteristics. For this reason, effective salts, such as ABC, PBC and SP, had to be discarded due to
incompatibility with the coating matrix leading to phase separation or undesirable properties of coated
fruit. Excessive viscosity, bad surface coverage or appearance of salt residues, blemishes or pitting on
the surface of oranges and mandarins were major causes for rejection of some experimental coatings.

Among the salts and concentrations selected to be tested in in vivo trials with “Nadorcott”
mandarins and “Valencia” oranges, coatings containing 2% PS, SB and PSi were the most effective
in reducing anthracnose severity (up to 70% and 35% on mandarins and oranges, respectively). It is
worthy to note that the antifungal effect of salt-containing coatings was higher on the citrus species
more susceptible to anthracnose, namely mandarins. As pointed out in the Figure 1 caption, the
average anthracnose severity (lesion size) on artificially inoculated and uncoated control fruits was
47.29 mm on mandarins, while it was only 15.2 mm on oranges. Since the inoculum density and the
methodology used for artificial inoculation with C. gloeosporioides was exactly the same for both types of
fruit, these values clearly point out that susceptibility to anthracnose was much lower on oranges than
on mandarins. This is a feature that has been previously reported for other citrus postharvest diseases,
such as green and blue molds caused by Penicillium spp., and can be related with the physical and
biochemical properties of the fruit rind [3,6,10]. Previous information on the use of GRAS salts, such as
AC, SC, SB or SBC, to control postharvest anthracnose on different fruit crops is available, but in most
cases the salts were applied by dipping the fruit in aqueous solutions [30,32–34,36]. On the other hand,
although the number of studies is considerably lower, some reports are available on the postharvest
use of coatings and waxes to control anthracnose caused by Colletotrichum spp. on fresh produce. In
general, the most studied coatings are applications of chitosan or other edible matrixes containing
essential oils as antifungal ingredients [29,49–51]. Nevertheless, some waxes or coatings formulated
with GRAS salts or food additives have also been evaluated for anthracnose reduction on different fresh
fruits. For example, AC (3%) and SB (2%) in paraffin wax-based formulations significantly reduced
anthracnose in papaya caused by C. gloeosporioides [36,52]; the same disease was effectively reduced in
papaya by chitosan alone or in combination with 3% AC or 2% SBC during storage at 13.5 ◦C and 95%
RH [35]; the combination of fruit-coating polymers with PS or SB significantly decreased the size of
the lesions caused by C. musae in wound-inoculated bananas after 7 d of incubation at 25 ◦C and 90%
RH [31]. To our knowledge, this is the first work in which edible coatings formulated with antifungal
GRAS salts are applied to control citrus postharvest anthracnose. Within this context, the general
antifungal activity of different coating matrices containing food additives reported by these authors
working with other fresh commodities is in agreement with the results obtained with citrus fruit in the
present study.

HPMC-BW edible coatings formulated with GRAS salts, with similar characteristics to those
tested here, have been also evaluated to control other important postharvest diseases of citrus fruits.
Among a large variety of HPMC-BW edible films containing GRAS salts, those with PS, SB, SP or their
mixtures exhibited a noteworthy in vitro antifungal activity against the citrus pathogens Penicillium
digitatum (Pers.:Fr.) Sacc. and Penicillium italicum Wehmer, and coatings containing these salts were
effective in reducing green and blue molds on “Valencia” oranges and “Ortanique” and “Clemenules”
mandarins artificially inoculated with these pathogens and incubated at 20 ◦C for 7 d [22–24]. In
another study [26], a large amount of GRAS salts and concentrations were evaluated in in vitro tests
against L. theobromae and the selected salts were assessed as ingredients of HPMC-BW coatings to
control Diplodia stem-end rot caused by this fungus in in vivo experiments. Coatings containing 2%
PS, 0.1% SEP, 2% SB and 2% PSi were the most effective, with reductions of disease severity of up to
50% on “Barnfield” oranges and “Ortanique” mandarins artificially inoculated with the pathogen and
incubated for 10 d at 28 ◦C and 90% RH. Moreover, the curative activity of similar composite coatings
has also been proved in other fresh fruit pathosystems. Significant reductions of black spot on cherry
tomatoes artificially inoculated with A. alternata were observed by Fagundes et al. after treatment with
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HPMC-based coatings containing SB, SEP or SMP [20,21]. In the same way, Karaca et al. [19] reported
that HPMC-BW coatings containing PS, SEP, SMP or PSi effectively reduced the incidence and severity
of brown rot caused by M. fructicola on artificially inoculated plums. Therefore, our present results
with citrus anthracnose confirm that HPMC coatings containing PS, SB or PSi are broad-spectrum
alternatives for the control of postharvest decay of fresh fruits.

This work and previous research show that the selection of the most appropriate antifungal GRAS
salt to confer disease control ability to a coating is greatly dependent on the characteristics of each
particular pathosystem, such as the type and properties of the fruit (species and even cultivar) and
the particular activity of the salt against the target pathogen. However, other factors are also relevant
and often the in vitro antifungal activity cannot anticipate the actual in vivo disease control ability.
Tests in Petri dishes allow fully exposure of the fungal structures to the salt, while in in vivo assays,
with the salt incorporated into the coating and the coating applied to fruit, the contact between the
salt and the pathogen can be limited depending on factors such as the emulsion properties (pH and
viscosity), the interaction of the salts with the coating matrix and other components (e.g., emulsifiers
and plastisizers), the characteristics of the fruit peel and the environmental storage conditions, among
others [19,20,26,39,53,54]. Moreover, in some cases, negative results lead to think that some salts
presumably provide additional nutrients or enhanced environmental conditions for the development
of the fungal pathogen [20,55]. The mentioned factors may explain why some GRAS salts assayed in
this work, such as SMP and SEP, were not as effective in in vivo trials as ingredients of the coatings as
they were in the in vitro tests. Therefore, it is very important to adapt the formulations and develop
appropriate coatings for each particular fruit species and cultivar and for specific target pathogens
and postharvest applications. Postharvest use of coatings containing GRAS salts as ingredients may
facilitate a slow diffusion of the active ingredient from the matrix compared to the application of
aqueous solutions, which could contribute to extend the antifungal effect on the fruit surface and may
also reduce phytotoxicity risks [13,15,56]. Hence, the packingline application in citrus packinghouses
of these antifungal edible coatings can be a good alternative for commercial anthracnose control to the
application of salt aqueous solutions by drencher, dipping or spraying systems.

After both cold storage periods and shelf life, none of the coatings significantly reduced weight
loss with respect to uncoated oranges. Among the different coatings tested, those with SB or PS
induced higher weight loss than those with PSi. In general, cellulose-lipid composite coatings are
reported to reduce fruit weight loss due to the moisture barrier created by the lipid ingredients (BW,
shellac, etc.) of the coating formulation [57]. However, several works have confirmed that the addition
of food additives such as GRAS salts to HPMC-based coatings greatly affects the moisture barrier
properties of stand-alone films or coatings when applied to different fruits such as cherry tomatoes,
citrus or table grapes [22,23,58,59]. Thus, the application of HPMC-BW coatings containing SB or PS
did not reduce weight loss of coated “Barnfield” and “Valencia” oranges compared to control samples
after cold storage at 5 ◦C, and in both cases PS was less effective than SB for weight retention [24,26].
However, similar coatings significantly reduced weight loss and maintained firmness of “Clemenules”
mandarins without adverse effects on the overall quality of coated fruit [39]. Similar results have been
reported in research work with other crops. For example, a HPMC-BW coating containing 2% SB
showed potential for postharvest industrial application to cherry tomatoes as it reduced weight loss
and controlled black spot during prolonged cold storage [21]. Since the antifungal HPMC-BW coatings
developed in this work have not satisfactorily reduced weight loss of cold-stored oranges, probably
due to changes originated in the permeability of the cuticle, an aspect to consider for further research
might be the modification of their physical characteristics in order to improve water loss control while
maintaining their antifungal activity.

In the present work, fruit firmness was not affected by the application of HPMC-BW coatings
amended with PS, SB or PSi. Polysaccharides present in the cell wall are responsible for the maintenance
of fruit firmness and the degradation of these compounds by hydrolyzing enzymes is the cause of
fruit softening during ripening and storage. In addition, the effect of coatings on the maintenance of
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fruit firmness is usually related to their control of weight loss. According to previous results with
HPMC-BW coatings, it seems that the influence of coating on fruit firmness is not only dependent
on the coating characteristics but also on the citrus cultivar. For instance, in accordance with our
results, Valencia-Chamorro et al. [24] and Guimarães et al. [26] reported that HPMC-BW coatings
amended with SB or PS did not affect significantly the firmness of coated “Valencia” and “Barnfield”
oranges, respectively. However, “Clemenules” mandarins treated with the same type of coatings were
significantly firmer after cold storage and shelf life than uncoated control fruits [39]. This could be
related to particular properties of the rind of each citrus species or cultivar by which the effects of
coating might be modified. Nevertheless, contradictory results have been reported on the relationship
between weight loss and firmness on coated citrus fruits. For instance, while a positive correlation
was found by Navarro-Tarazaga et al. [60] for “Ortanique” mandarins, no correlation was observed in
studies with “Fortune” mandarins [61], indicating the intervention of multiple factors.

Edible coatings can have the capacity to modify the internal gas composition of fresh fruit in terms
of O2 and CO2 concentrations [18]. The effect of edible coatings on the delay of changes related to fruit
ripening (softening, color change, decrease in acidity, appearance of some physiological disorders, etc.)
has been related to the gas barrier exerted on the fruit surface, leading to reductions in the respiration
rate and/or weight loss [21,62]. The capacity of an edible coating to create an effective gas barrier
depends not only on the coating composition and properties (including the addition of GRAS salts),
but also on the fruit, cultivar and storage conditions. In a work conducted by Gunaydin et al. [18], the
application of HPMC-BW coatings containing paraben salts resulted in the lowest CO2 production
rates, showing the potential of these coatings as gas barriers on plums. However, Fagundes et al. [21]
reported the highest respiration rates in cherry tomatoes coated with HPMC-BW emulsions containing
SEP. In the present study, the three selected coatings modified the fruit internal atmosphere, and the
internal CO2 and O2 levels were significantly higher and lower, respectively, in coated fruit than
in control samples, which indicates that the coatings were effective as gas barrier. The CO2 values
(3.5–4.5 kPa) in oranges treated with coatings containing PS or SB were equivalent to those observed
in coated “Barnfield” oranges [26] and “Clemenules” mandarins [39], but lower than those observed
in “Ortanique” mandarins [25] or “Valencia” oranges [63] coated with similar HPMC-lipid coatings
containing GRAS salts. To our knowledge, this is the first report on the potential of HPMC-BW
coatings amended with PSi as effective gas barriers for citrus fruits. This coating modified the internal
atmosphere of “Valencia” oranges in a greater extend than the rest of tested coatings, to reach internal
CO2 and O2 values of 5.7 and 15.0 kPa, respectively, which could be due to the interaction of PSi with
the coating matrix to form a tider structure with less O2 permeability.

In general, the creation of a modified atmosphere in coated citrus fruits is accompanied
by an increase in the volatiles associated with anaerobic respiration, such as ethanol and
acetaldehyde [24,39,61]. This was confirmed in this work, and the coating amended with PSi
induced the highest volatile content in accordance with the higher internal CO2 concentration in
the fruit. It is assumable that the specific composition and characteristics of the coatings (i.e., total
solid content, viscosity, surface tension, barrier and mechanical properties) may explain the different
behavior among coating formulations.

Overall, fruit taste and off-flavors were slightly modified during cold storage. However, there were
not significant differences between coated and uncoated “Valencia” oranges after both storage periods
and shelf life (Table 4). It is known that citrus off-flavor during storage is due to the accumulation of
volatiles, with ethanol the most relevant. Moreover, the application of fruit coatings may enhance this
process as they can restrict gas exchange through the peel surface [64,65]. However, in citrus, the level
of ethanol in the juice that marks the threshold associated with off-flavor appearance depends on the
cultivar and, in general, mandarins are more sensitive to anaerobic conditions and develop off-flavors
easier than other citrus fruits [66]. For instance, minimum EtC associated with off-flavors has been
reported to be 2000 mg/L in “Valencia” oranges [65], 1000 mg/L in “Clemenules” mandarins [67]
and 500–600 mg/L in “Murcott” mandarins [68]. In the present work, EtC levels were much lower



Coatings 2020, 10, 730 15 of 19

(400–700 mg/L) than those reported by other authors, which may explain why the tested coatings did
not induce off-flavors.

Regarding appearance, coatings containing 2% SB and 2% PB were the worst evaluated in
terms of external aspect (aceptable). In general, HPMC-BW coatings are not characterized for
providing significant gloss to coated fruit, generally due to the macro emulsion character of the coating
formulation [21,23,24,39]. Moreover, some studies have also reported the presence of white spots on
the surface of coated mandarins or oranges that reduced the general good appearance of the fruit when
using HPMC-based coatings amended with some GRAS salts, including SB and PS [25,26]. On the
other hand, the aspect of oranges treated with coatings amended with PSi was quite good and similar
to that of uncoated fruits.

In summary, this research allowed the development of HPMC-BW edible coatings effective to
reduce citrus postharvest anthracnose through the addition of antifungal GRAS salts such as PS,
SB and PSi to the coating matrix. These coatings significantly reduced anthracnose severity on
“Nadorcott” mandarins and “Valencia” oranges artificially inoculated with C. gloeosporioides and,
although they did not reduce weight loss of coated “Valencia” oranges in comparison with uncoated
fruits during cold storage, they modified the internal atmosphere of the fruit without adversely
affecting the physicochemical and sensorial attributes of the fruit. Further research should focus on the
improvement of physical characteristics of the coatings to enhance water loss control and the external
aspect of coated citrus fruit. Information gathered from this study provides a basis for further research
into the application of these antifungal coatings and their possible combination with other alternative
nonpolluting methods to improve the control of postharvest anthracnose in citrus packinghouses.
This is especially important in the case of early-season cultivars of mandarins and oranges that are
artificially degreened with exogenous ethylene to obtain the appropriate orange color in the rind before
commercialization. Exposure to this gas at typical degreening environmental conditions (20–22 ◦C and
RH > 90%) stimulates the germination of conidia and the formation and germination of appressoria
of C. gloeosporioides and, thus, exacerbates the development of latent infections and the incidence
of citrus postharvest anthracnose [3]. Since citrus degreening are typically performed before fruit
handling in the packingline, the application of these antifungal edible coatings in the packingline can
be a suitable curative treatment against anthracnose and effectively substitute the use of conventional
waxes amended with synthetic chemical fungicides.
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